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Abstract

User preferences in databases are attracting increasing interests with the boom of informa-

tion systems and the trend of personalization. In literature, there are two different frame-

works dealing with this topic, namely quantitative approaches and qualitative approaches.

The former assume the availability of a scoring function, while the latter do not. In qualita-

tive approaches, preferences are expressed using preference formulas. We investigate three

advanced topics on preferences stemming from those frameworks.

First, we study top-k queries over uncertain data in the quantitative framework. We

formulate three intuitive semantic properties for top-k queries in probabilistic databases,

and propose Global-Topk query semantics which satisfies them to a great degree. We also

design efficient dynamic programming algorithms for query evaluation.

Second, we observe that all work on top-k queries in probabilistic database focus on

ordinal scores, however there are applications where cardinal scores are more appropriate.

This motivates our work on preference strength, where we consider the magnitude of score

in addition to the order it establishes over tuples.

Finally, as a counterpart to the top-k query in the quantitative framework, we explore the

set preference problem in the qualitative framework. Observing the fact that preferences

can also be collective in this case, our goal is to tackle this second-order problem with

first-order tools. We propose a logical framework for set preferences. Candidate sets are

represented using profiles consisting of scalar features. This reduces set preferences to

tuple preferences over set profiles. We also propose algorithms to compute the “best” sets.

viii



Chapter 1

Introduction

1.1 Motivations

1.1.1 Top-k Queries over Uncertain Databases

The study of incompleteness and uncertainty in databases has long been of interest to the

database community [35, 12, 31, 1, 27, 61, 41]. Recently, this interest has been rekin-

dled by an increasing demand for managing rich data, often incomplete and uncertain,

emerging from scientific data management, sensor data management, data cleaning and

information extraction. Dalvi et al. [20] focuses on query evaluation in traditional prob-

abilistic databases; Benjelloun et al. [4] supports uncertain data and data lineage in Trio

[55]; Olteanu et al. [49] uses the vertical World-Set representation of uncertain data in

MayBMS [46]. The standard semantics adopted in most works is the possible worlds se-

mantics [35, 27, 61, 4, 20, 49].

On the other hand, since the seminal papers of Fagin et al. [23, 25], the top-k problem

has been extensively studied in multimedia databases [48], middleware systems [45], data

cleaning [30] and core technology in relational databases [33, 34]. In the top-k problem,

each tuple is given a score, and users are interested in k tuples with the highest scores.

More recently, the top-k problem has been studied in probabilistic databases [52, 53,

51]. Those papers, however, are solving two essentially different top-k problems. Soliman

et al. [52, 53] assumes the existence of a scoring function to rank tuples. Probabilities
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provide information on how likely tuples will appear in the database. In contrast, in [51],

the ranking criterion for top-k is the probability associated with each query answer. In

many applications, it is necessary to deal with tuple probabilities and scores at the same

time. Thus, we use the model of [52, 53]. Even in this model, different semantics for top-k

queries are possible, so a part of the challenge is to categorize different semantics.

As a motivating example, let us consider the following graduate admission example.

Example 1. A graduate admission committee needs to select two winners of a fellowship.

They narrow the candidates down to the following short list:

Name Overall Score

Aidan 0.65

Bob 0.55

Chris 0.45

Prob. of Acceptance

0.3

0.9

0.4

where the overall score is the normalized score of each candidate based on their qualifica-

tions, and the probability of acceptance is derived from historical statistics on candidates

with similar qualifications and background.

The committee want to make offers to the best two candidates who will take the offer.

This decision problem can be formulated as a top-k query over the above probabilistic

relation, where k � 2.

In Example 1, each tuple is associated with an event, whether the candidate will accept

the offer or not. The probability of the event is shown next to each tuple. In this example,

all the events of tuples are independent, and tuples are therefore said to be independent.

Such a relation is said to be simple. In contrast, Example 2 illustrates a more general case.

Example 2. In a sensor network deployed in a habitat, each sensor reading comes with

a confidence value Prob, which is the probability that the reading is valid. The following

table shows the temperature sensor readings at a given sampling time. These data are from

two sensors, Sensor 1 and Sensor 2, which correspond to two parts of the relation, marked

C1 and C2, respectively. Each sensor has only one true reading at a given time, therefore

tuples from the same part of the relation correspond to exclusive events.

