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Abstract
We present a non-parametric method for estimating depth
of a single still image. We start from a single reference
image and its corresponding 3-d depth and use an unsu-
pervised neural network to transform the reference depth
to represent the target image. In doing so, we attempt
to mimic the human vision capability of perceiving the
depth of a given image. Existing depth recovery methods
either work for scenes with perpendicular planar surfaces
or assume availability of a training database of known im-
ages and depths. We propose a method that can recover
depth of a target image from a single reference depth. We
redesign Self-organizing map (SOM) to learn in an envi-
ronment with only three input data points and each data
point with a different semantic meaning. We combine the
proposed Parallel SOM (PSOM) with Gabor wavelets to
handle discrepancy between the target and reference im-
ages in lighting and orientation. The proposed method
gives promising results on images of faces and of daily
objects even when using reference image and depth ob-
tained in a poorly lighted setting.

1 Introduction
Humans have a remarkable capability to perceive the 3-
d surface by looking at a two dimensional or monocular
image. Enabling computer vision systems to do the same
still remains a challenging task. Mathematically, the chal-
lenge arises from the fact that the problem is inherently ill-
posed, one could construct infinitely many surfaces from
a single image.

Several existing methods tackle the 3-d reconstruction
problem in varying forms, ranging from estimating the
depth of a 2-d image [25] to estimating a complete 3-d
shape or surface model [10]. The input to such methods
could be a single monocular view [24], a sequence of im-
ages [7] or even video [27]. Based on the type of assump-
tions, some methods are more appropriate for handling
single objects such as faces [10] while others are appli-
cable for 3-d scene reconstruction [25, 8]. Depending on
the type of output, all methods operating on a single 2-d
image rely on one or more reference 3-d models or depths
and the corresponding 2-d images. Internally, the recon-
struction methods work in one of two ways. First way
is to use a deformation model (which is either designed
using physics principles [28] or learnt from the reference
data [1]) to transform the reference model to “match” the
input image. Second way is to learn a correspondence
relationship between an image and the corresponding 3-d
model or depth from the reference data [14], and then ap-
ply it to the input image to obtain the 3-d model or depth.

In this paper, we focus on estimating the depth for a
single 2-d image using a single reference image and its
corresponding depth. In particular, we focus on generat-
ing realistic surface depth for a image consisting of a sin-
gle face, though the proposed method can be applied to
other objects also. Existing methods that deal with depth
recovery from a single 2-d image typically assume that
the image is composed of a set of planar surfaces [25, 9]
which is a valid assumption for outdoor or indoor scenes,
but not for single objects with relatively smooth textures,
such as a human face. Moreover, such methods and one
existing work that focuses on faces [19], fall under the

1



Figure 1: Overview of the proposed method. The tar-
get image (top-left) is combined with a reference image
(top-middle) and the reference depth (top-right) to gener-
ate a depth map (bottom-right) which is combined with
the original target image to produce a realistic 3-d surface
(bottom-left).

correspondence category and hence require a representa-
tive training set of reference images and depths.

We propose a non-parametric method for depth esti-
mating which does not involve learning a parametrized
correspondence model. Instead, the proposed method
uses the relationship between the input image and the ref-
erence image to “transform” the reference depth to match
the input image, as shwn in Figure 1. Thus, the proposed
method, is similar in spirit to the deformation model ap-
proaches proposed for 3-d surface recovery, except that
the deformation is performed in a non-parametric fashion
and the output is a depth map.

We combine two well-known learning mechanisms that
have strong foundations in the functioning of human brain
for visual recognition, viz., Self-Organizing Maps and
Gabor filters. It has been shown that the visual cortex
of the brain in mammals can be modeled as a set of Gabor
filters [5]. Self-organizing Map (SOM) [11] is an unsu-
pervised neural network with strong links to retina-cortex
mapping. We propose Parallel SOM (PSOM), a com-
pletely novel way to use SOMs when the inputs have dif-
ferent semantic meanings. We demonstrate, both visually

and quantitatively, that the proposed method, with mod-
est requirements regarding the reference, show promising
results for depth recovery for facial images and other ob-
jects.

