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A Privacy-Preserving Remote Data Integrity Checking
Protocol with Data Dynamics and Public Verifiability

Zhuo Hao, Sheng Zhong, Nenghai Yu

Abstract—Remote data integrity checking is a crucial tech-
nology in cloud computing. Recently many works focus on
providing data dynamics and/or public verifiability to this type
of protocols. Existing protocols can support both features with
the help of a third party auditor. In a previous work, Sebé et
al. [1] propose a remote data integrity checking protocol that
supports data dynamics. In this paper, we adapt Sebé et al.’s
protocol to support public verifiability. The proposed protocol
supports public verifiability without help of a third party
auditor. In addition, the proposed protocol does not leak any
private information to third party verifiers. Through a formal
analysis, we show the correctness and security of the protocol.
After that, through theoretical analysis and experimental
results, we demonstrate that the proposed protocol has a good
performance.

Index Terms—Data integrity, Data dynamics, Public verifi-
ability, Privacy.

I. INTRODUCTION

Storing data in the cloud has become a trend [2], [3].
An increasing number of clients store their important data
in remote servers in the cloud, without leaving a copy in
their local computers. Sometimes the data stored in the
cloud is so important that the clients must ensure it is
not lost or corrupted. While it is easy to check data in-
tegrity after completely downloading the data to be checked,
downloading large amounts of data just for checking data
integrity is a waste of communication bandwidth. Hence,
a lot of works [1], [4], [5], [6], [7], [8], [9] have been
done on designing remote data integrity checking protocols,
which allow data integrity to be checked without completely
downloading the data.

In remote data integrity checking protocols, the client
can challenge the server about the integrity of a certain
data file, and the server generates responses proving that it
has access to the complete and uncorrupted data. The basic
requirements are that the client does not need to access the
complete original data file when performing the verification
of data integrity, and that the client should be able to verify
integrity for an unlimited number of times. Furthermore, the
protocol needs to be secure against a malicious server that
tries to pass the data integrity verification without access to
the complete and uncorrupted data.
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Most previously proposed protocols [1], [4], [5], [6], [7],
[8], [9], [10], [11] meet all the above basic requirements.
Nevertheless, in addition to these requirements, there are
also three advanced requirements: data dynamics, public
verifiability and privacy against verifiers. In the following
we introduce the motivations and definitions of these ad-
vanced requirements.

• Data dynamics [6], [7], [8], [11]. Data dynamics
means after clients store their data at the remote server,
they can dynamically update their data at later times.
The main operations supported by data dynamics are
data insertion, data modification and data deletion.
Moreover, when data is updated, the verification meta-
data also needs to be updated. The updating overhead
should be made as small as possible.

• Public verifiability [4], [8], [9], [11]. Public verifia-
bility allows anyone (not just the client) to perform
the integrity checking operation. This function avoids
disputes between the client and the server regarding
data integrity. Whenever there is such a dispute, a
third party authority can easily judge whether the data
integrity is maintained using the verification protocol.

• Privacy against verifiers [9], [11]. When the verifi-
cation is performed by a third party verifier (not by
the client), the protocol must ensure that no private
information contained in the data is leaked.

In a realistic application, these advanced features may be
needed at the same time. For example, consider an online
document system, in which the client can create and modify
her documents. The client can also cooperate on a document
with her partners. The remote data integrity checking can
ensure the integrity of the client’s documents. When the
client or her partners modify the document, the document
and the tags need to be updated. This is supported by data
dynamics. However, if the file gets corrupted and the server
refuses to admit it, then a third party authority can easily
prove the data corruption to the court. This is supported
by the public verifiability. Furthermore, if the document
contains sensitive data, such as business secrets, the client
will not want it to be disclosed to the third party authorities.
The privacy against third-party verifiers can ensure that.

The previously proposed protocols [1], [4], [5], [6], [7],
[12], [8], [9], [10], [11] try to achieve these advanced
features. The protocols in [6], [7], [12], [8], [11] support
data dynamics at the block level, including block insertion,
block modification and block deletion. The protocol of [4]
supports data append operation. In addition, the protocol
in [1] can be easily extended to support data dynamics.
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[9], [10] can be adapted to support data dynamics by using
the techniques of [8]. On the other hand, protocols in [4],
[8], [9], [10], [11], [13] support public verifiability, by
which anyone (not just the client) can perform the integrity
checking operation. The protocols in [9], [10], [11], [13]
support privacy against third party verifiers.

We compare the proposed protocol with selected previous
protocols and summarize the results in Table I. The proba-
bilistic guarantee of data integrity is achieved by using the
probabilistic checking method proposed in [4]. By using
that method, the verifier selectively checks the integrity of
c blocks, so that only c blocks are guaranteed at the server
side. However, because the c blocks are randomly selected,
the detection probability will be high if the server deletes
a fraction of all the blocks. The protocol in [1] and the
proposed protocol achieve deterministic guarantee of data
integrity, because they check the integrity of all the data
blocks. However, both the protocol in [1] and the proposed
protocol can be easily transformed into a more efficient one
by using the probabilistic checking method [4].