2



Temp.�F (Score)

22

10

25

15

Prob

0.6

0.4

0.1

0.6

C1

C2

Our question is: “What is the temperature of the warmest spot?”

The question can be formulated as a top-k query, where k � 1, over a probabilistic

relation containing the above data. The scoring function is the temperature. However, we

must take into consideration that the tuples in each part Ci, i � 1, 2, are exclusive.

1.1.2 Set Preferences

In the previous section, preferences are modeled as scoring functions. An alternative to this

quantitative approach is the qualitative approach, where preferences are expressed using

preference formulas instead. In recent years, research adopting this approach flourishes

in the database and AI communities [7, 36, 37, 16, 8]. The issues addressed in that re-

search include preference specification, preference query languages, and preference query

evaluation and optimization. However, the research on qualitative preferences has almost

exclusively focused on object (or tuple) preferences which express preference relationships

between individual objects or tuples in a relation.

We observe that in decision making a user sometimes needs to make a group decision

based not only on the individual object properties but also on the properties of the group as

a whole. Consider the following example.

Example 3. Alice is buying three books as gifts. Here is a list of book quotes collected

from different vendors:

3



Book:

title genre rating price vendor

a1 sci-fi 5.0 $15.00 Amazon

a2 biography 4.8 $20.00 B&N

a3 sci-fi 4.5 $25.00 Amazon

a4 romance 4.4 $10.00 B&N

a5 sci-fi 4.3 $15.00 Amazon

a6 romance 4.2 $12.00 B&N

a7 biography 4.0 $18.00 Amazon

a8 sci-fi 3.5 $18.00 Amazon

Alice needs to decide on the three books to buy. She might have any of the following

preferences:

(C1) She wants to spend as little money as possible.

(C2) She prefers to get one sci-fi book.

(C3) Ideally, she prefers that all three books are from the same vendor. If that is not

possible, she prefers to deal with as few vendors as possible.

In addition, Alice might have different combinations of the above preferences. For

example, Alice might have both (C1) and (C2), but (C2) may be more important than (C1)

to her, i.e., Alice’s preference is a prioritized composition of (C2) and (C1).

The preference (C1) can be directly simulated by a tuple preference over Book, such

that for any t1, t2 P Book, t1 is preferred to t2 if and only if t1.price   t2.price. Then the

top 3 books in Book (according to this preference) constitute the best answer set.

However, in the other cases, e.g. (C2-C3) and the prioritized composition of (C2) and

(C1), such a simulation is not possible.

Example 3 motivates our framework for set preferences, which is based on the obser-

vation that a large class of set preferences has two components: (1) Quantities of interest;

(2) Desired value or order of those quantities.

Example 4. Here is a summary of those two components in Example 3.

4



Quantity of Interest Desired Value or Order

(C1) total cost  

(C2) number of sci-fi books 1

(C3) number of distinct vendors  

1.2 Our Contributions

In this section, we describe our research in several directions relevant to probabilities and

sets in preference querying.

Top-k Queries over Uncertain Databases

In this topic, we assume the existence of a scoring function for top-k queries in probabilistic

databases. First, in Chapter 3, we formulate three intuitive semantic postulates and use

them to analyze and categorize different top-k semantics in probabilistic databases. We

then propose a new semantics for top-k queries in probabilistic databases, called Global-

Topk, which satisfies the above postulates to a large degree.

Second, we exhibit polynomial algorithms for evaluating top-k queries under the Global-

Topk semantics in simple probabilistic databases and general probabilistic databases, under

injective scoring functions. We design efficient heuristics to improve the performance of

the basic algorithms. Experiments are carried out to demonstrate the efficacy of those opti-

mizations.

Third, in Chapter 4, we generalize Global-Topk semantics to general scoring func-

tions, where ties are allowed, by introducing the notion of allocation policy. We propose

dynamic-programming based algorithms for query evaluation under the Equal allocation

policy.

