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Abstract—Channel assignment is a crucial problem for
wireless networks, especially for non-cooperative wireless
networks, in which nodes are selfish. While there have
been a few studies of non-cooperative, multi-radio channel
assignment, most existing studies are restricted to single
collision domains only. In this paper, we study the design of
incentive-compatible protocols for non-cooperative, multi-
radio channel assignment inmultiple collision domains.

First, we show the necessity of designing incentive-
compatible protocols for this problem. Specifically, we show
that, if no incentive-compatible protocol is deployed, Nash
Equilibria (NEs) may have undesired properties, such as
Pareto suboptimality and low throughput.

In order to prevent the system from converging to the
NEs with undesired properties, we propose an incentive-
compatible protocol for channel assignment in multiple
collision domains. We rigorously show that our proto-
col guarantees that the system converges to NEs that
are Pareto-optimal and have the maximum system-wide
throughput. Our simulation results also verify that our
protocols are effective in ensuring that the system converges
to the desired NEs.

Index Terms—Wireless Access, Channel Assignment,
Mechanism Design.

I. I NTRODUCTION

Frequency Division Multiplexing Access (FDMA) is
a frequently used multiplexing technique in wireless
networks. FDMA divides the carrier bandwidth into
a number of sub-bands, called channels. The wireless
devices need to assign their radio transmitters to these
channels, so that they can transfer signals simultane-
ously. This classical problem of channel assignment is
of great importance to wireless communications and thus
has been studied extensively [1]- [7]. In particular, when
the involved mobile devices have multiple interfaces, this
problem becomes themulti-radio channel assignment,
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which has been addressed in some existing works (e.g.,
[5]–[7]).

Recently, a new variant of the multi-radio channel
assignment problem,non-cooperative, multi-radio chan-
nel assignment[8], has attracted a lot of attention.
When wireless devices are non-cooperative (i.e.,selfish),
traditional channel assignment protocols, which have
been designed for cooperative devices, can no longer
be used. The reason is that selfish devices may deviate
from the protocols for their own benefits.

While a number of interesting results have been ob-
tained on non-cooperative, multi-radio channel assign-
ment, existing studies are restricted to single collision
domains only. For example, Felegyhaziet al. [8] are
the first to study non-cooperative, multi-radio channel
assignment in a single collision domain. They assume
that the involved wireless devices are all within a single
hop from each other. Wuet al. [9], [10] work in a
similar setting and design a channel assignment protocol
that can achieve globally optimal throughput. Gao and
Wang [11] remove the single hop assumption and obtain
very nice results by modeling the multiple hop channel
allocation problem as a static cooperative game. We
note that removing the assumption of single hops isnot
identical to removing the assumption of single collision
domain, because of the difference between transmission
range and sensing range. In particular, in [11], Gao and
Wang still keep assumption that players reside in a single
collision domain.

In this paper, we systematically study the problem
of non-cooperative, multi-radio channel assignment in
multiple collision domains. Our ultimate goal is to design
incentive-compatible channel assignment protocolsin
this setting, such that even in the presence of selfish
devices, the network system can still converge to stable
states with desirable properties, such as high system-
wide throughput and Pareto optimality.

In order to design the incentive-compatible proto-



col, we first show itsnecessityby the game theoretic
analysis. Specifically, we investigate the possible stable
states, namelyNash Equilibria (NEs), that the system
could converge to, if no incentive-compatible channel
assignment protocol is deployed. (In practice, the system
should evolve to one of the NEs and then permanently
stay in that state.) We obtain quantified results on the
economic efficiency and throughput of these NEs. Our
results indicate that these NEs may have undesired prop-
erties. For example, some NEs can be Pareto-suboptimal,
which means that there are better states of the system
giving more payoffs to some devices than these NEs
without decreasing other devices’ payoffs. Hence, if the
system finally evolves to one of such NEs, then some
devices lose part of their payoffs unnecessarily. More-
over, we show that some NEs may have low system-wide
throughputs.

To prevent the system from converging to these NEs
having undesired properties, we propose an incentive-
compatible channel assignment protocol for multiple
collision domains. This protocol guarantees the Pareto
optimality of all NEs and maximizes the system-wide
throughput of them. The main tool we use to build
this protocol is payment—we require a user to pay an
amount of virtual currency for her devices’ use of the
channels. We argue that this is anatural requirement
since communication bandwidth is a type of resource
and it is reasonable to request the users to pay for their
usage of resources. Furthermore, these payments can be
collected in asecureand efficient way, and maynot
require an online central authority, as discussed in [13]–
[15].

In summary, we make the following contributions in
this paper:

• We study the problem of non-cooperative, multi-
radio channel assignment in multiple collision do-
mains, using a mechanism design approach.

• We analyze the NEs of the multi-radio channel
assignment game in multiple collision domains and
obtain quantified results on economic efficiency
and throughput. Our results indicate that design-
ing incentive-compatible protocols is necessary, be-
cause otherwise the system may converge to a NE
that is Pareto-suboptimal or has low system-wide
throughput.

• To guarantee that stable states (i.e., NEs) of the
system always have the desired properties, we pro-
pose an incentive-compatible channel assignment
protocol for non-cooperative, multi-radio channel
assignment. This protocol guarantees that the NEs
maximize the system-wide throughput, and that all
the NEs are Pareto-optimal. We show the properties
of this protocol with rigorous analysis.

• We perform extensive evaluations on GloMoSim
[16]. The results show that our protocol is effective
in ensuring that the system converges to the desired

states.

The rest of this paper is organized as follows. First,
we introduce the technical preliminaries and our game
model for multi-radio channel assignment in multiple
collision domains in Section II. In Section III we moti-
vate the need for incentive-compatible channel assign-
ment protocols by analyzing the properties of Nash
equilibria in this game. Then in view of the undesired
properties of NEs, we propose an incentive-compatible
protocol to maximize the system throughput and achieve
Pareto optimality in Section IV. We present the evalua-
tion results in Section V. Finally, after briefly reviewing
the related work in Section VI, we conclude our paper
in Section VII.

II. PRELIMINARIES

In this section, we first present our system model, then
describe the channel assignment game that we study, and
finally review the definitions we use in this paper.

A. System model

In our model, we assume a network that consists of
a number of node pairs. LetP denote the set of node
pairs in the network. For the entire network the available
frequency band is divided into orthogonal channels (e.g.,
8 orthogonal channels in IEEE 802.11a protocol), the set
of which is denoted byC. The channels are assumed
to have the same characteristics. Each node hasK
transceivers to use. We assume that the MAC layer
coordination function is turned off. The two nodes in
each pair are within the transmission range of each
other. They can establish a bidirectional communication,
by tuning a pair of transceivers (one transceiver from
each node) to the same channel. There is a mechanism
that enables each node pair to simultaneously transmit
packets using multiple channels. Each node is only
involved in one such node pair.

We consider multiple collision domains. That is, some
node pairs cannot interfere with the communications
of some other pairs, even if they are all using the
same channel. Two node pairs can interfere with each
other’s communication only when they are within the
interference rangeof each other.