In this paper, we have the following main contributions:
• We propose a remote data integrity checking protocol

for cloud storage, which can be viewed as an adapta-
tion of Sebé et al.’s protocol [1]. The proposed protocol
inherits the support of data dynamics from [1], and
supports public verifiability and privacy against third-
party verifiers, while at the same time it doesn’t need
to use a third-party auditor.

• We give a security analysis of the proposed protocol,
which shows that it is secure against the untrusted
server and private against third party verifiers.

• We have theoretically analyzed and experimentally
tested the efficiency of the protocol. Both theoretical
and experimental results demonstrate that our protocol
is efficient.

The rest of this paper is organized as follows. In Section
II, technical preliminaries are presented. In Section III,
the proposed remote data integrity checking protocol is
presented. In Section IV, a formal analysis of the proposed
protocol is presented. In Section V, we describe the support
of data dynamics of the proposed protocol. In Section VI,
the protocol’s complexity is analyzed in the aspects of com-
munication, computation and storage costs; furthermore,
experimental results are presented for the efficiency of the
protocol. In Section VII, the related work is reviewed. And
finally, conclusions and possible future work are presented
in Section VIII.

II. TECHNICAL PRELIMINARIES

We consider a cloud storage system in which there are
a client and an untrusted server. The client stores her data
in the server without keeping a local copy. Hence, it is of
critical importance that the client should be able to verify
the integrity of the data stored in the remote untrusted
server. If the server modifies any part of the client’s data,
the client should be able to detect it; furthermore, any third
party verifier should also be able to detect it. In case a third

party verifier verifies the integrity of the client’s data, the
data should be kept private against the third party verifier.
Below we present a formal statement of the problem.

Problem Formulation Denote by m the file that will be
stored in the untrusted server, which is divided into n blocks
of equal lengths: m = m1m2...mn, where n = ⌈|m|/l⌉.
Here l is the length of each file block. Denote by fK(·) a
pseudo-random function which is defined as:

f : {0, 1}k × {0, 1}log2(n) → {0, 1}d,

in which k and d are two security parameters. Furthermore,
denote the length of N in bits by |N |.

We need to design a remote data integrity checking
protocol that includes the following five functions: SetUp,
TagGen, Challenge, GenProof and CheckProof.
SetUp(1k) → (pk, sk): Given the security parameter k, this
function generates the public key pk and the secret key sk.
pk is public to everyone, while sk is kept secret by the
client.
TagGen(pk, sk,m) → Dm: Given pk, sk and m, this
function computes a verification tag Dm and makes it
publicly known to everyone. This tag will be used for public
verification of data integrity.
Challenge(pk,Dm) → chal: Using this function, the verifier
generates a challenge chal to request for the integrity proof
of file m. The verifier sends chal to the server.
GenProof(pk,Dm,m, chal) → R: Using this function, the
server computes a response R to the challenge chal. The
server sends R back to the verifier.
CheckProof(pk,Dm, chal, R) → {“success”, “failure”}:
The verifier checks the validity of the response R. If it is
valid, the function outputs “success”, otherwise the function
outputs “failure”. The secret key sk is not needed in the
CheckProof function.

Besides these five functions, if the protocol supports
data dynamics, it should also have functions such as block
insertion, block deletion, and block modification.

Security Requirements There are two security require-
ments for the remote data integrity checking protocol: se-
curity against the server with public verifibility, and privacy
against third party verifiers. We first give the definition of
security against the server with public verifiability. In this
definition, we have two entities: a challenger that stands for
either the client or any third party verifier, and an adversary
that stands for the untrusted server.

Definition 1. (Security against the Server with Public Ver-
ifibility [4]) We consider a game between a challenger and
an adversary that has four phases: Setup, Query, Challenge
and Forge.

• Setup: The challenger runs the SetUp function, and
gets the (pk, sk). The challenger sends pk to the
adversary and keeps sk secret.

• Query: The adversary adaptively selects some file
blocks mi, i = 1, 2, ..., n and queries the verification
tags from the challenger. The challenger computes a



3

TABLE I
COMPARISONS BETWEEN THE PROPOSED PROTOCOL AND PREVIOUS PROTOCOLS.

S-PDP[4] [1] [8] DPDP[7] [9], [10] IPDP[11]
The Proposed

Protocol

type of guarantee
probabilistic/
deterministic deterministic probabilistic deterministic

public verifiability Yes No Yes No Yes Yes Yes
With help of TPA No No Yes No Yes Yes No

data dynamics append only Yes Yes Yes No Yes Yes
privacy preserving No – No – Yes Yes Yes

support for sampling Yes No Yes Yes Yes Yes No
size of

verification tags O(n)

communication O(1) O(clogn) O(logn) O(c) O(s) O(1)
server block access O(c) O(n) O(c) O(n)
server computation O(c) O(n) O(clogn) O(c) O(c+s) O(n)
verifier computation O(c) O(n) O(clogn) O(c) O(c+s) O(n)

client storage O(1) O(n) O(1) O(n)
* n is the block number, c is the sampling block number, and s is the number of sectors in a block.

verification tag Di for each of these blocks and sends
Di, i = 1, 2, ..., n to the adversary. According to the
protocol formulation, Dm = {D1, D2, ..., Dn}.

