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Abstract

The incorporation of electronic health care in medical institutions will

benefit and thus further boost the collaborations in medical research

among clinics and research institutions. However, privacy regulations

and security concerns make such collaborations very restricted. In this

paper, we propose privacy preserving models for survival curves compar-

ison based on logrank test, in order to perform better survival analysis

through the collaboration of multiple medical institutions and protect the

data privacy. We distinguish two collaboration scenarios and for each sce-

nario we present a privacy preserving model for logrank test. We conduct

experiments on the real medical data to evaluate the effectiveness of our

proposed models.

Keywords: Survival Curves; Privacy Preservation; Logrank Test

1 Introduction

With the development of information technology, there is an increasing need
to incorporate electronic health record (EHR) in medical institutions [1]. The
availability of EHRs is believed to be able to improve the health care efficiency
and quality that the patients receive. Moreover, because of using EHR instead of
paper-based records, hospitals can store and manage more health care data than
ever before. Consequently, it will benefit the development of more advanced
clinical computer-based tools that help diagnosis and research. Especially, if
multiple medical institutions can integrate their electronically stored health care
data, with this substantial amount of data, better models with higher accuracy
can be built to assist clinical treatment and medical research.
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Survival analysis [2] is an important statistic tool often used in clinic trial
to provide assessment of benefit and risk. With the collaboration of multiple
medical institutions, researchers or doctors can build better survival analysis
models, especially survival function comparison models. Here we illustrate two
different scenarios as examples. The first scenario is that in a hospital, a new
radiotherapy treatment is performed to a group of pancreatic cancer patients.
The doctors in the hospital can observe the survival events (death or cancer
recurrence) of these patients and draw a survival curve for this new treatment.
They want to compare this survival curve with other treatments to justify its
effectiveness and advantage. Luckily, a medical research institution holds sur-
vival data of other treatment trials for pancreatic cancer with trial participants
of similar background. Clearly the collaborative data exchange between the hos-
pital and the research institutions will be beneficial for the result comparison.
In the second scenario, three institutions are all studying the performance of a
new medicine for stroke on patients of different ages. They want to build and
compare the survival curves for different age intervals. However, the trial par-
ticipants in any one of the three institutions are not sufficient to obtain results
with high accuracy. If they can conduct survival curves comparison based on
the trial participants from all of them, it will significantly increase the result
accuracy.

However, sharing medical data is well-known to be restricted because of pri-
vacy and security concerns. According to the privacy rules of Health Insurance
Portability and Accountability Act (HIPAA) [3], the privacy of patients must
be protected and it is illegal for research institutions and hospitals to distribute
patient’s medical data without appropriate privacy preservation. On the other
hand, Medical researchers are reluctant to share their data with others even if it
is already anonymized, due to the concern of possibility that their data could be
misused or misinterpreted. For instance, in Dartmouth College neuroscientist
found it difficult to encourage the sharing of brain imaging data [4]. In the two
scenarios above, the privacy concern also exists which impedes the process of
collaboration between medical institutions. Therefore, we need to develop new
models for survival curves comparison that can protect the privacy of patients
and relieve the data security concern of the researchers or doctors.

In this paper, we propose novel privacy preserving models for logrank test,
which is a standard comparison test of survival curves. In particular, for each
of the two collaboration scenarios we mentioned above, we design one privacy-
preserving logrank test model. In the rest of this paper, we call the first scenario
group partition, meaning each institution holds a survival curve for a entire
group of participants. We call the second scenario sample partition, meaning
each institution holds the survival data of some (but not all) participants in
each group. Our goal is that for each of the collaboration scenario, our proposed
logrank test model can learn the comparison result of survival curves built on the
data from all medical institutions, even without looking at the original survival
data from other medical institutions. We utilize a cryptographic tool, secure
sum[5], in our models. In this way, the privacy of medical data is protected. As
far as we know, it is the first work on building privacy preserving models for
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survival curves comparison using logrank test. We preform experiments on real
medical data to show the effectiveness of our proposed models.