B. Multi-radio channel assignment game in multiple
collision domains

In this paper, our goal is to design incentive-
compatible channel assignment protocols for multiple
collision domains, to achieve desirable system proper-
ties. Here by incentive-compatible, we mean that even
though each node in the system can control his radios, it
is still to his best interest to assign his radios to channels
in a way such that desirable system performance can be
achieved. To provide incentives to each node, we design
suitable payments for the channel usage. This can be
viewed as an application of mechanism design to the



wireless network channel assignment problem in multi-
ple collision domains. For a general introduction to the
mechanism design literature, please refer to [17]. In this
paper we take game-theoretic approach to mechanism
design.

We model the multi-radio channel assignment prob-
lem in multiple collision domains as a non-cooperative
strategic game, in which each pair of communicating
nodes is a selfish player. The set of players is thusP .
The objective of each player is to maximize its own
communication throughput and to minimize the cost at
the same time. Note that the attempt to transmit packets
may not be successful due to interference. We use the
interference model (e.g. in [18]) that if two players
within each other’s interference range are transmitting
packets on the same channel at the same time, no one
can successfully transmit any useful data. Under this
interference model, each player will not put more than
one radio on the same channel at the same time, to avoid
the interference with himself.

Each player’s strategy in the game is to decide whether
to use its radios and which channels to put radios on.

Formally, the strategy of playeri is defined as

si = {Sc
i |c ∈ C},

where

Sc
i =

{

1 if player i has one radio on channel c
0 if player i has no radio on channel c

Since each player only hasK radios, the number of
channels used by playeri (denoted byki), can not
exceedK. (i.e. ∀i, ki =

∑

c∈C Sc
i ≤ K). The strategy

profile is a matrix composed of all players’ strategies,
s = (s1, s2, · · · , s|P |). The strategy profile except for
i’s strategy is denoted ass−i.

Whether players can successfully transmit packets
depends on their strategies as well as those of others
which may cause interference to them. We use flow con-
tention graph1 to illustrate the interference relationship
between players. In the flow contention graph, each node
represents a player. If and only if two players are within
each other’s interference range, there is an edge between
the two nodes in the flow contention graph. Fig. 1 shows
an example of flow contention graph. The topic of how to
obtain the flow contention graph is closely related to the
wireless network topology discovery problem which has
been well studied (e.g., [22], [23]). We can adopt some
of the available adaptive topology discovery algorithms
(e.g., [24]), but since the topic of topology discovery
is already beyond the scope of this paper, we will not
explore it in detail.

For player i, the set of players who are connected
with i (including i itself) in the flow contention graph is

1All flows are single-hop flows in our game and each node in flow
contention graph represents a player or his flow.
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Fig. 1. An example of flow contention graph.

TABLE I
TABLE OF NOTATIONS

P Set of players
si Strategy of playeri
K The number of radios that each player has
Sc

i
The number of radio that playeri has on

channelc
ki The number of channels used by playeri

s Strategy profile of all players
s−i The strategy profile except fori’s strategy
Ni Playeri’s interference set in the flow

contention graph
nmax The size of the largest interference set

r the amount of data that a player can transmit
through one radio

β Energy cost parameter
ui Playeri’s utility

calledi’s interference set, denoted byNi. We also define
nmax = maxi∈P |Ni|.

Now we define the payoff function of playeri as the
amount of data thati successfully transmits, minus the
cost of transmission. Formally,

ui =
∑



r
∑

c∈C



Sc
i ·

∏

j∈Ni

(1 − Sc
j )



 − β · ki



 ,

(1)
in which r is the throughput that a player can obtain
through one radio, andβ(β < r) is a constant number
representing the energy cost rate for one radio. Given
the interference model described above, we know that
each player can perform successful transmissions on one
channel only when all the players in his interference set
do not use that channel. If any of the players in the
interference set is attempting to transmit, there will be
collisions. Correspondingly, in Eq. (1), if none of the
neighbor players ofi use channelc, then

∏

j∈Ni
(1 −

Sc
j ) = 1.

∏

j∈Ni
(1 − Sc

j ) = 0 implies that at least one
neighbor player ofi has a radio on channelc. In this case,
even if i puts one radio on channelc (i.e.,Sc

i =1), he will
not successfully transmit data and as a result he will lose
the corresponding share of payoff.2 We summarize the
important notations used in this paper in Table II-B.

2We note that there could be some DoS attackers who are willing
to sacrifice payoff initially by jamming other users until some of them
drop out. We assume that this type of DoS attacks can be detected
by the network administrators and once detected, the attackers will be
removed away from the network service.



C. Definitions

To analyze the channel assignment game, we use some
of the definitions (as described below) from game theory.
For completeness, we include these definitions below.
(Readers interested in these definitions can refer to, e.g.,
[25] for detailed discussions.)

Definition 1: (Nash Equilibrium (NE)) Let(S, U) be
a game with the player setP , wheresi is the strategy
set for playeri, S = s1 × s2 × · · · × s|P | is the set of
strategy profiles, andU = (u1(s), u2(s), · · · , u|P |(s))
is the utility functions fors ∈ S. The strategy profile
s∗ = {s∗

1
, s∗

2
, · · · , s∗|P |} is a Nash equilibrium (NE) if

for every playeri ∈ P , we have

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i), (2)

for all strategysi.
NEs are thestable statesof the system, because no

single player has incentives to leave them. Normally, the
system should converge to a NE and then permanently
stay there. Consequently, it is important to guarantee that
NEs have good properties such as economic efficiency.
A definition often used for economic efficiency is Pareto
optimality:

Definition 2: (Pareto Optimality) Let(S, U) be a
game with the player setP , where si is the strategy
set for playeri, S = s1 × s2 × · · · × s|P | is the set of
strategy profiles, andU = (u1(s), u2(s), · · · , u|P |(s)) is
the utility functions fors ∈ S. A strategy profilespo is
Pareto-optimal if for every strategy profiles such that
there exists playeri ∈ P ,

ui(s
po) < ui(s),

there must exist another playerj ∈ P ,

uj(s
po) > uj(s).

Intuitively, in a Pareto-optimal state, no player can get
more payoff without hurting another player. Clearly, it
is desirable to guarantee that all NEs are Pareto-optimal.

III. N ECESSITY OFDESIGNING

INCENTIVE-COMPATIBLE PROTOCOLS

In this section, we show the necessity of design-
ing incentive-compatible protocols for non-cooperative,
multi-radio channel assignment. In particular, we rigor-
ously analyze the NEs in a system without incentive-
compatible protocols, and study their economic effi-
ciency and throughput.

Before we analyze the properties of NEs in the
channel assignment game, we first characterize them
by providing a necessary and sufficient condition for
strategy profiles to become NEs.

Theorem 1:s∗ is a NE if and only if the following
two conditions hold:
(1) ∀i, ∀c, if Sc

i
∗ = 1, then

∏

j∈Ni
(1 − Sc

j
∗) = 1

(2) in any channelc, there does not exist playeri, s.t.
∑

j∈Ni

Sc
j
∗ + Sc

i
∗ = 0, andk∗

i < K.

We first introduce two Lemmas to help the proof of
Theorem 1.

Lemma 1: If s∗ is a NE, then

∀i, c, if Sc
i
∗ = 1,

∏

j∈Ni

(1 − Sc
j
∗) = 1.