• Challenge: The challenger generates the chal for
the file blocks {m1,m2, ...,mn} and sends it to the
adversary.

• Forge: The adversary computes a response R to prove
the integrity of the requested file blocks.

If CheckProof(pk,Dm, chal, R) = “success”, then the
adversary has won the game. The remote data integrity
checking protocol is said to be secure against the server
if for any PPT (probabilistic polynomial time) adversary
A, the probability that A wins the game on a collection
of file blocks is negligibly close to the probability that the
challenger can extract these file blocks by a knowledge
extractor E .

When the verifier is not the client herself, the protocol
must ensure that no private information about the client’s
data is leaked to the third party verifier. We formalize this
requirement using the simulation paradigm [14].

Before we proceed to the definition of this require-
ment, we introduce some related notations. Let f =
(f1, f2) be a PPT functionality and let Π be a two-
party protocol for computing f . During the execution of
the protocol Π, denote the view of the first (resp., sec-
ond) party by viewΠ

1 (x, y) (resp., viewΠ
2 (x, y)). viewΠ

1 (x, y)
(resp., viewΠ

2 (x, y)) includes (x, r1,m1
1, ...,m

1
t ) (resp.,

(x, r2,m2
1, ...,m

2
t )) where r1 (resp., r2) represents the

outcome of the first (resp., second) party’s internal coin
tosses, and m1

i (resp., m2
i ) represents the ith message

it has received. Denote the output of the first (resp.,
second) party during the execution of Π on (x, y) by
outputΠ1 (x, y) (resp., outputΠ2 (x, y)), which is implicit in
the party’s own view of the execution. Let outputΠ(x, y) =
(outputΠ1 (x, y), outputΠ2 (x, y)). We denote the verifier and
the server by V and P respectively.

Definition 2. (Privacy against Semi-Honest Behavior) For
a functionality f , Π is said to privately compute f if there
exist probabilistic polynomial time algorithms, denoted S1

and S2, such that

{S1(x, f1(x, y))}x,y∈{0,1}∗
c≡ {viewΠ

1 (x, y)}x,y∈{0,1}∗ ,

{S2(y, f2(x, y))}x,y∈{0,1}∗
c≡ {viewΠ

2 (x, y)}x,y∈{0,1}∗ .

Note that
c≡ denotes computational indistinguishability.

From Definition 2 we define the privacy against third
party verifiers, which is given in Definition 3.

Definition 3. (Privacy against Third Party Verifiers) For the
remote data integrity checking protocol Π, if there exists a
PPT simulator SV such that

{SV(x, fV (x, y))}x,y∈{0,1}∗
c≡ {viewΠ

V (x, y)}x,y∈{0,1}∗ ,

then Π is a protocol that ensures privacy against third-party
verifiers.

Data Dynamics at Block Level Data dynamics means
after clients store their data at the remote server, they
can dynamically update their data at later times. At the
block level, the main operations are block insertion, block
modification and block deletion. Moreover, when data is
updated, the verification metadata also needs to be updated.
The updating overhead should be made as small as possible.

Homomorphic Verifiable Tags Our construction of the
remote data integrity checking protocol uses homomorphic
verifiable tags (HVT) introduced in [4]. A HVT of a
message m is a pre-computed tag which is later used for
the integrity checking. Denote the HVT of a message mi

by Di. The HVT has the following two features:
• Blockless verification: By using HVTs, the server can

construct a proof of possession of a certain file blocks,
while the client needs not have access to these file
blocks.
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• Homomorphic property: For any two messages mi and
mj , the tag for mi+mj can be generated by combining
Di and Dj .

In our construction, we use a RSA-based HVT, which is
defined as follows. Let N = pq be one publicly known RSA
modulus. We know that {e : e ∈ ZN and gcd(e,N) = 1}
forms a multiplicative group. Denote this group by Z∗

N .
Denote an element in Z∗

N with a large order by g. The
RSA-based HVT for message mi is defined as Tag(mi) =
gmi mod N . Its homomorphic property can be deduced
from its definition. When Tag(mi) and Tag(mj) are tags
of mi and mj respectively, the tag for mi+mj can be gen-
erated by computing Tag(mi+mj) = Tag(mi)·Tag(mj) =
(gmi mod N) · (gmj mod N) = gmi+mj mod N .

III. THE PROPOSED REMOTE DATA INTEGRITY
CHECKING PROTOCOL

In this section we describe the proposed remote data
integrity checking protocol. Just as mentioned in Section
II, the proposed protocol has functions SetUp, TagGen,
Challenge, GenProof and CheckProof, as well as functions
for data dynamics. In the following we present the former
five functions of the proposed protocol. We leave the
functions for data dynamics to Section V.
SetUp(1k) → (pk, sk): Let N = pq be one publicly

known RSA modulus, in which p = 2p′ + 1, q = 2q′ + 1
are two large primes. p′ and q′ are also primes. In addition,
all the quadratic residues modulo N form a multiplicative
cyclic group, which we denote by QRN . Denote the gen-
erator of QRN by g.1 Since the order of QRN is p′q′, the
order of g is also p′q′. Let pk = (N, g) and sk = (p, q).
pk is then released to be publicly known to everyone, and
sk is kept secret by the client.
TagGen(pk, sk,m) → Dm: For each file block mi, i ∈

[1, n], the client computes the block tag as

Di = (gmi) mod N.