Preference Strength in Probabilistic Ranking Queries

In Chapter 5, we study the problem of preference strength in top-k queries in probabilistic

databases. First, we formulate two more semantic postulates of top-k queries in probabilis-

tic databases, which are related to sensitivity. Then, we propose a parameterized semantics
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of top-k queries in probabilistic databases, called Global-Topkγ,β , which considers cardinal

scores and satisfies the sensitivity postulates. Finally, we exhibit a polynomial algorithm

to elicit the parameters in the Global-Topkγ,β semantics. Experiments are carried out to

illustrate the influence of preference strength in the semantics.

Set Preferences

In Chapter 6, we first elaborate our set preference framework based on the qualitative tuple

preference framework in the literature [16]. Our set preference framework consists of two

components: (1) profiles: tuples of features, each of those capturing a quantity of interest;

(2) profile preference relations to specify desired values or orders.

The main idea is to construct the profiles of candidate subsets based on their features.

Since each profile is a tuple of features, the original set preference can now be formulated

as a tuple preference over the profiles. Moreover, the best subsets under the set preference

in the original relation correspond to the best profiles.

In Chapter 6, we discuss the computational issues involved in computing the best sub-

sets. Furthermore, we design efficient optimizations to significantly reduce the computation

effort, and carry out empirical study on their performance.

6



Chapter 2

Preliminaries

In this chapter, we review the standard notions of order theory and set theory.

2.1 Binary Relation

A binary relation ¡ is

• irreflexive: @x. x £ x,

• asymmetric:@x, y. x ¡ y ñ y £ x,

• transitive: @x, y, z. px ¡ y ^ y ¡ zq ñ x ¡ z,

• negatively transitive: @x, y, z. px £ y ^ y £ zq ñ x £ z,

• connected: @x, y. x ¡ y _ y ¡ x_ x � y.

- A strict partial order is an irreflexive, transitive (and thus asymmetric) binary rela-

tion.

- A weak order is a negatively transitive strict partial order.

- A total order is a connected strict partial order.

7



2.2 Set and Multiset

The cardinality of a set s, denote by |s|, is the total number of members in s.

A multiset is a generalization of a set. In a set, each member has only one occurrence,

while in a multiset, each member can have more than one occurrence.

The cardinality of a multiset s, also denoted by |s|, is the total number of occurrences

in s.

A set s1 is a subset of set s if each member of s1 is also a member of s.

A multiset s1 is a multisubset of set s if each member of s1 is also a member of s.

8



Chapter 3

Top-k Queries in Uncertain Databases

under Injective Scoring Functions

In this chapter, we address the problem of top-k queries in probabilistic databases, semanti-

cally and computationally. Most of the discussion focuses on the scenario when the scoring

function involved is injective, i.e. no ties allowed. We defer the discussion of general scor-

ing functions to Chapter 4.

3.1 Basic Notions

3.1.1 Probabilistic Relations

To simplify the discussion, we assume that a probabilistic database contains a single prob-

abilistic relation. We refer to a traditional database relation as a deterministic relation.

A partition C of R is a collection of non-empty subsets of R such that every tuple be-

longs to one and only one of the subsets. That is, C � tC1, C2, . . . , Cmu such that

C1YC2Y. . .YCm � R and CiXCj � H, 1 ¤ i � j ¤ m. Each subset Ci, i � 1, 2, . . . ,m

is a part of the partition C. A probabilistic relation Rp has three components, a support

(deterministic) relation R, a probability function p and a partition C of the support relation

R. The probability function p maps every tuple in R to a probability value in p0, 1s. The

partition C divides R into subsets such that the tuples within each subset are exclusive and

9



therefore their probabilities sum up to at most 1. In the graphical presentation of R, we use

horizontal lines to separate tuples from different parts.

Definition 3.1.1 (Probabilistic Relation). A probabilistic relation Rp is a triplet xR, p, Cy,

where R is a support deterministic relation, p is a probability function p : R ÞÑ p0, 1s and

C is a partition of R such that @Ci P C,
°
tPCi pptq ¤ 1.

In addition, we make the assumption that tuples from different parts of of C are inde-

pendent, and tuples within the same part are exclusive. Soliman et al. [52, 53] and Ré et al.

[51] provide more general probabilistic database models. Definition 3.1.1 is equivalent to

the model used in Soliman et al. [52, 53] with exclusive tuple generation rules.

Example 2 shows an example of a probabilistic relation whose partition has two parts.