2 Methods

In this section, we first review the logrank test for comparing survival curves.
Then we describe our two privacy preserving models for the logrank test. The
first model enables the privacy preserving comparison of survival curves in the
group partition scenario. Then we present the second privacy preserving model
which preserves the privacy in comparing the survival curves in the sample
partition scenario.

2.1 Overview of Logrank Test

Suppose we have n groups of individuals. Logrank test [2] is a statistical hy-
pothesis test, where the hypothesis is that the n groups have the same survival
distribution, i.e., for each group the probability of occurring the event (e.g.,
death) at each time point is the same. In particular, we divide the time into
m intervals. Let nkj be the number of individuals that are alive in group k at
the beginning of time interval j. Let dkj be the number of events occurring in
group k in interval j. nj and dj are defined as Eq. (1) and Eq. (2) respectively.

nj =

n∑

k=1

nkj (1)

dj =
n∑

k=1

dkj (2)

The test statistic is calculated as

Z =
n∑

k=1

(Ok − Ek)2

Ek

, (3)

where Ok represents the number of observed deaths in group k, i.e.,

Ok =

m∑

j=1

dkj . (4)

Ek is the expected number of deaths in group k, i.e.,

Ek =

m∑

j=1

nkjdj

nj

. (5)

A smaller test statistic Z suggests a higher probability that the hypothesis is
true.
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2.2 Privacy for Each Party

As mentioned above, it is often the case that the survival data for several groups
are distributed in different places, e.g., medical research institutions and clin-
ics. These organizations or parties want to compare their survival curves using
logrank test but each of them is not willing to reveal its own survival data to
other parties. We distinguish the privacy of each party for the two collaboration
scenarios, i.e., the group partition and the sample partition.

• The Group Partition
In the group partition scenario, each party holds the survival data collected
from the group of patients that this party has: number of events occurring
in each time slot and the number of surviving individuals at the beginning
of each time interval. Without loss of generality, we assume that party
k holds the survival data of group k. In our proposed privacy-preserving
logrank test model, we aim to for each party k protect the information nkj

and dkj (∀j) from other parties than k and meanwhile correctly compute
the logrank test statistic. The group partition scenario is illustrated in
Fig. 1.
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Figure 1: The Group Partition Scenario.

• The Sample Partition
In the sample partition scenario, each party holds the survival data for
some participants in each group. Formally, ∀ k, j each party i holds its
survival data ni

kj and di
kj , which are collected for time interval j from the

patients in group k that party i has. Each party i wants to keep ni
kj ,
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and di
kj private and build logrank model using nkj and dkj , such that

nkj =
∑

i ni
kj and dkj =

∑
i di

kj . Figure 2 shows the sample partition
scenario.
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Figure 2: The Sample Partition Scenario.

2.3 Privacy-Preserving Logrank Test Model for the Group

Partition Scenario

Assume that there are s parties (s ≥ 3), each of which holds the survival data
for one group of patients. The s parties want to jointly perform the logrank
test, (i.e., computing the value Z), without revealing their private data to each
other.

From Eq. (3) we know that if party k wants to compute Z, it needs to be
able to compute Ek first, but from Eq. (3) (1) and (5), we know that

Ek =

m∑

j=1

nkj

∑
k dkj∑

k nkj

, (6)

which requires dk′j and nk′j where k 6= k′. Moreover, in order to compute Z,

party k needs to know
∑

k′ 6=k

(O′

k−E′

k)2

E′

k

to obtain the sum.