Without loss of generality, we assume that each block
is unique. If in some particular applications, there exist
blocks with the same value, then we differentiate them
by adding a random number in each of them. Let Dm =
{D1, D2, ..., Dn}. After finishing computing all the block
tags, the client sends the file m to the remote server, and
releases Dm to be publicly known to everyone.
Challenge(pk,Dm) → chal: In order to verify the in-

tegrity of the file m, the verifier generates a random key
r ∈ [1, 2k − 1] and a random group element s ∈ ZN\{0}.
The verifier then computes gs = gs mod N and sends
chal = ⟨r, gs⟩ to the server.
GenProof(pk,Dm,m, chal) → R: When the server re-

ceives chal = ⟨r, gs⟩, it generates a sequence of block in-
dexes a1, a2, ..., an by calling fr(i) for i ∈ [1, n] iteratively.
Then the server computes

R = (gs)
∑n

i=1 aimi mod N,

1A simple way to compute g is to let g = b2, in which b
R←− Z∗

N and
gcd(b± 1, N) = 1.

and sends R to the verifier.

CheckProof(pk,Dm, chal, R) → {“success”, “failure”}:
When the verifier receives R from the server, she computes
{ai}i=1,...,n as the server does in the GenProof step. Then
the verifier computes P and R′ as follows:

P =
n∏

i=1

(Dai
i mod N) mod N

R′ = P s mod N

After that the verifier checks whether R′ = R. If R′ = R,
output “success”. Otherwise the verification fails and the
verifier outputs “failure”.

Note that in the TagGen function, we make all the blocks
distinct by adding random numbers in blocks with the same
value. If the server still tries to save its storage space, then
the only way is by breaking the prime factorization of N ,
or equally, getting a multiple of ϕ(N). The hardness of
breaking large number factorization makes the proposed
protocol secure against the untrusted server. We put the
formal analysis of the proposed protocol in Section IV.

IV. CORRECTNESS AND SECURITY ANALYSIS

In this section, we first show that the proposed protocol is
correct in the sense that the server can pass the verification
of data integrity as long as both the client and the server
are honest. Then we show that the protocol is secure against
the untrusted server. These two theorems together guarantee
that, assuming the client is honest, if and only if the server
has access to the complete and uncorrupted data, it can pass
the verification process successfully. Finally we show that
the proposed protocol is private against third party verifiers.

Theorem 1. If both the client and the server are honest,
then the server can pass the verification successfully.

Proof: We prove this theorem by showing that R and
R′ should be equal if all the data blocks are kept completely
at the server. From the TagGen(m) function, we get that
Di = (gmi) mod N, i ∈ [1, n]. Then we get

P =
n∏

i=1

(Dai
i mod N) mod N

=

n∏
i=1

(gaimi mod N) mod N

= g
∑n

i=1 aimi mod N

Then
R′ = P s mod N

= gs
∑n

i=1 aimi mod N

= gs
∑n

i=1 aimi mod N

= R

This completes the proof.
Before we proceed to Theorem 2, we first review the

KEA1-r assumption, which has been investigated in [15],
[16], and adapted to the RSA setting in [4].
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Definition 4. KEA1-r(Knowledge of Exponent Assumption
[4]). For any adversary A taking input (N, g, gs) and
returning (C, Y ) with Y = Cs, there exists “extractor”
Ā, which given the same input as A returns c such that
C = gc.

Our proof of Theorem 2 needs a lemma from [17]
on solving prime factorization when a multiple of λ′(n)
is known. Denote the prime factorization of N by
p1

v1 · · · ptvt . Then λ′(n) = lcm(p1 − 1, · · · , pt − 1), in
which lcm denotes least common multiple.

Lemma 1. [17] Let g be any function that satisfies the
following two conditions:

1) λ′(n)|g(n),
2) |g(n)| = O(|n|k) for some constant k.

Then ”prime factorization” is polynomial time reducible to
g. Furthermore, the cost of solving the prime factorization
of n is O(|n|k+4M(|n|)), in which M(|n|) denotes the cost
of multiplying two integers of binary length |n|.

We refer the readers to [17] for more details of Lemma
1.

Theorem 2. Under the KEA1-r and the large integer
factorization assumptions, the proposed protocol is secure
against the untrusted server.

Proof: Just as in the security formulation, we denote
the adversary by A and the challenger by B. What we want
to prove is that for any PPT adversary who wins the data
possession game on some file blocks, the challenger can
construct a knowledge extractor E that extracts these file
blocks. Equivalently, if E cannot extract these file blocks,
the challenger can break the integer factorization problem.

For the large integer factorization problem, B is given a
large integer N , which is product of two large primes p and
q. Here p = 2p′ + 1 and q = 2q′ + 1. B tries to solve the
prime factorization of N .
B simulates the protocol environment for A with the

following steps:
• Setup: B generates a random generator of QRN .

Denote the generator by g. B sends pk = (N, g) to
A.