Proof: We prove this by contradiction. Suppose
∃i, c s.t.Sc

i
∗ = 1 and

∏

j∈Ni
(1−Sc

j
∗) = 0. We consider

another strategy fori, s′i, which equalss∗ except for
Sc

i
′ = 0. Then we compare the utilities of playeri taking

strategys∗i ands′i when the strategies of players remain
the same.

u′
i − u∗

i = Sc
i
′

∏

j∈Ni

(1 − Sc
j
∗)r − βSc

i
′

−(Sc
i
∗

∏

j∈Ni

(1 − Sc
j
∗)r − βSc

i
∗)

= 0 − (−β)

> 0

This contradicts with the fact thats∗ is a Nash equilib-
rium.

Another straightforward necessary condition of NEs
is that players will put as many radios as possible on
channels to increase their utilities as long as there is no
interference with others. Formally we have Lemma 2.

Lemma 2: If s∗ is a NE, then there does not existi,
s.t.

∑

j∈Ni

Sc
j
∗ + Sc

i
∗ = 0, andki < K.

Proof of Theorem 1
Proof: Since we already have Lemma 1 and Lemma

2, all we need to prove here is that if the two conditions
hold, s∗ is a NE.

Suppose that under the two conditions above, a player
i can unilaterally increase his utility by changing his
strategy tou′

i. He has two possible ways in total to do
so.

• Changing someSc
i
∗ from 1 to 0.

If Sc
i
∗ = 1, from condition (1), we know that

∏

j∈Ni
(1−Sc

j
∗) = 1. In this caseu′

i−u∗
i ≤ 0. Therefore,

by changing someSc
i
∗ from 1 to 0, i can not increase

his utility.

• Changing someSc
i
∗ from 0 to 1.

We now consider two cases.
If

∑

j∈Ni
Sc

j
∗ + Sc

i
∗ > 0, then

∏

j∈Ni
(1 − Sc

j
∗) = 0.

In this case, ifi changesSc
i
∗ to 1, it will decrease his

utility by β.
If

∑

j∈Ni
Sc

j
∗+Sc

i
∗ = 0, from condition (2) we know

that, it must be the case thatki = K, which meansi has
no spare radios to improve his utility.



Therefore there is no way fori to unilaterally increase
his utility with others strategies being equal. Hence,s∗

is a Nash equilibrium.
Condition (1) suggests that players will avoid inter-

ference to maximize their payoffs. Condition (2) says
no player wants to spare their radios if they could
successfully transmit packets. If both (1) and (2) are
satisfied, the system is in its NE and vice versa. If in
the system each node always tries to change his channel
assignment for better utility in a distributed fashion,
the system will converge to NE status as described
in Theorem 1. This is due to the definition of NE
and that the status in Theorem 1 is within the system
capacity. Although the system will always converge, it
is still non-trivial to determine whether these NEs can
guarantee desired system properties. Hereafter we will
use Theorem 1 in the analysis of NEs’ properties.

A. Economic Efficiency

In this subsection, we study the property of NEs from
a system-wide perspective,economic efficiency3, using
Pareto optimality as the criterion. If the system converges
to a NE that is not Pareto-optimal, then some players
lose the opportunities of increasing their own payoffs
without hurting anyone else, which immediately implies
that some resources in the system are wasted. Therefore,
it is important to identify whether all NEs in the channel
assignment game are Pareto-optimal.

First we observe an example.
Example 1. Consider a network with three players and
the flow contention graph is shown as Fig. 1. Each player
has 2 radios and there are 3 channels,a, b, c, available.

1 2 3

Fig. 2. The flow contention graph in Example of Pareto suboptimality.

Consider a strategy profiles = {s1, s2, s3}, s1 =
{∀t, Sa

1
= 1, Sb

1
= 0, Sc

1
= 1}, s2 = {∀t, Sa

2
= 0, Sb

2
=

0, Sc
2

= 0}, s3 = {∀t, Sa
3

= 0, Sb
3

= 1, Sc
3

= 1}.
In words, player 1 is using channela and c; player 3
is using channelb and c; player 2 has no radio in use.
Here s achieves a Nash equilibrium, because player 1
and 3 both have obtained their best possible payoffs
and player 2 has no way to improve his payoff given
the fact that no matter which channel (a or b) he tries
to use there will be an interference. Howevers is not
Pareto-optimal. In fact, if player 1 moves one of his
radios from channela to channelb, player 2 can start
using one of his radios to transmit packets on channela
without any interference. In this way player 2 increases

3Note that economic efficiency is a standard term for resource
allocation in economic theory, even though in many cases real money
is not involved.

his payoff without decreasing any other player’s payoff,
which implies thats is Pareto-suboptimal.

This example shows that NEs may not be Pareto-
optimal in the non-cooperative, multi-radio channel as-
signment. But what are the exact conditions for NEs
to be Pareto-optimal or Pareto-suboptimal? Is there a
system that has all its NEs being Pareto-optimal?

Our main observation is that Pareto optimality de-
pends on the values ofK, |C| andnmax. More precisely,
Pareto optimality can be guaranteed in all NEs when|C|
is not less thannmax · K (Proposition 1), or not more
than K (Proposition 2). If the value of|C| is between
these two thresholds, there can be some NEs that are
Pareto-suboptimal, as we have shown in Example 1.

Proposition 1: If |C| ≥ nmax · K, all the Nash
equilibria are Pareto-optimal4.

Proof: First we show that if|C| ≥ nmax ·K, in any
Nash equilibrium,∀i, ki = K. That is, each player is
using all his radios to transmit packets. Recall thatnmax

is the maximum number of players that can interfere
with one player. Since|C| ≥ nmax ·K, for each player,
no matter what strategies other players take, there are
always more thanK idle channels to put his radios on
without interference. If a player is using less thanK
radios, it contradicts with the definition of NE.When all
the radios of players are occupied, there is no way to
increase the payoff of any player. Therefore, the Nash
equilibrium strategy profiles are Pareto-optimal.

Proposition 2: If |C| ≤ K, all the Nash equilibria are
Pareto-optimal.5

Proof: If |C| ≤ K, for any Nash equilibrium,
suppose it is not Pareto-optimal, i.e. there is a playeri
that can increase his utility without decreasing any other
player’s utility.

First we have an observation. In a Nash equilibrium,
a necessary condition fori to increase his utility by
changing his strategy froms∗i to s′i is that

∃(c, t), s.t. Sc
i
∗ = 0 andSc

i
′ ·

∏

j∈Ni

(1 − Sc
j
′) = 1.

Since Sc
i
∗ = 0, we can get

∑

j∈Ni
Sc

j
∗ ≥ 1. Then

∃k ∈ Ni, s.t. Sc
k
∗ = 1. In order to have playerk not

decreasing his utility afteri puts a radio onc, there must
be at least one channelc′ for playerk to move his radio
to. Formally,Sc′

k

∗
= 0 andSc′

k

′ ∏

j∈Nk
(1 − Sc′

j

′
) = 1.

Now we consider two cases regarding to
∏

j∈Nk
(1−

Sc′

j

∗
), to show that no matter in which case there will

be a contradiction.
Case 1. If

∏

j∈Nk
(1 − Sc′

j

∗
) = 1, then ∀j ∈

Nk, Sc′

j

∗
= 0. Hence we have

∑

j∈Nk
Sc′

j

∗
+ Sc′

k

∗
= 0,

which is contradicting with Theorem 1.