In our model, we utilize a randomization based secure computation tool,
secure sum [5], to tackle these two challenges. Now we first describe how to
securely compute Ek for each k, without knowing dk′j and nk′j where k 6= k′.
Then we present our complete privacy-preserving logrank test model.
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Suppose that all participating parties are numbered as parties 1 · · · s. Our
method of computing Ek for each party k is summarized in Fig. 3. The idea of
our method is that to compute each dj (resp. nj) ∀j, party 1 generates a random
number with the same range as that of dij and nij and adds its local value d1j

(resp. n1j) to the random number before passing it to the next party. In this
way the actual values of d1j and n2j are hidden behind the random numbers.
Similarly, every other party adds its local value to the sums that it receives and
sends the new sums to the next party. Finally, party s sends Rj1 +

∑s−1
k=1 dkj ,

and Rj2 +
∑s−1

k=1 nkj back to party 1, and party 1 subtracts the two random

numbers respectively and obtains dj and nj. After party 1 sends
dj

nj
to all other

parties, each party k can compute the value of Ek.

For interval 1 ≤ j ≤ m,
(Step 1): Party 1 generates two random numbers Rj1 and Rj2 (s.t.,

Rj1 ∈ [0, D), Rj2 ∈ [0, D))a and sends Rj1 + d1j and Rj2 + n1j to Party 2.
(Step 2): For each party p, s.t. 2 ≤ p ≤ s − 1,

Party p receives Rj1 +
∑p−1

k=1 dkj , and Rj2+
∑p−1

k=1 nkj . Party p

computes Rj1+
∑p−1

k=1 dkj + dpj and Rj2+
∑p−1

k=1 nkj+npj and sends them to
party p + 1.

(Step 3): Party s receives Rj1 +
∑s−1

k=1 dsj , and Rj2 +
∑s−1

k=1 nkj . Party

s computes Rj1 +
∑n−2

k=1 dkj + dsj and Rj2 +
∑s−1

k=1 nkj + nsj and sends them
to party 1.

(Step 4): Party 1 receives Rj1 +
∑s−1

k=1 dkj , and Rj2 +
∑s−1

k=1 nkj . Party

1 substracts Rj1 and Rj2 from the two received numbers respectively, and

computes
dj

nj
=

∑
k

dkj∑
k

nkj
. Party 1 sends

dj

nj
to all other parties.

End For

Each party k (s.t., 1 ≤ k ≤ s) computes Ek =
∑m

j=1 nkj
dj

nj
.

aHere D is the range of dij and nij , ∀i, j.

Figure 3: Privately Computing Ek for each party k.

After each party k gets Ek, it can easily compute (Ok−Ek)2

Ek
because obtaining

Ok does not require the survival data from other parties. As the final step of

our privacy-preserving logrank test model, we need to compute
∑

k
(Ok−Ek)2

Ek
.

Since (Ok−Ek)2

Ek
reveals the information of how much the survival curve of group

k is different from other groups, we also need to keep it private when calculating
Z. Again we use the idea of secure sum. Party 1 generates a random number R

and adds (O1−E1)
2

E1

to it before passing it to the next party. When each party

k has added the (Ok−Ek)2

Ek
, party 1 again receives R +

∑s

k=1
(Ok−Ek)2

Ek
. Party 1

subtracts R and sends the value of Z to other parties.

6



We notice that in our privacy-preserving Logrank test model, party 1 meed
to generate random numbers. In the implementation, we use the pseudo random
number generator function in the GNU C Library [6]. Applying pseudo random
number generation algorithm is a standard way to generate random numbers in
cryptography.

2.4 Privacy-Preserving Logrank Test Model for the Sam-

ple Partition Scenario

Assume that there are n(n > 2) parties want to compare s survival curves in
the sample partition scenario. As we have mentioned, in the sample partition
scenario, each party i holds its survival data di

kj and ni
kj . They would like to

collaboratively compute Z that can be written as follows

Z =

s∑

k=1

(
∑m

j=1

∑n

i=1 di
kj −

∑m

j=1

∑
n
i=1

ni
kj

∑
n
i=1

di
j∑

n
i=1

n1

j

)2

∑m

j=1

∑
n
i=1

ni
kj

∑
n
i=1

di
j∑

n
i=1

n1

j

. (7)

As we can see, to compute Z in a privacy preserving way for the sample par-
tition scenario is more complicated than for the group partition scenario. Again
we utilize the idea of secure sum. For ease of presentation, we only describe the
main steps in this model and skip the details of secure sum computation which
is similar to what we have presented above.