• Query: A adaptively selects some file blocks mi, i =
1, 2, ..., n and queries the verification tags from B. B
computes a verification tag Di = gmi mod N for each
of these blocks and sends {Di, i = 1, 2, ..., n} to A.
Let Dm = {D1, D2, ..., Dn}. Dm is made publicly
known to everyone.

• Challenge: B generates a chal for the file blocks
{m1,m2, ...,mn} and sends it to A. The generation
method is the same with that in the Challenge function
described in section III. Let chal = ⟨r, gs⟩.

• Forge: A computes a response R to prove the integrity
of the requested file blocks.

If CheckProof(pk,Dm, chal, R) = “success”, then the
adversary has won the game. Note that A is given (N, g, gs)
as input, and outputs R = gs

∑n
i=1 aimi mod N , in which

ai = fr(i) for i ∈ [1, n]. Because A can naturally computes

P = g
∑n

i=1 aimi mod N from Dm, P is also treated as
A’s output. So A is given (N, g, gs) as input, and outputs
(R,P ) that satisfies R = P s. From the KEA1-r assumption,
B can construct an extractor Ā, which given the same input
as A, outputs c which satisfies P = gc mod N . As P =
g
∑n

i=1 aimi mod N , B extracts c =
∑n

i=1 aimi mod p′q′.
Now B generates n challenges ⟨r1, gs1⟩, ⟨r2, gs2⟩, ...,

⟨rn, gsn⟩ using the method described in section III. B
computes aji = frj (i) for i ∈ [1, n] and j ∈ [1, n]. Because
{r1, r2, ..., rn} are chosen by B, now B chooses them so
that {aj1, a

j
2, ..., a

j
n}, j = 1, 2, ..., n satisfy the following

equation:

det


a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

...
an1 an2 ... ann

 ̸= 0. (1)

Here det
[
·
]

denotes the determinant of a matrix. B
challenges A for n times. On the jth time, B challenges
A with {rj , gsj}. From the response of A, B extracts
cj = aj1m1 + aj2m2 + · · ·+ ajnmn mod p′q′.

When equation (1) holds, the following system of linear
equations has a unique solution.

a11m1 + a12m2 + ...+ a1nmn = c1 mod p′q′,

a21m1 + a22m2 + ...+ a2nmn = c2 mod p′q′,
...

an1m1 + an2m2 + ...+ annmn = cn mod p′q′.

(2)

By solving the above equation set, for each file block
mi, i = 1, 2, ..., n, B gets m∗

i which satisfies m∗
i =

mi mod p′q′. If for each m∗
i , i = 1, 2, ..., n, m∗

i =
mi, then B has successfully extracted all the file blocks
mi, i = 1, 2, ..., n. However, if for some i, m∗

i ̸= mi,
then we show that B can successfully compute the prime
factorization of N . Without loss of generality, we assume
mi is larger than m∗

i . Then B can get a multiple of ϕ(N)
from m∗

i = mi mod p′q′, which we denote by k1ϕ(N).
From Lemma 1, B can solve the prime factorization of N
with the cost of O((|k1| + |ϕ(N)|)|N |4M(|N |)). Because
A is a PPT adversary, the length of k1 is bounded by
O(|N |k2) for some constant k2. From the above we can
see that if any file block cannot be extracted, then B can
construct a knowledge extractor E to extract the prime
factorization of N in probabilistic polynomial time.

In conclusion, under the KEA1-r and large integer factor-
ization assumptions, the proposed protocol guarantees the
data integrity against an untrusted server.

Theorem 3. (Privacy against Third Party Verifiers) Under
the semi-honest model [14], a third party verifier cannot get
any information about the client’s data m from the protocol
execution. Hence, the protocol is private against third party
verifiers.

Proof: In this proof we construct a simulator for
the view of the verifier, and show that the output of the
simulator is computationally indistinguishable with the view
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of the verifier. The simulator is provided with the input
and the output of the verifier. The input of the verifier
includes {N, g, {Di}i=1,2,...,n}. The output of the verifier is
a bit b indicating whether the CheckProof function outputs
”success” or ”failure”. Under the semi-honest model, the
server is honest, so the value of b is always 1.

The simulator consists of the following steps:
Step 1: The simulator generates one random element

r1 ∈ [1, 2k − 1] and another random element
s1 ∈ ZN\{0}. The simulator then computes
g1s = gs1 mod N .

Step 2: The simulator generates a sequence of numbers
a1i = fr1(i), i = 1, 2, ..., n.

Step 3: The simulator feeds the challenge ⟨r1, g1s⟩ to the
server, and gets the output b.

Step 4: Using the knowledge of {Di}i∈[1,n], The simula-

tor computes P1 =
∏n

i=1(D
a1
i

i mod N) mod N
and R

′

1 = P1
s1 mod N .

Step 5: Let x = {N, g, {Di}i=1,2,...,n} denotes the
verifier’s input. Let RC = ⟨r1, s1⟩. Then the
simulator outputs (x,RC,R

′

1).
Denote the verifier’s view during the protocol execution

as viewP
v . According to the definition in [14], we get viewP

v

as follows:

viewP
v = (x, ⟨r, s⟩, (gs)

∑n
i=1 aimi mod N). (3)

{Di}i=1,2,...,n are block tags which are publicly available
to anyone, so they are also included in the verifier’s view.