2 Related Works
One category of 3D surface reconstruction methods adopt
the structure from motion approach. For such methods,
the input is either a sequence of monocular images [2],
a video stream [21, 6], or a sequence of depth images
taken by an RGB-D sensor, such as Kinect [16, 27, 7].
Given that the problem is ill-posed, additional constraints
are employed to obtain a solution.

The second category of surface reconstruction methods
use a template based approach [3, 30, 14]. Such meth-
ods start from a known reference 3D surface shape and
then establish point correpondence between the reference
shape and the input image. These correspondences are
used to “deform” the reference shape and reconstruct the
new shape. Obviously, this reconstruction is also an under
represented problem and many solutions exist. To reach
an acceptable solution, constraints are applied.

We deal with the problem of recovering 3D surface
from a single two dimensional image or a view. This prob-
lem is also referred to as monocular surface reconstruc-
tion [3, 14]. Recovering 3D surface is fundamentally an
ill-posed problem. This means that for a given 2D image,
an infinite number of 3D surfaces can be constructed.

In general, all existing methods follow the same basic
steps, to do such reconstruction. The first step is to start
with an existing 3D surface model. The model is then
deformed to match the input 2D image and the resulting
model is the desired output shape. Existing methods can
be grouped into different categories based on the model
learnt and the deformation principles used.

In general, most existing methods for surface recovery
can be grouped into following categories:

1. Using physics-inspired deformable models [28].
Such models rely on the knowledge about the sur-
face material and use complex objective functions to
model the deformation of the surface.

2. Learning a deformable model from the data [1]. Ac-
tive appearance model is one such example of a sta-
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tistical model learnt from the data.

3. Using a structure from motion approach [29]. Such
methods use image sequences to reconstruct the sur-
face and are only effective for small deformations.

4. Using point correspondences between the input im-
age and a reference 3D shape [18, 22, 3, 30, 14]. Re-
cently, such methods, also known as template based
reconstruction, have gained popularity. Such meth-
ods reconstruct the surface as a deformation of the
reference surface using certain constraints, which
could be physical [18, 23, 14] or statistical [22, 17].
Our proposed method is closest to the third category
of methods (template based reconstruction). Some
methods [23, 22, 17] in this category assume that the
deformation modes are available.

2.1 3D Surface Models

An example of a surface model, especially in the context
of human faces, is an Active Appearance Model [4] which
is a statistical model of the shape, and has been typically
used for matching an input image with a model (recog-
nition) [4, 15] rather than for surface recovery. The idea
is to match the input image by finding a synthesized im-
age from the surface model which is as close to the in-
put image as possible, typically through an optimization
mechanism.

2.2 Models for Extensible and Inextensible
Objects

Models for extensible or non-rigid objects assume a wide
variety of shapes and can track complex motions.

3 Background

In this section we briefly describe two analysis tools
that we use for the depth estimation task. We use Self-
organizing Maps as the core non-parametric learning al-
gorithm and 2-d Gabor Wavelet Analysis for feature en-
hancement of the images.

3.1 Self-Organizing Maps
A Self-organizing Map (SOM) [11] is an unsupervised
neural network which is used to map high dimensional
data onto a low dimensional (typically 2) grid, such that
each input is quantized into discrete nodes (or neurons)
on the grid. A SOM also preserves topological relation-
ship among the neurons. SOMs have been widely used
for visualizing high dimensional data on 2-d grid and has
also been shown to be a non-linear generalization of Prin-
cipal components analysis (PCA) [32]. SOM have been
an interesting concept for the vision community as it is
strongly motivated from the retina-cortex mapping [20].

Traditionally, there are two operational modes for a
SOM, training and mapping. In the training mode, the
SOM updates the weights at each neuron using a sequence
of learning examples and in the mapping mode a test input
example is mapped from a high-dimensional space onto a
low dimensional grid.