Generally, each part corresponds to a real world entity, in this case, a sensor. Since there

is only one true state of an entity, tuples from the same part are exclusive. Moreover, the

probabilities of all possible states of an entity sum up to at most 1. In Example 2, the sum

of the probabilities of tuples from Sensor 1 is 1, while that from Sensor 2 is 0.7. This can

happen for various reasons. In the above example, we might encounter a physical difficulty

in collecting the sensor data, and end up with partial data.

Definition 3.1.2 (Simple Probabilistic Relation). A probabilistic relation Rp � xR, p, Cy is

simple iff the partition C contains only singleton sets.

The probabilistic relation in Example 1 is simple (individual parts not illustrated). Note

that in this case, |R| � |C|.

We adopt the well-known possible worlds semantics for probabilistic relations [35, 27,

61, 4, 20, 49].

Definition 3.1.3 (Possible World). Given a probabilistic relation Rp � xR, p, Cy, a deter-

ministic relation W is a possible world of Rp iff

1. W is a subset of the support relation, i.e., W � R;

2. For every part Ci in the partition C, at most one tuple from Ci is in W , i.e., @Ci P

C, |Ci XW | ¤ 1;
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3. The probability of W (defined by Equation (3.1)) is positive, i.e., PrpW q ¡ 0.

PrpW q �
¹
tPW

pptq
¹
CiPC1

p1�
¸
tPCi

pptqq (3.1)

where C 1 � tCi P C|W X Ci � Hu.

Denote by pwdpRpq the set of all possible worlds of Rp.

3.1.2 Scoring function

A scoring function over a deterministic relation R is a function from R to real numbers,

i.e., s : R ÞÑ R. The function s induces a preference relation ¡s and an indifference

relation �s on R. For any two distinct tuples ti and tj from R,

ti ¡s tj iff sptiq ¡ sptjq;

ti �s tj iff sptiq � sptjq.

A scoring function over a probabilistic relation Rp � xR, p, Cy is a scoring function s

over its support relation R. In general, a scoring function establishes a weak order over R,

where tuples from R can tie in score. However, when the scoring function s is injective,

¡s is a total order. In such a case, no two tuples tie in score.

3.1.3 Top-k Queries

Definition 3.1.4 (Top-k Answer Set over a Deterministic Relation). Given a deterministic

relation R, a non-negative integer k and a scoring function s over R, a top-k answer set in

R under s is a set T of tuples such that

1. T � R;

2. If |R|   k, T � R, otherwise |T | � k;

3. @t P T @t1 P R � T. t ¡s t
1 or t �s t1.

According to Definition 3.1.4, given k and s, there can be more than one top-k answer

set in a deterministic relationR. The evaluation of a top-k query overR returns one of them

11



nondeterministically, say S. However, if the scoring function s is injective, S is unique,

denoted by topk,spRq.

3.2 Semantics of Top-k Queries

In the following two sections, we restrict our discussion to injective scoring functions. We

will discuss the generalization to general scoring functions in Chapter 4.

3.2.1 Semantic Postulates for Top-k Answers

Probability opens the gate for various possible semantics for top-k queries. As the seman-

tics of a probabilistic relation involves a set of possible worlds, it is to be expected that there

may be multiple top-k answer set obtained from different worlds, even under an injective

scoring function. The answer to a top-k query over a probabilistic relation Rp � xR, p, Cy

should clearly be a set of tuples from its support relation R. We formulate below three

intuitive postulates, which serve as benchmarks to categorize different semantics.

In the following discussion, denote by Ansk,spRpq the collection of all top-k answer

sets of Rp under the function s.

Postulates

• Static Postulates

1. Exact k: When Rp is sufficiently large (|C| ¥ k), the cardinality of every top-k

answer set S is exactly k;

|C| ¥ k ñ r@S P Ansk,spR
pq. |S| � ks.

2. Faithfulness: For every top-k answer set S and any two tuples t1, t2 P R, if both

the score and the probability of t1 are higher than those of t2 and t2 P S, then

t1 P S;

@S P Ansk,spR
pq @t1, t2 P R. spt1q ¡ spt2q ^ ppt1q ¡ ppt2q ^ t2 P S ñ t1 P S.