In the simulator’s output and viewP
v , ⟨r1, s1⟩ and ⟨r, s⟩

are identically distributed. Because ⟨r1, s1⟩ and ⟨r, s⟩ are
identically distributed, R

′

1 and (gs)
∑n

i=1 aimi mod N are
also identically distributed.

In summary, the simulator’s output and viewP
v have

identical distributions, which are also computationally in-
distinguishable. So the verifier cannot get any information
from the received messages, except its input and output.

V. DATA DYNAMICS

The proposed protocol supports data dynamics at the
block level, which includes block insertion, block modi-
fication and block deletion. Our protocol can easily support
dynamic data updates because: (1) each block tag depends
only on the block content, not on the block position; (2)
each block tag Di depends only on mi, not on any other
blocks. Next we show how our protocol supports these
operations.

• Block Insertion. Assume the client wants to insert
a new block mx before the block mi, 1 ≤ i ≤ n
or append mx after mn. Then the server updates
the stored file to m′ = m1m2...mi−1mxmi...mn or
m′ = m1m2...mnmx. And the client computes block
tag for the new block, i.e., Dx = gmx mod N and
changes the block tag to D1D2...Di−1DxDi...Dn or
D1D2...DnDx.

• Block Modification. Assume that the client wants
to modify the ith block mi of her file. Denote the

modified data block by m∗
i . Then the server updates

mi to m∗
i . Next the client computes a new block tag

for the updated block, i.e., D∗
i = gm

∗
i mod N .

• Block Deletion. When the client wants to delete one
block or several blocks of her file, she can delete these
blocks from the server and also delete the correspond-
ing block tags.

From the above we can see that the correspondence
relationship between the block and the digest does not
change after the data updating, i.e., Di = gmi mod N, i =
1, 2, ..., ⌈|m|/l⌉. So the data integrity is still protected.
If the client wants to make sure that the file has really
been updated, she can launch a proof request immediately
by sending a challenge to the server. Any block that is
updated is given a novel random number, so that each block
remains unique. Therefore, the server cannot delete any
block without being detected.

VI. COMPLEXITY ANALYSIS AND EXPERIMENTAL
RESULTS

In this section, we first present a complexity analysis of
the communication, computation and storage costs of the
proposed protocol. After that, we present the experimental
results.

A. Communication, Computation and Storage Costs

The communications between the verifier and the server
occur in the Challenge and GenProof steps. In the Challenge
step, the verifier sends the challenge ⟨r, gs⟩ to the server,
which is of binary length k + |N |. In the GenProof step,
the server sends the response R to the verifier, which is |N |
bits. So the total communication cost is k + 2|N | bits.

Next we give an analysis of the computation costs of the
client, the server and the verifier. The reason we present
analysis for the client and the verifier separately is that the
proposed protocol offers the property of public verifiability,
so that anybody can be a verifier.

• Client side. During the TagGen step, the client com-
putes a tag for each of the file blocks. From Euler
Theorem [18], we know that since gcd(g,N) = 1,
we should have gϕ(N) mod N = 1. So the client can
compute mi mod ϕ(N) before computing gmi modN .
As modulo operations are far more efficient than the
modular exponentiations, we only consider the latter.
The computation cost of the client is upper bounded
by ⌈|m|/l⌉Texp(|N |, N), where Texp(len, num) is the
time cost of computing a modular exponentiation with
a len-bit long exponent modular num.

• Server side. During the protocol, the server needs
to perform n pseudorandom number generations and
to compute R = (gs)

∑n
i=1 aimi mod N . During the

computation of
∑n

i=1 aimi, n large number multipli-
cations are performed. Since ai and mi are of d and
l bits long respectively, the computation cost of aimi

is upper bounded by (d − 1) additions of (d + l)-bit
integers. Once the values of aimi, i = 1, 2, ..., n have
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been computed, the computation cost of their sum is
upper bounded by (n − 1) additions of |n| + d + l-
bit integers. In summary, the computation cost of the
server is upper bounded by

n · Tprng(d) + Texp(|n|+ d+ l, N)+

n(d− 1)Tadd(d+ l) + (n− 1)Tadd(|n|+ d+ l),
(4)

where Tprng(len) is the time cost of generating a len-
bit pseudo-random number and Tadd(len) is the time
cost of adding two len-bit numbers. Since the cost
for computing Tadd(d + l) is less than for computing
Tadd(|n|+d+ l), by replacing n with ⌈|m|/l⌉, we can
simplify equation (4) to:

⌈|m|/l⌉ · Tprng(d) + Texp(|⌈|m|/l⌉|+ d+ l, N)

+d⌈|m|/l⌉Tadd(|⌈|m|/l⌉|+ d+ l).

• Verifier side. During the Challenge step, the ver-
ifier needs to generate two random numbers ⟨r, s⟩
and compute gs = gs mod N , whose cost is 2
pseudorandom number generations plus Texp(|N |, N).
Then during the CheckProof step, the verifier computes
{ai}i=1,...,n, P and R′ respectively, whose compu-
tations include n pseudorandom number generations,
(n+1) modular exponentiations and (n− 1) modular
multiplications. So the total computation cost of the
verifier is

Tprng(|N |)+Tprng(k) + (⌈|m|/l⌉) · Tprng(d)

+2Texp(|N |, N) + nTexp(d,N)

+(n− 1)Tmul(|N |, N).