During training, the learning example is compared to
the weight vectors associated with each neuron and the
“closest” winning neuron is selected. Typically, Euclidean
distance between the input and the weight is used for find-
ing the winnder. The weights of all the neurons are then
updated using the following update equation:

w

k

(t+ 1) = w

k

(t) + ↵(t)⌘(⌫, k, t)||w
k

(t)� x|| (1)

Here w

k

(t) is the weight for the k

th neuron at iteration
t, x is the input vector, and ⌫ is the index of the win-
ning neuron. ↵() gives the learning rate which monoton-
ically decreases with t. ⌘(, , ) is a neighborhood function
which measures the distance between a given neuron and
the winning neuron. Typically, ⌘ takes a Gaussian form,
⌘(⌫, k, t) =

�⌫,k

2�(t)2 , where �(, ) is the distance between
two neurons on the grid, and � is the monotonically de-
creasing neighborhood width.

The SOM algorithm assumes that the input vectors are
semantically homogeneous. In Section 4.1 we relax this
assumption to the case when different inputs have differ-
ent semantic connotations.

3.2 Image Processing using Gabor Wavelets
We deal with reference and the target images which are
expected to be different in terms of lighting conditions and
orientation. To address this issue, we use local features
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extracted from the raw images using 2-d Gabor functions,
which essentially are convolution functions representing
plane waves restricted by a Gaussian envelope function.
Gabor functions have been shown to have strong connec-
tions with the way human visual cortex processes im-
ages [5]. They have been especially effective for face
recognition [31, 26] as they are robust to varying bright-
ness in images and to limited variations in the orientation.

3.2.1 Gabor Wavelets

A 2-d Gabor function is parameterized by the frequency
of the sinusoidal plane wave, the orientation of the ma-
jor axis of the Gaussian envelope and the center loca-
tion. Multiple functions can be created by starting from
a mother wavelet and varying these parameters. A fam-
ily of such functions is called Gabor wavelets. Given a
mother wavelet defined as:
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a family of Gabor functions (or wavelets) can be con-
structed by rotating and dilating1 the mother wavelet as
follows:
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Note that u
j
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j
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tion of a child wavelet with respect to the mother wavelet.
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u
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�

different values for � to get K = n

u

⇥ n

�

wavelets. Thus 1  j  K.

3.2.2 Image Recovery from Gabor Wavelets

Using the wavelet family, one can reconstruct a given im-
age I using the following:

ˆ

I =

KX

j=1

w

j

 

j

(4)

1One can also translate the mother wavelet but we ignore that in this
paper.

where w
j

is a weight assigned to the jth wavelet. Let w =

[w

j

]

K

j=1 denote the weight vector. The optimal weights
are obtained by minimizing the energy function [12]:

E = ||I � ˆ

I||22 (5)

with respect to the weights w
j

.

Figure 2: Gabor wavelets used in the paper composed of
12 different scales and 20 different orientations. First row
represents the magnitude of the 12 scales. On the bottom-
left corner, we show an input Lincoln’s grayscale image
and reconstructed figure using the Gabor wavelet family.

In this paper, we employ Gabor wavelets to extract fea-
tures from the input images in the pre-processing step and
also to “smooth” the output depth in the post-processing
step. The wavelet family used in the paper is shown in
Figure 2.

4 Methodology
We use a Self Organizing Map (SOM) based algorithm to
solve the following problem:

Given a 2-d target image and a reference 2-d image and
depth, estimate the depth for the target image.

In this paper we work with grayscale images though
the same methodology can be easily extended for color
images.
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The 2-d image and the depth map are represented as
2-d matrices. The reference image is denoted as R, the
corresponding reference depth is represented as ¯

R and the
target image is represented as T . The task is to estimate
the corresponding target depth ¯

T using R,

¯

R, and T . We
assume that R,

¯

R, T , and ¯

T are r ⇥ c in size.
The core idea behind our proposed work is to transform

(or deform) the reference depth, ¯

R to get the target depth
¯

T by exploiting the relationships between R and ¯

R and
between R and T . Most existing methods perform this
transformation in one step by applying a function or pro-
cedure. The function is either learnt from training data or
designed using physics based principles. But given that
our training data is just a single pair (hR,

¯

Ri) and we are
not making any assumptions regarding the physical char-
acteristics of the objects, we perform the transformation
incrementally using SOM.