First, using the secure sum algorithm, the n parties can securely obtain

Ok =

n∑

i=1

m∑

j=1

di
kj (8)

and
∑n

i=1 ni
kj . Similarly, for each j, the n parties can securely compute

∑ n
i=1

di
j∑

n
i=1

ni
j

,

where di
j =

∑
k di

kj and ni
j =

∑
k ni

kj can be computed locally at each party i.

With
∑n

i=1 ni
kj and

∑ n
i=1

di
j∑

n
i=1

ni
j

, now Ek can be computed as in Eq. (9)

Ek =

m∑

j=1

∑n

i=1 ni
kj

∑n

i=1 di
j∑n

i=1 n1
j

(9)

After obtaining Ok and Ek for each party k, apply the secure sum again to

securely compute the sum of (Ok−Ek)2

Ek
for the s groups.

3 Results

In this section, we perform experiments on our privacy preserving logrank mod-
els for the two scenarios using real survival data of kidney patients [7].
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3.1 Data Description

We use the data in [7] on the recurrence times to infection, at the point of
insertion of the catheter, for kidney patients using portable dialysis equipment.
Catheters may be removed for reasons other than infection, in which case the
observation is censored.

For the experiments on our model for the group partition scenario, we divide
the survival data into three groups according to the type of disease (Glomerulo
Nephritis, Acute Nephritis and Polycystic Kidney Disease) that the kidney pa-
tient has, and assume that there are three parties each of whom is holding the
survival data for one group of a disease type. Table 1 summarizes the survival
data that each party has.

Table 1: Survival data for the group partition scenario

Time to infection d1j n1j

0-50 11 18
51-100 0 7
101-150 2 7
151-200 4 5
201-250 0 1
251-300 0 1
301-350 0 1
351-400 0 1
401-450 0 1
451-500 0 1
> 500 1 1

(a) Party 1

Time to infection d2j n2j

0-50 14 24
51-100 5 10
101-150 2 5
151-200 1 3
201-250 1 2
251-300 0 1
301-350 1 1
351-400 0 0
401-450 0 0
451-500 0 0
> 500 0 0

(b) Party 2

Time to infection d3j n3j

0-50 3 8
51-100 2 5
101-150 0 3
151-200 2 3
201-250 0 1
251-300 0 1
301-350 0 1
351-400 0 1
401-450 0 1
451-500 0 1
> 500 1 1

(c) Party 3
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In the experiments on the group partition scenario, we divide the survival
data into two groups based on the ages of patients. The two age intervals for
forming groups are (20-50] and (50-70]. We assume that there are three parties
participating in the survival data comparison. Each of the three parties holds
some samples for both the two groups of patients. Table 2 shows the survival
data distribution in this scenario.

Table 2: Survival data for the sample partition scenario

Group 1 Group 2
Time d1

1j n1
1j d1

2j n1
2j

0-50 4 7 8 14
51-100 0 3 1 6
101-150 1 3 4 5
151-200 2 2 0 1
201-250 0 0 0 1
251-300 0 0 0 1
301-350 0 0 0 1
351-400 0 0 0 1
401-450 0 0 0 1
451-500 0 0 0 1
> 500 0 0 1 1

(a) Party 1

Group 1 Group 2
Time d2

1j n2
1j d2

2j n2
2j

0-50 6 12 6 9
51-100 2 6 2 3
101-150 1 4 1 1
151-200 1 3 0 0
201-250 0 2 0 0
251-300 0 2 0 0
301-350 1 2 0 0
351-400 0 1 0 0
401-450 0 1 0 0
451-500 0 1 0 0
> 500 1 1 0 0