(5)

In equation (5), (n − 1)Tmul(|N |, N) corresponds to
the computation of (n − 1) multiplications of |N |-bit
integers modular N . So the computation cost of these
multiplications is upper bounded by (n− 1)(|N | − 1)
additions of |N |-bit integers. In summary, the compu-
tation cost of the verifier is upper bounded by:

Tprng(|N |) + Tprng(k) + (⌈|m|/l⌉) · Tprng(d)+

2Texp(|N |, N) + ⌈|m|/l⌉Texp(d,N)

+ |N |⌈|m|/l⌉Tadd(|N |).
(6)

In addition, the computation cost for block insertion
or block modification is just one modular exponentiation,
which is Texp(|N |, N).

Finally, we analyze the storage cost of the server and
the verifier. Note that the n block tags D1, D2, ..., Dn are
made publicly known to everyone. They can be stored at
the server side, the client side or the verifier side. If the tags
are stored at the server, then traditional integrity protection
methods such as digital signatures can be used to protect
them from being tampered with by the server. The storage
cost of the block tags is upper bounded by ⌈|m|/l⌉|N | bits.
In this case, when the data integrity checking is performed,
the tags are transmitted back to the verifier from the
server. As the tags have been signed by the client’s private
key, the server cannot tamper with them. This will incur
communication costs that are linear to the number of blocks.

However, because the tags are relatively small compared
with the original data, the incurred communication costs
are acceptable with respect to all the good features the
proposed protocol has. If the tags are stored at the verifier
or the client, then these communication costs are mitigated.
However, this will cause a storage cost of O(n) at the
verifier or the client, which is the same as Sebé et al.’s
protocol [1].

Besides that, the storage costs of the client, the server
and the verifier are analyzed below.

• Client side. The client needs to store the public key
and the private key. The storage cost is 2|N |+ |p|+ |q|
bits.

• Server side. The server needs to have complete access
to the whole file m, so its storage cost is |m| bits. Note
that this is the minimum storage cost possible for any
scheme.

• Verifier side. The verifier needs to have access to the
public key pk = (N, g). So the storage requirement at
the verifier is 2|N | bits.

B. Experimental Results

In the experiment, we measure the computation costs at
the verifier and the server when the file length is fixed
and the block size is changed. After that, we measure
the computation costs when the file length changes and
the block size is fixed. We also measure the client’s pre-
processing costs.

In the first experiment we use a file m with length 225

bits, or 4MB. We choose the length of N to be 1024 bits. We
choose k = 128 and d = 128. We implement the proposed
protocol on a laptop with Intel Core2 Duo 2.00GHz CPU
and 1.99GB memory. All the programs are written in the
C++ language with the assistance of MIRACL library [19].
We use SHA-1 secure hash algorithm [20] to implement the
pseudo-random generator when the length of the random
number is less than 160 bits. However, in our protocol,
the generation of s requires more than 160 bits, which
is implemented by calling the well-implemented pseudo-
random number generator in the MIRACL library.

We measure the computation costs at the verifier and the
server side, which are shown in Table II. From Table II
we can see that when the block length is 218 bits (32KB),
the computation cost at the verifier is 173.39 ms, and the
computation cost at the server is 2304.39 ms.

TABLE II
COMPUTATION COSTS AT THE VERIFIER AND THE SERVER WITH

|N | = 1024 AND |m| = 4MB .

l(bits) Verifier (ms) Server (ms)
65,536(216) 653.37 591.1
131,072(217) 328.81 1161.1
262,144(218) 173.39 2304.39
524,288(219) 95.46 4558.67

On the other hand, we measure the computation costs at
the verifier and the server side with different file lengths
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and fixed block size. The result is shown in Table III.
From Table III, we can see that the computation cost
at the server doesn’t increase much when the file length
increases. But the computation cost at the verifier increases
nearly proportionally with the increasing file length. We
note that this is consistent with the theoretical analysis
in Section VI-A. The exponential operation is the most
time-consuming operation at either side. When the file
length increases, the times of exponential operations at
the verifier increase proportionally. However, the server
needs to perform only one exponential operation no matter
how large the file is. Therefore, the server’s burden is not
increased much with larger files. As to the verifier’s load,
our scheme can be efficient when the file length is not huge.
However, when the file length is very large, our protocol
can be easily extended into a probabilistic one by using the
probabilistic framework proposed in [4]. In that case, the
extended protocol will provide probabilistic data possession
guarantee while its other good features are still kept.

TABLE III
COMPUTATION COSTS AT THE VERIFIER AND THE SERVER WITH

DIFFERENT FILE LENGTHS AND FIXED BLOCK SIZE.

File Length l(bits) Verifier (ms) Server (ms)
1MB 65,536(216) 176.24 568.39
2MB 65,536(216) 332.55 574.2
4MB 65,536(216) 653.37 591.1
8MB 65,536(216) 1281.79 618.04

TABLE IV
THE CLIENT’S PRE-PROCESSING TIME WITH DIFFERENT BLOCK

LENGTHS WHEN |N | = 1024 AND |m| = 4MB .