The proposed method has three steps. In the first step,
we use Gabor wavelets to pre-process the raw input and
target images (See (5)) using the wavelets depicted in Fig-
ure 2. The preprocessed reference and target images are
denoted as R

0 and T

0, respectively. In the second step
(See Section 4.1), we use SOM to transform the refer-
ence depth ¯

R to the target depth ¯

T . In the third step (See
Section 4.2), we again use Gabor wavelets to smooth the
estimated depth ¯

T based on the reference depth ¯

R.

4.1 Using Parallel Self Organizing Maps for
Depth Estimation

As described in Section 3, a SOM is traditionally used to
represent a low-dimensional representation of input data.
The representation is achieved by repeatedly updating the
weight vectors associated with the neurons arranged on a
low-dimensional (typically two) grid, using a sequence of
input examples.

We have adapted traditional SOMs to work towards a
completely different objective. We refer to this adaptation
as a Parallel SOM or PSOM. In our setup, we have only
three data points available for training, viz. R0

,

¯

R, and T

0,
and each of these have completely different semantics. To
handle this issue we make two key modifications. First,
weight vectors are replaced with weight matrices (r ⇥ c).
Second, each neuron has two associated weight matrices,
one corresponding to the 2-d images (image-weights) and

second corresponding to the depths (depth-weights).
The image-weights are “trained” using the reference

and target images alternately. This training “induces” a
bias to each neuron towards either the reference or the
target image, also referred to as polarization. This bias
is propagated to the depth-weights such that the neurons
heavily biased towards the target image will eventually
have the depth-weight corresponding to the desired target
depth.

We represent the PSOM as a set of neurons on a two
dimensional a ⇥ b lattice (for this paper a = b = 10).
Each neuron is denoted as N

ij

, where i, j specifies its lo-
cation on the 2-d lattice, and has two r ⇥ c matrices as-
sociated with it, denoted as I

ij

and D

ij

, corresponding to
the image-weights and depth-weights, respectively.

4.1.1 Initialization

For each neuron N
ij

, a r ⇥ c random matrix is generated
and both I

ij

and D

ij

are initialized to that matrix.

4.1.2 Single Round

After initialization, the algorithm runs as multiple rounds.
Each round consists of two sequential steps. In the first
step, a winning neuron is identified by comparing the
image-weight matrices with the target image T . The in-
dex of the winning neuron is calculated as:

[

ˆ

i,

ˆ

j] = argmin

i,j

||T � I

ij

||
F

(6)

where ||A||
F

is the Frobenius norm for a matrix A. The
image-weights for all neurons, with [

ˆ

i,

ˆ

j] as the index of
the winning neuron and T

0 as the input, is updated using
the SOM update rule (See (1)). The depth-weights for
all neurons are similarly updated, using the same winning
neuron and ˆ

R as the input.
In the second step, a (possibly) different winning neu-

ron is identified by comparing the image-weight matrices
with the reference image R0 in the same manner as step 1.
The image-weights for all neurons are again updated but
using the new winning neuron and R

0 as the output. Sim-
ilarly, the depth-weights are also updated using the new
winning neuron and ˆ

R as the output.
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4.1.3 Convergence

The single round of the algorithm is executed multiples
times. The learning rate and the neighborhood width pa-
rameters of the SOM (↵ and �) are functions of the round
number and decrease monotonically. The algorithm can
be stopped using different convergence criteria, e.g., mea-
suring the change in the weight vectors over successive
iterations. For our experiments we allow the algorithm to
execute for a fixed number of rounds (2000).

4.1.4 Output

At the end of the final round, the target image (T 0) is com-
pared with the the image-weights (I

ij

) of all neurons us-
ing PCA. All image-weight matrices and target image ma-
trix are “flattened” and stacked together to get a matrix A

with (a⇥ b+1 rows and r⇥ c columns. Each row of A is
mapped into a k dimensional space using the top k prin-
cipal components to get matrix A

k

which has k columns.
The row in A

k

corresponding to T

0 is compared with all
other rows using Euclidean distance. The neuron corre-
sponding to the closest row is chosen as final winner. Let
[i

⇤
, j

⇤
] be the index of the closest neuron. Then D

i

⇤
j

⇤ is
the depth estimate for the target image (denoted as ¯

T

0).
The algorithm for estimating the target depth using

PSOM is described in Algorithm 1.