4The bound for|C| is tight, i.e., this proposition holds when|C| =
nmax ·K.

5The bound for|C| is tight in this proposition. Please see the proof
for details.



Case 2. If
∏

j∈Nk
(1 − Sc′

j

∗
) = 0, then ∃j′ ∈

Nk, s.t.Sc′

j′,t = 1. Now playerj′ meets the same situation
with playerk thatj′ must move his radio on channelc′ to
another channel to keep his utility from decreasing. Note
that the process of having one player switch his radio to
another channel must stop to achieve a successful Pareto
improvement, while the process can only stop in Case 1
for some player, which introduces contradiction.

Therefore, if|C| ≤ K, all Nash equilibria are Pareto-
optimal.

An intuitive explanation of Proposition 2 is that when
|C| ≤ K, since the channel resource is so limited, in
a Nash equilibrium if a player wants to increase its
payoff by employing one more radio in some channel,
at least one of its neighbors must remove its radio from
that channel. Because in a Nash equilibrium, for each
player, there is no more available channel to use, the
change that a player uses one more channel must result
in the consequence that some other player loses part
of its utility due to the decreased number of occupied
channels.

The above two propositions tell us that if the number
of channels available is large enough (|C| ≥ nmax · K)
or small enough (|C| ≤ K), any NE channel allo-
cation is Pareto-optimal. It implies that in these two
cases, the system administrators do not have to consider
economic efficiency when choosing channel assignment
protocols and thus can focus on other properties such
as throughput. But note that considering the current real
applications, both|C| ≥ nmax · K and |C| ≤ K are
minor cases.

Now we study the remaining cases, in whichK <
|C| < nmax ·K. Let us revisit Example 1 in which NEs
are not Pareto-optimal. In Example 1,K = 2, |C| =
3, nmax = 3. (The size of interference set of Node 2
(containing Node 2 itself) is3.) We haveK < |C| <
nmax · K. So if K < |C| < nmax · K, there may be
some Nash equilibria which are not Pareto-optimal.

B. Throughput

The second property of NEs that we study is system-
wide throughput. LetI(i) denote the interference degree
of i—the number of players in the interference set ofi
that can transmit packets simultaneously without inter-
fering with each other. LetI(G) denote the maximum
interference degree among all the players. Letr∗ denote
the maximum system-wide throughput that a network
can achieve. In fact, the system-wide throughputs of
some Nash equilibria can be as low asr∗/I(G). Below
we give an example of low throughput NEs.
Example 2. Consider a network with the flow con-
tention graph shown in Fig. 3, where|C| = 2 and
K = 2. Clearly, the maximum system-wide throughput
is achieved when players1 through n use the two
channels. However, the system could converge to a Nash

equilibrium, in which only player0 transmits packets
using2 radios. In this case, the system only obtains1/n
of the maximum system-wide throughput.

0

1

2

3

4

5

6

7

n

Fig. 3. Flow contention graph in the example of low throughput NEs.

Above, we have obtained a number of results on
NEs. In particular, we see that in some cases some NEs
can be Pareto-suboptimal or result in low system-wide
throughput. If we let the system evolve by itself, the
system may converge to a NE that is not desirable. To
solve this problem, we propose to design an incentive-
compatible channel assignment protocol that can achieve
maximal throughput and Pareto optimality.

IV. PROTOCOL FOR MAXIMUM SYSTEM-WIDE

THROUGHPUT ANDPARETO OPTIMALITY

In different games, the NEs may have different prop-
erties. In Section III, we show that without incentive-
compatible schemes, in the multi-collision-domain non-
cooperative channel assignment game, some NEs can be
Pareto-suboptimal or result in low system-wide through-
put. Our findings raise the need for incentive-compatible
channel assignment protocols to achieve NEs with desir-
able Pareto-optimality and system-wide throughput.

In this section, we designPMT, an incentive-
compatible channel assignment protocol that guaran-
tees that all the NEs have the maximum system-wide
throughput and are Pareto-optimal.

A. The PMT Protocol

Maximizing the system-wide throughput in multiple
collision domains is not a trivial task even if all involved
players are cooperative ( [5], [26]). Given the selfishness
of the players, it is even more challenging to ensure
that all players use the channels in such a way that
the maximum system-wide throughput is achieved. To
solve this problem, we use an economic tool, payment,
to stimulate players to choose channels cooperatively,
so that all the NEs that the system can converge to have
the maximum system-wide throughput. In the following,
we first introduceIndependent SetIDs, which play an
important role in our protocol. Then, we present the
design of our payment function and the entire PMT.
Independent set ID i.MISID. Before the channel as-
signment game starts, for each player an independent
set ID in the flow contention graph is assigned as
an input. Denote i.MISID the ID of the independent
set that player i belongs to, which can be obtained



by running an algorithm for maximal independent sets
(MIS). To compute the independent set IDs, we can
adopt some approximation algorithms for MIS partition
(e.g. [29]), which provide good performance as well as
time efficiency.6 Protocol 1 shows the pseudo code for
MIS partition using the algorithm in [29], whered(i) is
the degree of the node, andNi is the set of i’s neighbors
in the remaining graph.

Protocol 1MIS: Maximal independent sets partition [29]
1: INPUT: Interference graphG, with the vertex setV (G).
2: OUTPUT: i.MISID, ∀ i ∈ V (G).
3: MISID = 1.
4: G′ ← G.
5: while G′ 6= Φ do
6: I ← G.
7: while I 6= Φ do
8: Choosei such thatd(i) = minv∈V (I) d(v).
9: i.MISID = MISID.

10: I ← I − {i} −Ni.
11: G′ ← G′ − {i}.
12: end while
13: MISID = MISID + 1.
14: end while

Each i.MISID is known when our PMT starts. We
assume that the maximal independent sets are sorted
according to its size, and a smaller independent set ID
means a larger size. We also assume that after the MIS
partition, the number of maximal independent sets is
greater than

⌈

|C|
K

⌉

, because otherwise it is trivial to have
all radios assigned without any interference. Actually, in
a same independent set, radios from different players
do not interfere with each other. Since each player has
K radios, it means that the players in one independent
set can utilize all their radios onK channels without
interference. If the number of independent sets is less
than or equal to

⌈

|C|
K

⌉

, the total number of channels for
all the players without interference is less than or equal
to |C|. In this case, we can just assignK channels to the
players in each independent set. This simple assignment
solution will not cause any interference. Hence, in this
paper, we mainly focus on the non-trivial case that the
number of maximal independent sets greater than

⌈

|C|
K

⌉

.
Virtual currency As in many existing works (e.g., [30]-
[32], among many others), we assume that there is a kind
of virtual currency in the system.

There is a system administrator in the network, which
can simply be a server connected to the Internet. The sys-
tem administrator maintains an account for each player.
Initially, each player can buy some virtual currency, for
example using real money. Whenever a player needs
the access to some channels, the system administrator
charges him a certain amount of fee and updates his ac-
count. If a player does not have enough virtual currency

6One may notice that computing the MIS is NP-hard. However,
because the size of flow contention graph is usually small, itis practical
to use exponential time algorithms.

to access the channel, it can always buy some using
real money. All transactions are cleared in the system
administrator. We believe it is natural to ask the channel
users to pay for their use of network resources.