Block length
(bits) Block number Processing time

(ms)
65,536(216) 512 4,765
131,072(217) 256 2,477
262,144(218) 128 1,328
524,288(219) 64 755

Pre-processing Costs We also measure the client’s pre-
processing time during the TagGen process, which is shown
in Table IV. From Table IV we can see that when the block
length is 218 bits (32KB), the client’s pre-processing time
is 1,328 ms.

In addition, when the block length is 218 bits (32KB),
the storage cost at the verifier side is |N |⌈|m|/l⌉ = 1024 ·
128 bits = 16KB. The communication cost is k +
2|N | = (128+2· 1024)bits = 272 bytes.

VII. RELATED WORK

The problem of remote data integrity checking is first
introduced in [21], [22], which independently propose RSA-
based methods for solving this problem. After that Shah et
al. [23] propose a remote storage auditing method based
on pre-computed challenge-response pairs. In [5], Curtmola

et al. propose a multiple-replica provable data possession
protocol to deal with server collusion attack. In [24],
Heitzmann et al. propose a data checking method with
use of authenticated skip lists [25]. These protocols all
provide good efficiency and security. However, none of
them provides public verifiability or data dynamics.

Recently, Ateniese et al. [4] propose two provable data
possession (S-PDP, E-PDP) schemes to provide integrity
protection for remote data. The S-PDP and E-PDP sup-
port data block append operation, and a variant of their
main PDP scheme has public verifiability. Sebé et al. [1]
propose a remote data possession checking protocol for
critical information infrastructures. Their protocol supports
unlimited times of file integrity verifications and has a trade
off between the running time and the storage cost at the
verifier. Their protocol can be easily adapted to support data
dynamics, but it doesn’t support public verifiability. After
that several studies [6], [7], [8] focus on providing data
dynamics to provable data possession protocols. Ateniese
et al. [6] propose a very efficient PDP protocol which
is based on message authentication codes. Their protocol
supports block modification, deletion and append. Erway et
al. [7] propose two efficient PDP constructions with data
dynamics by using rank-based skip lists and RSA trees
[26]. Wang et al. [8] propose a method which uses merkle
hash tree [27] to support fully data dynamics and uses BLS
signature [28] to support public verifiability. Later Wang et
al. [9], [10] recognize the need of privacy against third-party
verifiers and develop a random masking technique to deal
with this problem. Zhu et al. [11] propose a formal frame-
work for interactive provable data possession (IPDP) and
a zero-knowledge IPDP solution for private clouds. Their
ZK-IPDP protocol achieves probabilistic data possession
guarantee, supports fully data dynamics, public verifiability
and is also private against the verifiers. Furthermore, they
propose an efficient construction of cooperative provable
data possession (CPDP), which can be used in hybrid
clouds. The proposed schemes in [8], [9], [10], [11] use
a third party auditor to perform the verification. A third
party auditor has certain special expertise and technical
capabilities, which the clients do not have. In addition,
Curtmola et al. [29] use the forward error correcting codes
to enhance the PDP protocol’s robustness. Wang et al. [12]
propose a protocol for ensuring remote storage security in
the environment of multiple servers, and Ateniese et al. [30]
propose a framework that can build a public verifiable proof
of storage system from any public key homomorphic linear
authenticators. Hao and Yu [13] propose a remote data pos-
session checking protocol for the multiple replica setting,
which supports public verifiability and privacy against third
party verifiers. The proposed protocol can be viewed as an
adaptation of [1] to support more functionalities. It inherits
the support of data dynamics from [1], and supports public
verifiability and privacy against third-party verifiers, while
at the same time it doesn’t need to use a third-party auditor.

On the other hand, Proof of Retrievability (PoR) [31] has
been proposed as another technology for ensuring remote
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data security. PoR puts stronger requirements on the server,
which not only needs to prove that the data is stored intact
at the server, but also needs to prove that the stored data
can be completely retrieved when needed. Several recent
studies [32], [33], [34] propose PoR schemes that improve
the protocol security and efficiency. Additionally, Bowers
et al. [35] propose a remote file integrity checking protocol
that provides high availability and integrity.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we propose a new remote data integrity
checking protocol for cloud storage. The proposed protocol
is suitable for providing integrity protection of customers’
important data. The proposed protocol supports data in-
sertion, modification and deletion at the block level, and
also supports public verifiability. The proposed protocol
is proved to be secure against an untrusted server. It is
also private against third party verifiers. Both theoretical
analysis and experimental results demonstrate that the pro-
posed protocol has very good efficiency in the aspects of
communication, computation and storage costs.

Currently we are still working on extending the protocol
to support data level dynamics. The difficulty is that there
is no clear mapping relationship between the data and the
tags. In the current construction, data level dynamics can be
supported by using block level dynamics. Whenever a piece
of data is modified, the corresponding blocks and tags are
updated. However, this can bring unnecessary computation
and communication costs. We aim to achieve data level
dynamics at minimal costs in our future work.
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