4.2 Using Gabor Wavelets for Smoothing
Depth Estimates

The output of PSOM ( ¯T 0) is typically not smooth since it
is derived from the target image which could have shaded
or dark areas with irrecoverable depth. To handle this is-
sue we perform a final smoothing step on the depth esti-
mate obtained from the PSOM estimation ( ¯T 0). Using the
K Gabor wavelets discussed in Section 3.2 we calculate
K convolutions (also known as Gabor jets), denoted by
J
i

as:

J
j

(x, y) =

Z

x

0
,y

0

¯

T

0
(x, y) 

j

(x�x

0
, y� y

0
) dx

0
dy

0 (7)

We then find a set of weights {w̄
j

}K
j=1 such that the depth

reconstructed using the Gabor jets is as close to the refer-

Algorithm 1: Parallel SOM Depth Estimation
Input: Preprocessed Reference Image R

0, Reference
Depth ¯

R, Preprocessed Target Image T

0,
Number of rounds n

Output: Target Depth Estimate ¯

T

0

/

*

Initialization

*

/

1 for i 1 to a do
2 for j  1 to b do
3 I

ij

 random(r, c)

4 D

ij

 I

ij

5 for c 1 to n do
/

*

Step 1 -- Using target

*

/

6 Find winning neuron ⌫ = N
î,ĵ

for T 0 using (6)
7 for i 1 to a do
8 for j  1 to b do
9 Update I

ij

w.r.t. ⌫ and T

0 (See (1))
10 Update D

ij

w.r.t. ⌫ and ¯

R (See (1))

/

*

Step 2 -- Using reference

*

/

11 Find winning neuron ⌫ = N
î,ĵ

for R0 using (6)
12 for i 1 to a do
13 for j  1 to b do
14 Update I

ij

w.r.t. ⌫ and R

0 (See (1))
15 Update D

ij

w.r.t. ⌫ and ¯

R (See (1))

/

*

Finding Best Estimate

*

/

16 Find final winning neuron N
i

⇤
,j⇤ using PCA (See

Section 4.1.4)
17 return D

i

⇤
,j

⇤

ence depth as possible, i.e.,

{w̄
j

}K
j=1 = argmin

w̄j

|| ¯R�
KX

j=1

w̄

j

J
j

||22 (8)

The final smoothing step “adjusts” regions where the cor-
responding area in the target image is dark with informa-
tion from the reference depth. Figure 3 shows the effect
of this smoothing. In the original target image (See Fig-
ure 1), the chin area of the face is dark and hence the
region is not well recovered in the depth estimated by
PSOM (shown on left in Figure 3). But after smooth-
ing the chin region is more pronounced (shown on right
in Figure 3).
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Figure 3: Effect of smoothing. Using Gabor jets, the miss-
ing chin area in the left depth estimate (top left area of the
graph) gets filled out.

5 Experiments
We experimented with two types of images. We first used
our methodology to estimate depth for a set of face im-
ages. We used the image shown in Figure 1 and the cor-
responding depth as reference. The depth was captured
using a ASUS XTION RGB-D sensor. The second evalu-
ation was conducted on a public dataset of RGB and depth
images of several objects [13].

5.1 Analysis of PSOM
We first show how the PSOM estimation algorithm per-
forms the parallel learning such that after each round the
depth-matrix associated with every neuron adapts itself
according to the corresponding image-matrix. For this
experiment we recover depth for Lincoln’s face (See Fig-
ure 1). Figure 4 shows how the depth-matrices adapt over
multiple iterations. In the figure, results at every 100

th

iteration is shown. The top row is for the winning neu-
ron corresponding to the reference image (as obtained in
Line 6 in Algorithm 1). The bottom row is for the winning
neuron corresponding to the target image (as obtained in
Line 11 in Algorithm 1). The middle row is for a ran-
domly picked neuron.