Design of payment functionIn this paper, we assume
that all players have enough budgets to make payments
and we leave the consideration of budget balance with
a limited budget to our future work. To achieve the
maximum system-wide throughput, we need to have as
many radios as possible to successfully transmit packets.
However, not all players can place all their radios in use
at the same time due to interference. The most important
part of our PMT protocol is a carefully designed payment
function which gives players incentives to use channels
in such a way that the system has the maximum through-
put. In particular, we consider a special independent set
τ , which ranks

⌈

|C|
K

⌉

among all the independent sets
in the decreasing order of sizes.We callτ the threshold
independent set. By our payment function, only the
players in independent sets larger thanτ are encouraged
to employ as many radios as possible into channels.
We make the independent set that ranks

⌈

|C|
K

⌉

among
the other independent sets, because our goal here is to
achieve maximum system-wide throughput. In particular,
we want the|C| channels to be allocated to as many
radios as possible. Since each independent set can use
K radios without interference, the|C| channels can be

assigned to at most
⌈

|C|
K

⌉

independent set. Hence we

encourage the|C| channels to be assigned to the top
⌈

|C|
K

⌉

largest independent set. In this way, maximum
system-wide throughput can be achieved. Compared with
other methods of determining threshold independent set,
ours can guarantee maximum system-wide throughput.

More precisely, the payment of playeri is designed
as

pi =
(r − β) · ki · (nτ − ǫ)

ni.MISID

. (3)

In Eq. (3), recall thatki is the number of channels
on which playeri is transmitting packets andni.MISID

is the size of the independent set thati is in. The
parameterǫ is a constant positive number smaller than
1; nτ denotes the size of the threshold independent set
τ . The introduction ofǫ guarantees that when the player
is in the threshold independent set, i.e.,ni.MISID

= nτ ,
the player is encouraged to use their radios as many as
possible (as shown in the utility function later). (Here we
assume the threshold independent set is unique. In some
cases, there may be more than one threshold independent
set of sizenτ in the result of the MIS partition algorithm.
If so, the system administrator can arbitrarily choose one
of them.)

From this payment formula, we can see that if a player
employs more radios (i.e.,ki is larger), its payment



is correspondingly higher. Moreover, when the network
system can provide better communication services (i.e.,
(r − β) is higher), the players need to pay more. More
importantly, in order to control how the nodes employ
their radios and thus achieve maximum throughput, in
the payment formula we have that nodes in larger inde-
pendent set can pay less (whenni.MISID is smaller). In
this way, we encourage the nodes to employ as many as
possible radios at the same time.

Plugging the payment formula into the payoff of each
player defined in Section II-B, we can get the following
equation.

ui =
∑

c∈C

r · (Sc
i ·

∏

j∈Ni

(1 − Sc
j )) − βki

−
(r − β) · ki · (nτ − ǫ)

ni.MISID

Assuming that there is no collision, the above equation
of utility becomes7:

ui = (r − β)(1 −
nτ − ǫ

ni.MISID

)ki. (4)

In the payoff function, we let one unit of throughput,
one unit of energy cost, and one unit of payment all equal
to one unit of utility when counting the total payoff.
This assumption does not affect our analysis of players’
payoffs. We can always adjust the coefficient of unit
conversion if necessary.

As we can easily see, each player in independent sets
larger thannτ will get higher payoff if he increases his
number of radios to transmit packets (becausenτ and
ni.MISID

are both integers and0 < ǫ < 1). On the other
hand, players withni.MISID

< nτ will decrease their
payoffs if they use more radios to transmit packets.
PMT protocol. We now provide the pseudo code of
our PMT protocol (see Protocol 2), which guarantees
that all NEs maximize the system-wide throughput. Our
PMT protocol is a distributed protocol with imperfect
information, which does not assume that each node
has the perfect information about other nodes’ channel
assignment. In this paper we assume that after running
the maximal independent set partition algorithm, the
central authority sends the informationni.MISID

and
ntau to each node in the system, before the nodes can
assign their radios to channels. Each node does not need
to know who is in its interference set, but he can sense
the interference when at least one of his neighbors and
him are using the same channel at the same time. It
is due to the broadcasting nature of wireless network
communications. By trying to assign required number of
radios to different channels and avoid interference from

7Note that collisions may occur. We have shown that when collisions
occur the system state is not a Nash equilibrium and the players
unnecessarily lose payoffs. Our goal is to design protocol which
maximizes the throughput and thus here we only focus on the cases
when there is no collision for simplification and clarity.

a local view (as shown in line 8 and line 11 in PMT
protocol), the system will gradually converge to NE with
desirable system properties without interference. As long
as there is no change in the system topology, there is no
need to communicate to each node at every time period.

Protocol 2 PMT: Multi-radio channel assignment pro-
tocol for maximum system-wide throughput and Pareto
optimality
1: INPUT: number of radios per playerK; the set of available

channelsC; independent set sizeni.MISID
for each playeri;

size of the threshold independent set:nτ .
2: RandomChannelAssignment();
3: if |C| < nmax ·K then
4: while there is any change compared with last rounddo
5: for each playeri do
6: if backoff counter is 0then
7: if (ni.MISID

> nτ or ni.MISID
= nτ and |C|

mod K = 0) and the number of spare radios (ks
i
)

is greater than0 then
8: Assign the all radio(s) to channels such that no inter-

ference exists from playeri’s local view;
9: end if

10: if ni.MISID
= nτ and ks

i
> K − (|C| mod K)

then
11: Assign the spare radio(s) to other channels such that

no interference exists from playeri’s local view, to
achieve thatks

i
= K − (|C| mod K);

12: end if
13: if ni.MISID

< nτ and ks
i

< K then
14: Do not assign any radio to any channel.
15: end if
16: Reset the backoff counter to a new value;
17: else
18: Decrease the backoff counter value by1;
19: end if
20: end for
21: end while
22: end if

At the beginning of each game, players execute the
PMT protocol and keep the obtained channel assignment
until some players change their strategies. The PMT
protocol is a distributed protocol that works in a round-
based fashion. After the initial random assignment, each
player tries to change the channel assignment to his
radios for better utility. In order to guarantee that there
is only one player changing his strategy in one round,
we use the mechanism of backoff window (as explained
later in this paragraph). The players change the channel
assignment in the following way.i in independent sets
larger thannτ checks whether all his radios are suc-
cessfully transmitting packets (i.e. the number of spare
radios (ks

i )is 0). If not, he assigns the spare radio(s) to
other channels in order to improve his total rate (line
5-7). Here, by a spare radio we mean a radio that is
not successfully transmitting packets. Each player in the
threshold independent set will stop changing his channel
assignment once he has|C| mod K radios successfully
transmitting packets (line 8-9). For players in indepen-
dent sets smaller thannτ , not using any radio is the best
strategy. We implement the backoff window as follows.
Each player randomly chooses an initial value for his



backoff counter from{1, 2, · · · , W}, whereW is the
size of back-off window, with uniform probability. In this
way, the backoff counter of each player is different from
that of any other player. Since the backoff counter only
decreases by 1 in one round, there is only one backoff
counter becomes 0 each time PMT runs. Therefore in
one round, there is at most one player who changes his
strategy.