(b) Party 2

Group 1 Group 2
Time d3

1j n3
1j d3

2j n3
2j

0-50 12 23 4 10
51-100 1 11 2 6
101-150 4 10 0 4
151-200 0 6 3 4
201-250 1 6 1 1
251-300 1 5 0 0
301-350 1 4 0 0
351-400 0 3 0 0
401-450 2 3 0 0
451-500 0 1 0 0
> 500 1 1 0 0

(c) Party 3
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Table 3: Intermediate results of privacy preserving logrank model for group
partition scenario

Time to infection dj nj

0-50 28 50
51-100 7 22
101-150 4 15
151-200 7 11
201-250 1 4
251-300 0 3
301-350 1 3
351-400 0 2
401-450 0 2 E1 = 18.94
451-500 0 2 E2 = 20.70
> 500 2 2 E3 = 10.36

3.2 Experimental Results

3.2.1 Results for the Group Partition Scenario

Using the data in group partition scenario shown in Table 1, we apply our
privacy preserving logrank model to compare the three survival curves for the
three different diseases. The results in the intermediate steps are recorded in
Table 3.

The final privacy preserving logrank test statistic is 1.11, which is same with
the logrank test result conducted on one site with the data from all the three
parties.

3.2.2 Results for the Sample Partition Scenario

For the sample partition scenario, we first perform three logrank tests, each
using the data held by one of three parties. Then we conduct our privacy-
preserving logrank test model with the collaboration of the three parties. We
compare the results to see the difference.

Fig. 4 shows the result of our privacy preserving model for comparing the
two groups of patients using the data from all the three parties, and also the
result of the basic logrank model using the data from only one party. We can see
that if we only use the data from one party, especially party 1, the comparison
result is significantly different from the case when we can include more data in
the analysis. Therefore our privacy preserving logrank model provides a way
to conduct better survival analysis by enabling to securely use more data from
different parties.
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Figure 4: Comparison of logrank test results between our privacy preserving
model working on the data from all three parties and the basic logrank model
running on the data of one party.

4 Discussion

Our proposed privacy-preserving logrank test models have the following char-
acteristics that are different from previous work.

• They preserve the data privacy for each party without revealing it to oth-
ers, in the process of survival data analysis using logrank test. Relieving
the privacy concerns for the medical institutions is of great importance
because it will encourage more cooperations among these institutions on
either research or clinical trials. Consequently, better survival data com-
parisons supported by larger database will become available.

• Our privacy preserving models are accurate, meaning the logrank test
results obtained by our models are the same as those obtained by having
all data on one site.

• The two models either for the group partition scenario or for the sample
partition scenario only require the parties who hold the survival data to
participate. In other words, as long as those parties with data use our
models, all computation is conducted within those parties and thus no
other agencies are needed. Therefore, our models are very practical in its
implementation.

• We are utilizing a randomization-based method in our models. As a result
our models are much more efficient compared with cryptography-based
approaches.

An existing work in data mining community proposed the privacy preserv-
ing cox regression in survival analysis [8]. The proposed model was based on
linearly projecting the data to a lower dimensional space through an optimal
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mapping. Different from their model, we focus on another very important func-
tion of survival data analysis in medical trials, the survival curves comparison.
Furthermore, we did not lose any accuracy in our privacy preserving models.

5 Hardware and software specifications

The models are implemented using GNU C Library. The programs are running
in Redhat Linux 7.2 on 2.0GHz computers.

6 Conclusion

In this paper, we propose privacy preserving models for survival curves compar-
ison based on logrank test, in order to perform better survival analysis through
the collaboration of multiple medical institutions and protect the data privacy.
We distinguish two collaboration scenarios, the group partition scenario and
the sample partition scenario. For each scenario we present a privacy preserv-
ing model for logrank test. Our experiments on the real medical data to evaluate
the effectiveness of our proposed models.
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