As shown in Figure 4, as the image-weights of the
neurons get biased by the reference and target images,
the information from the image-weights is propogated to
the corresponding depth-matrices. At any given iteration,
there is one neuron that is most biased by the reference
image and one neuron that is most biased by the target

Figure 5: Error rate between estimated depth and true
depth for the target image shown in inset.

image. As shown in the figure, the depth-matrix for these
neurons show most affinity to the corresponding depth,
while the randomly selected neuron shows a “mixed” evo-
lution.

To further understand how PSOM improves the target
depth estimate, we measure the reconstruction error as
the Frobenius norm of the estimated and true depth matri-
ces for a target image with known depth. Figure 5 shows
how the error varies over iterations. Beginning with a
very high error (since the estimate is a random matrix),
the error decreases over iterations and finally stabilizes
after 1000 iterations.

5.2 Recovering Depth for Faces

Starting with the reference image and depth, we use the
proposed method to recover depths for different faces,
including oil paintings and sculptures. The results are
shown in Figure 6.

Our method is able to satisfactorily recover the depth
for most of the target images, starting with only one refer-
ence image and depth map. Note that the reference image
is also obtained under poorly lighted condition and hence
has an impact on the final estimates. The second row
shows the reconstructed 2-d images using Gabor wavelets
and shows how the variations in shading and lighting con-
ditions are normalized by the pre-processing step.

5.3 Recovering Depth for Objects

To understand the performance of the proposed method
on images of non-face objects we used several publicly
available object images and depths [13]. For each type of
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Figure 4: Evolution of depth-matrices over PSOM iterations. Results after every 100

th iteration are shown starting
with the initial random matrices. Top: winning neuron for reference image, middle: randomly selected neuron, bottom:
winning neuron for target image.

object (e.g., apple), we chose one image as reference and
another image as target. We also measure the reconstruc-
tion error to quantitatively assess the performance of our
method. The results are summarized in Table 1.

Table 1 show that for most objects our method is able
to reconstruct the depth within 10% error. Flat surfaces
such as notebook and food bag are recovered poorly since
the depth does not vary significantly enough across the
surface to cause the “polarization” in the PSOM neurons.

6 Conclusions and Future Work

We have shown a depth recovery method that uses only
one reference image and depth to reconstruct the depth
for a target image. Given the limited information required
by our method, the results are promising, even when ref-
erence image is taken under poor lighting conditions. The
method uses Gabor filters which are able to handle modest
discrepancies between the reference and target images in
terms of lighting and orientation. While we mainly talked
about recovering depth for facial images, our experiments

on other types of objects (See Section 5.3) show that the
method is equally applicable to those.

We use two processing and learning tools, viz. self or-
ganizing maps and Gabor filters which have strong con-
nections with how the visual cortex in human brains work.
A key contribution of our paper is the use of SOM to si-
multaneously learn from three semantically different in-
puts. Traditionally, SOMs, and neural networks in gen-
eral, have assumed the inputs to have homogeneous se-
mantic sense. We completely redesign SOMs to handle
the heterogeneous case.

Obviously, the performance of the method is strongly
tied to the reference image and depth. For a given tar-
get image, one reference image might work better than
another. It makes sense to have a database of reference
images and depths and then select the “best match” for a
target image to be used in the proposed depth estimation
system. Another possibility is to train the SOM with mul-
tiple reference images (have k + 1 steps in each round
in Algorithm 1). This is will be investigated as future
work.
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Figure 6: Depth recovery using PSOM for faces of 10 well known people. First row: Original image with bounding
box. Second row: Reconstructed image using Gabor wavelets. Third row: Estimated depth shown as intensity map.
Fourth row: Depth warped on the original image.
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Object Reference Target Recovered
Depth

Error
(%)

Mushroom 0

Peach 2

Marker 2

Cap 5

Keyboard 7

Ball 9

Apple 11

Dry Battery 14

Food Bag 34

Notebook 67

Table 1: Performance of PSOM Based Depth Recovery
for Objects
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