Now we take the system shown in Fig. 2 as an example
input to protocol PMT and see how PMT runs. With
the example shown in Figure 2, there are two channels
available and each player has2 radios. There are two
independent set in the system:{1, 2, · · · , n} and {0},

The threshold independent set ranks
⌈

|C|
K

⌉

in terms
of size, and hencenτ = n. With any random initial
assignment, for any player in{1, 2, · · · , n}, if he has
any spare radio(s), it satisfies thatni.MISID

= nτ and
|C| mod K = 0, and line 8 in PMT Protocol will be
executed, i.e., he assigns spare radio (s) to the available
channels. If he has no spare radios, then there is nothing
to change in the channel assignment. For the player0,
it satisfies the conditions in line 13, i.e.,ni.MISID

< nτ .
He does not assign any radios to any channel. The PMT
protocol in this simple example stops after two rounds.
Then the output of the protocol PMT is that player 0
does not assign any radio to any channel and all players
in {1, 2, · · · , n} assign both radios to the two channels.

B. Analysis of PMT Protocol

1) Incentive Compatibility:
Theorem 2:If PMT is used, all the NEs satisfy that

∀i,

ki =







K if ni.MISID
> nτ

|C| mod K if ni.MISID
= nτ

0 if ni.MISID
< nτ

(5)

Proof: We first show that PMT will reach the state
s∗ which satisfies (5). Then we shows∗ is a Nash
equilibrium, i.e., the system converges ats∗.

To show that PMT will always reach the state that
satisfies Eq. (5), first, we notice that (5) is achievable
within the system capacity. Recall that there are

⌈

|C|
K

⌉

−1

independent sets that have sizes greater thannτ and 1
independent set of sizenτ . When players in the same
independent set allocate their radios on the same set of
channels, the total number of channels without interfer-
ence required by (5) is(

⌈

|C|
K

⌉

− 1)K + |C| mod K,
which is exactly the number of channels in the system
|C|. On the other hand, the system will not stabilize in
any state that does not satisfy (5), due to the strategy
changing conditions in PMT (line5 and 8). In each
round of PMT we only have one player who changes his
assignment so that oscillation of strategy changes can be
avoided. Hence there is no possible state in the system
that has0 probability to lead to the state satisfying Eq.

(5). Therefore, with PMT, the system will always reach
the state that satisfies Eq. (5).

Now we show that states∗ which satisfies (5) is a
Nash equilibrium, which guarantees that players do not
have incentives to deviate froms∗ unilaterally.

Let ui
′ denote the payoff ofi by taking other strategy

s′i that does not satisfy (5).k′
i is used ins′i. Givens∗−i,

we distinguish two possible types ofs′i, i.e., (1) those
result in interference and (2) those don’t. Since thoses′i
that result in interference will clearly bring lower payoffs
for player i than those that avoid interference, in the
proof, we only consider thoses′i of type (2). If we can
prove that even the second type ofs′i cannot increase the
payoff of i, then all possibles′i cannot either.

There are 3 possible cases as follows.
Case 1.ni.MISID

< nτ .

ui
′ − u∗

i = (r − β)(1 −
nτ − ǫ

ni.MISID

)k′
i ≤ 0,

because nτ−ǫ
ni.MISID

> 1.
Case 2.ni.MISID

> nτ .

ui
′ − u∗

i = (r − β)(1 −
nτ − ǫ

ni.MISID

)(k′
i − K) ≤ 0,

since nτ−ǫ
ni.MISID

< 1 andki
′ − K ≤ 0.

Case 3.ni.MISID
= nτ . If the players not in the

threshold-independent-set keep the channel assignment
results as in (5), the number of channels that playeri
can use without interference is at most|C| mod K (i.e.
k′

i ≤ |C| mod K). Also from nτ−ǫ
ni.MISID

< 1. We can
obtain thatu′

i(s
′
i, s

∗
−i) − u∗

i (s
∗
i , s

∗
−i) ≤ 0.

Therefore, if PMT is used, all the NEs satisfy (5).
We note that from the case 3 in the proof of Theorem

2, the PMT protocol is ex-post incentive compatible. The
PMT protocol is not dominant strategy incentive com-
patible. This is because for the case thatni.MISID

= nτ ,
i.e., player is in the threshold independent set, the player
can obtain higher utility by assigning more radios than
|C|modK, when players in larger independent set assign
less radios than K.

2) Throughput and Optimality:
Theorem 3:(Throughput Maximization and Pareto

Optimality) If the PMT protocol is used, all the NEs
achieve the maximum system-wide throughput. Further-
more, all the NEs are Pareto-optimal.

Proof: We denote system-wide throughput as the
sum of the throughput in each channel.

∑

c∈C Rc =
∑

c∈C kcr, where kc is the number of radios using
channelc in the system. In the convergence state of PMT,
∑

c∈C kc can not be increased by other ways of channel
assignment, because a) for players in independent sets
smaller than or equal to the threshold independent set,
it is impossible to put their spare radios on channels
that are used by other players in larger independent
sets without any interference, since otherwise it will
contradict with the definition of maximal independent



set, b) for players in independent sets larger than the
threshold independent set, they do not have spare radios
to increase throughput (see (5)). Hence the system-wide
throughput

∑

c∈C Rc =
∑

c∈C kcr is maximized.
The NEs that guarantee system-wide maximum

throughput are also Pareto-optimal. This can be proved
by contradiction. Note that in any NE, the throughput
of each player is proportional to its payoff. If it is
not Pareto-optimal, it implies that some players can
increase their throughputs without decreasing any other’s
throughput. Consequently, the system-wide throughput
can be better off, which contradicts the throughput
maximization.

Our PMT guarantees that all NEs are Pareto-optimal,
which means that the outcomes of the non-cooperative
channel assignment achieve social optimality.

When using different maximal independent set par-
tition approximation algorithms, it does not affect the
incentive compatibility of our PMT protocol. From the
proof of Theorem 2, no matter how maximal independent
sets are partitioned, as long as there is ani.MISID

for
each playeri, our carefully designed payment formula
will make sure that PMT protocol is incentive compati-
ble, i.e., the system will always converge to a desirable
NE. Different maximal independent set partition approx-
imation algorithms do have effects on achieving system
throughput maximization in the system. We would like to
note that it is NP-hard to solve the throughput maximiza-
tion problem for multiple collision domains in general,
and different MIS approximation algorithms may well
lead to different throughputs in the system. Our PMT
algorithm theoretically guarantees that for each system,
as long as the maximal independent set partition result
is correct, the PMT protocol will produce the maximum
system-wide throughput.

3) Fairness Issue:In the PMT protocol, in order
to achieve maximum system throughput, the individual
throughput of the players in the independent sets smaller
than the threshold set is sacrificed. In particular, those
players are not assigning any of their radios to any
channel. This causes a fairness issue for the system.
Here we first theoretically analyze the upper bound of the
ratio of such silent players and then we discuss possible
solutions for this fairness issue.

Theorem 4:In PMT protocol, the upper bound for

the ratio of silent players is1 −
⌈ |C|

K ⌉
n

, wheren is the
number of maximal independent sets in the system after
the maximal independent set partition.

Proof: Since the threshold independent set ranks
⌈

|C|
K

⌉

in terms of set size, the ratio of players in the
threshold set and larger independent set is greater than
⌈ |C|

K ⌉
n

. Hence the ratio of players in the independent set
(i.e., silent players) is smaller than the threshold set is

smaller than1 −
⌈ |C|

K ⌉
n

.

We observe that the silent players are in smaller maximal
independent set. It is because compared with other
players, they will interfere with more players if using the
channels. So in order to achieve high system throughput,
these players need to turn off their radios and let more
others use the channel resources. However, long term
starvation should be avoided in the wireless networks.
In order to solve this issue, one possible solution is to
periodically re-compute the independent set ID for each
player to allow the silent node changing its independent
set to a larger one, increasing the probability to have
more channel access.

C. Implementation Issues

Our PMT protocol works in wireless systems that
have a protocol or mechanism that enables the wireless
devices to use multiple channels to communicate at the
same time. For example, [28] is one of such muti-
radio protocols for IEEE 802.11 wireless networks. Our
protocol let the nodes coordinate to achieve a channel
allocation of their radios. To perform the PMT protocol,
the system administrator sends a message to each node
i whose radio needs to be reconfigured, which contains
thenτ andniMISID

. After receiving the acknowledgment
from each node, the system administrator sends a syn-
chronization message, and it invokes the PMT protocol
described in Section IV-A.

The computational overhead of our channel assign-
ment is mainly from two parts, i.e., computing the
maximal independent sets and the time required for
system convergence. For the first part of overhead, as the
system grows larger, further performance optimization
is needed, e.g., by utilizing more efficient heuristic
algorithm to compute maximal independent sets and by
using smaller amount of time in each round of nodes
coordination. In Section V-D we will investigate the
system convergence time in greater details.

D. Advanced Model and Analysis

With the considerations of more complicated condi-
tions, non-cooperative channel assignment problem in
multi-radio multi-channel wireless networks can be mod-
eled in more advanced game model. For example, in each
round of channel assignment, each node can observe the
action of his neighbors (by sensing the interference),
and accordingly change his own action in the next
round of channel assignment, to avoid interference. This
sequential nature can be modeled by a sequential game
(or dynamic game) in the extensive form. In this model,
our payment scheme needs to be extended for each
possible action in the sequential game, so that a subgame
Nash equilibrium can be achieved. Here a subgame Nash
equilibrium is a solution concept in dynamic games,
which guarantees a Nash equilibrium for every subgame
of the original dynamic game.



V. EVALUATIONS

In this section, we carry out a number of experiments
in GloMoSim [16] to verify the effectiveness of PMT. In
the implementation, we use the approximation algorithm
in [29] to compute the maximal independent set before
the game starts.

We first generate a network of20 pairs of nodes with
a random topology in a1000× 1000m2 region. In each
pair, the two nodes are20 meters away from each other.
The flow contention graph is shown in Fig. 4. There is a
bidirectional single-hop flow between the two nodes in
each pair at a constant bit rate, and we vary the traffic
demand rate in the experiments.
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Fig. 4. The flow contention graph of the network.

We test our protocols with two sets of parameters. In
one set, we let the number of channels|C| = 12, channel
capacityR = 54 Mbps, and the number of radiosK = 4.
In the other set, we let|C| = 3, R = 11 Mbps and
K = 2. Each result is obtained by averaging over500
runs. We setr = 2, β = 0.25, andǫ = 0.1.

In section V-A we evaluate the payment for each
node in the system in two different settings. In Section
V-B, we evaluate the effectiveness of PMT in achieving
maximum system throughput. In particular, we measure
the system throughput in the stable states when PMT is
used, and compare the results with the situation when
no incentive-compatible protocol is used. In Section
V-C, we study the fairness property in the system when
running PMT. Furthermore, in Section V-D we investi-
gate the system convergence process, and find that the
protocol can make the system converge to the stable
state fairly quickly. We evaluate the system efficiency
for PMT in Section V-E. The experiments in the above
subsections are performed using the system topology
shown in Fig. 4, in Section V-F, we randomly place the
20 nodes in the1000× 1000m2 region, and analyze the
average results of throughput and fairness for different
system topologies.

A. Payment

In this section, we closely observe the payment that
each node makes in our PMT protocol, in two different
settings. After running the maximal independent set
partition algorithm, we find that when|C| = 12 and

K = 4, the size of threshold independent setnτ = 4;
when |C| = 3 andK = 2, we havenτ = 6.

Fig. 5 plots the payment of each node in the system,
when |C| = 12 andK = 4. We notice that node 9 and
node 12 are making 0 payments. It is because they are
not using any channels and correspondingly, they do not
need pay anything. Similar results for the setting that
|C| = 12 and K = 4 are shown in Fig. 6. We observe
that when the system setting changes, the threshold
independent set and the number of radios that each
node uses may correspondingly change. Consequently,
the payment of the same node is different for different
system settings.
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Fig. 5. Payment of each node in the system. (|C| = 12, K = 4,
R = 54Mbps.)
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Fig. 6. Payment of each node in the system. (|C| = 3, K = 2,
R = 54Mbps.)

B. Evaluation of Throughput

We measure the system throughputs of PMT, as well
as the average system throughput of random NEs (which
will be reached when the system has no incentive-
compatible protocol). Our objective is to design a chan-
nel assignment protocol such that the channel assign-
ment which leads to maximal throughput also meets
the interest of each player. In this paper, as for the
degree of incentive compatibility, we use the notion Nash
equilibrium, and thus by incentive-compatible protocol,
we mean that the protocol by which the maximum
throughput channel assignment is the Nash equilibrium
strategy for each player. Therefore, from Theorem 2, we
know that PMT is an incentive-compatible protocol. We
note that the NE convergence algorithm in [8] do not



use any incentive-compatible scheme to influence the
NEs that the system will converge to, and hence by
using the algorithm in [8], the system can converge to
any random NE. Thus the comparison results shown in
Section V-B and Section V-C are actually the comparison
between PMT and [8]. The results of system throughput
are illustrated in Figs. 7 and 8.
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Fig. 7. Aggregate system throughput. (|C| = 3, K = 2, R =
11Mbps. The traffic demand rates of experiment1, 2, 3, 4 are8Mbps,
10Mbps, 16Mbps and20Mbps respectively.)
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Fig. 8. Aggregate system throughput. (|C| = 12, K = 4, R =
54Mbps. The traffic demand rates of experiment1, 2, 3, 4 are8Mbps,
10Mbps, 16Mbps and20Mbps respectively.)

In Fig. 7, we show the system throughputs of 4
different experiments with different traffic demand rates,
when we set|C| = 3, K = 2 and R = 11 Mbps.
As we can see, for each experiment, the system-wide
throughput achieved by PMT is much higher than the
average of random NEs with no incentive-compatible
protocols. It implies that, compared with the systems
without incentive-compatible channel assignment proto-
cols, PMT greatly improves the system-wide throughput.

Similar conclusions can be drawn from Fig. 8, when
we set|C| = 12, K = 4 andR = 54Mbps.

C. Fairness

Now we examine the fairness property of our PMT
protocol. As in the design of PMT, our objective is
to maximize the throughput. Then it is important to
make sure that the throughput maximization does not
sacrifice too much fairness in the system. To this end, we
measure the fairness in terms of individual throughput.
We utilize the Jain’s fairness index [33] as a quantitative
metric. Fairness index is a real number, ranging from
0.05(worst) to 1(best) for the system of 20 players. We
measure the fairness indices of the system’s stable states

achieved by the PMT, and also the average fairness
indices of random NEs, which are reached when there
is no incentive-compatible channel assignment protocol.
We repeat the experiments with different traffic rates and
in two different settings (Setting 1:|C| = 12 K = 4
R = 54Mbps; Setting 2:|C| = 3 K = 2 R = 11Mbps).
The results are shown in Figure 9. In the figure, we can
see that When|C| = 12 andK = 4 , the average fairness
index of random NEs is better than that achieved by the
PMT. But there is little difference between the fairness
indices achieved by the PMT and the average fairness
indices of random NEs. This suggests that the PMT has
less fairness loss when the traffic demand is closer to the
system capacity.
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Fig. 9. Fairness index of PMT.

In the experiments, we found that in setting of|C| =
12 and K = 4, there are 2 silent nodes in the system
and when the channel resource becomes more limited,
i.e., |C| = 3 andK = 2, there are more silent nodes in
the network, 6 in total.

D. System Convergence

The results stated above are on the system perfor-
mance in the stable states. In this subsection, our goal is
to examine the process the system converges to the stable
states. We take records of the system-wide throughput
for PMT when the systems are evolving, and show them
in Fig. 10. The traffic demand rate is set to80 Mbps
in this experiment. We can see that PMT converges in
0.5 seconds. Therefore, PMT can successfully make the
system converge to the stable states and the convergence
is very fast.
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Fig. 10. Convergence of system throughput of PMT.



E. Economic Efficiency

In this subsection, we study the economic efficiency of
the system using our PMT protocol. We use anefficiency
ratio to characterize the efficiency of the system. In
particular, the efficiency ratio is defined as the ratio
between the sum of payoffs of all players in the Pareto-
optimal solution and the sum of payoffs by the current
strategy profile. We present an example run of PMT
protocol for 10s in Figure 11 in the setting of|C| =
12, K = 4. We can observe that PMT protocol quickly
converges to a Nash equilibrium. When the system is
stable, the efficiency ratio stays at the value of 1. Hence
we conclude that our PMT protocol makes the system
converge to a state with high efficiency.
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Fig. 11. Convergence of system efficiency ratio of PMT.

F. Results over Different System Topologies

In this subsection, we change the system topology and
evaluate the system throughput and fairness in different
network topologies when PMT is used. In particular,
we generate 10 network topologies of 20 nodes. In
each topology, we randomly place the 20 nodes in the
1000 × 1000m2 region and make sure that the maxi-
mum degree of nodes is no more than 6. We measure
the system throughput and fairness for each network
topology and show the average results and standard
deviation in Fig. 12 and Fig. 13 respectively. Fig. 12 and
Fig. 13 demonstrate that our PMT protocol works well
for different network topologies and the performance is
stable.
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Fig. 12. Average system throughput of PMT in 10 randomly generated
network topologies.
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Fig. 13. Average fairness index of PMT in 10 randomly generated
network topologies.

VI. RELATED WORK

In WMNs, channel assignment problem has been
considered for multi-radio devices [5]–[7], [28], [34]–
[36]. It is important because simultaneously transmitting
packets with multiple radios on orthogonal channels can
significantly increase the system capacity. Both central-
ized algorithms [6] and distributed protocols [7] have
been developed for multi-radio channel assignment for
WMNs. Alicherry et al. [5] jointly consider channel as-
signment and routing to optimize the system throughput.

All these channel assignment protocols above are
under the same assumption that devices in the network
are cooperative in that they never deviate from the
protocol. As devices can be selfish when accessing
the channels, recently researchers begin to study the
non-cooperative channel assignment problem [37]–[39],
especially for cognitive radio networks. For example,
Nie et. al. [37] propose a dynamic spectrum allocation
scheme based on a potential game model and introduce
some learning algorithms for different payoff functions.
Thomaset al. [38] also utilize a potential game model
to study how to minimize transmission power while
maintaining connectivity by channel assignment. The
major difference between these works and ours is that
they assume that the selfish player has only a single
radio, while we study the non-cooperative, multi-radio
channel assignment problem in which selfish devices
have multiple radios to manipulate. Since the players and
their objectives (i.e., payoff functions) in the game are
significantly different, their solutions can not be applied
in the more general case that we are focusing on in this
paper.

For wireless networks in which devices have multiple
radios, Felegyhaziet al. [8] are the first to introduce
the strategic game model to study the non-cooperative
channel assignment problem. They study the NEs in
this game and find out that despite of non-cooperative
behavior of the players, the NEs result in load balancing.
The differences between our work and [8] are in three
aspects: First, in [8], only the scenario that the all
transmitting nodes are in a single collision clique is
considered, while in our papers, we consider the non-
cooperative channel assignment in more general and
complicated cases of the system topology, i.e., it con-



tains multiple collision domains. The elegant results of
load balancing by Felegyhaziet al. for single collision
domains is based on the fact that each pair of nodes
in the system will interfere each other and thus cannot
be applied to multiple collision domains. Second, in
our work, our goal is to design incentive-compatible
channel assignment protocols which can achieve max-
imum system throughput and Pareto-optimality. In [8],
the maximum system throughput is not guaranteed by
their non-cooperative channel assignment algorithms.
Third, in [8], central and distributed algorithms are
designed for system convergence to Nash equilibrium,
but no mechanism design approach is used to influence
the convergence. In this paper, we use payment based
approach to make sure that the Nash equilibrium that the
system will converge to is a desirable one with maximum
system throughput and Pareto-optimality. In a later work,
Wu et al. [9], [10] propose a stronger solution for this
game which is strictly dominant and extend the model
such that players can have different number of radios.
Gaoet al. [11] go one step further to consider the non-
cooperative channel allocation for multi-hop wireless
networks. However, all the three works (including [11])
assume that all the nodes in the network are within
a single collision domain. In this paper we remove
this assumption and study the non-cooperative, multi-
radio channel assignment problem in multiple collision
domains, with a focus on system throughput.

Recently, Vallam, Kanagasabapathy and Murthy [12]
also studied the problem of non-cooperative channel
assignment in multi-channel multi-radio networks with
multiple collision domains. They have obtained nice and
solid results. In particular, a new fairness measure in
multiple collision domains is proposed and fair equilib-
rium conditions are derived. Based on the conditions,
three nice channel assignment algorithms are also pro-
posed. In fact, they are thefirst to study the problem
of non-cooperative channel assignment in multi-channel
multi-radio networks with multiple collision domains.
The differences between [12] and our work are two-
fold. First, for system performance, our main focus is on
throughput, while [12] has more significant contributions
in system fairness. Second, in our paper, we use a
payment-based approach to achieve players’ incentive-
compatibility with the objective of maximum system
throughput, while [12] leverages advanced learning al-
gorithm in the system convergence.

VII. C ONCLUSION

In this paper, we have systematically studied the prob-
lem of non-cooperative, multi-radio channel assignment
in multiple collision domains, and obtained quantified
results on economic efficiency, and throughput. Our re-
sults show that, without an incentive-compatible channel
assignment protocol, the system is likely to converge
to NEs with undesired properties like low throughput

and Pareto suboptimality. To avoid this, we propose
an incentive-compatible protocol for multi-radio channel
assignment in multiple collision domains. This protocol
guarantees that the system converges to NEs that have
the maximum throughput and Pareto optimality.
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