12



• Dynamic Postulate

Y Ansk,spRpq denotes the union of all top-k answer sets of Rp � xR, p, Cy

under the function s. For any t P R,

t is a winner iff t P Y Ansk,spRpq

t is a loser iff t P R �Y Ansk,spRpq

3. Stability:

– Raising the score/probability of a winner will not turn it into a loser;

(a) If a scoring function s1 is such that s1ptq ¡ sptq and for every t1 P

R � ttu, s1pt1q � spt1q, then

t P Y Ansk,spR
pq ñ t P Y Ansk,s1pR

pq.

(b) If a probability function p1 is such that p1ptq ¡ pptq and for every

t1 P R � ttu, p1pt1q � ppt1q, then

t P Y Ansk,spR
pq ñ t P Y Ansk,sppR

pq1q,

where pRpq1 � xR, p1, Cy.

– Lowering the score/probability of a loser will not turn it into a winner.

(a) If a scoring function s1 is such that s1ptq   sptq and for every t1 P

R � ttu, s1pt1q � spt1q, then

t P R �Y Ansk,spR
pq ñ t P R �Y Ansk,s1pR

pq.

(b) If a probability function p1 is such that p1ptq   pptq and for every

t1 P R � ttu, p1pt1q � ppt1q, then

t P R �Y Ansk,spR
pq ñ t P R �Y Ansk,sppR

pq1q,

13



where pRpq1 � xR, p1, Cy.

All of those postulates reflect certain requirements of top-k answers from the user.

Exact k expresses user expectations about the size of the result. Typically, a user issues

a top-k query in order to restrict the size of the result and get a subset of cardinality k

(cf. Example 1). Therefore, k can be a crucial parameter specified by the user that should

be complied with.

Faithfulness reflects the significance of score and probability in a static environment. It

plays an important role in designing efficient query evaluation algorithms. The satisfaction

of Faithfulness admits a set of pruning techniques based on monotonicity.

Stability reflects the significance of score and probability in a dynamic environment,

where it is common that users might update score/probability on-the-fly. Stability requires

that the consequences of such changes should not be counterintuitive.

A more in-depth discussion on postulates can be found in Section 3.2.3.

3.2.2 Global-Topk Semantics

We propose here a new top-k answer semantics in probabilistic relations, namely Global-

Topk, which satisfies the postulates formulated in Section 3.2.1 to a large degree:

 Global-Topk: return k highest-ranked tuples according to their probability of being

in the top-k answers in possible worlds.

Considering a probabilistic relation Rp � xR, p, Cy under an injective scoring function

s, anyW P pwdpRpq has a unique top-k answer set topk,spW q. Each tuple from the support

relation R can be in the top-k answer set (in the sense of Definition 3.1.4) in zero, one or

more possible worlds of Rp. Therefore, the sum of the probabilities of those possible

worlds provides a global ranking criterion.

Definition 3.2.1 (Global-Topk Probability). Assume a probabilistic relationRp � xR, p, Cy,

a non-negative integer k and an injective scoring function s over Rp. For any tuple t in R,

the Global-Topk probability of t, denoted by PRp

k,s ptq, is the sum of the probabilities of all

possible worlds of Rp whose top-k answer set contains t.
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PRp

k,s ptq �
¸

WPpwdpRpq
tPtopk,spW q

PrpW q. (3.2)

For simplicity, we skip the superscript in PRp

k,s ptq, i.e., Pk,sptq, when the context is un-

ambiguous.

Definition 3.2.2 (Global-Topk Answer Set in a Probabilistic Relation). Given a probabilis-

tic relation Rp � xR, p, Cy, a non-negative integer k and an injective scoring function s

over Rp, a Global-Topk answer set in Rp under s is a set T of tuples such that

1. T � R;

2. If |R|   k, T � R, otherwise |T | � k;

3. @t P T,@t1 P R � T, Pk,sptq ¥ Pk,spt1q.

Notice the similarity between Definition 3.2.2 and Definition 3.1.4. In fact, the proba-

bilistic version only changes the last condition, in which the Global-Topk probability plays

the role of the scoring function. This semantics preserves the nondeterministic nature of

Definition 3.1.4. For example, if two tuples are of the same Global-Topk probability, and

there are k� 1 tuples with a higher Global-Topk probability, Definition 3.2.2 allows one of

the two tuples to be added to the top-k answer set nondeterministically. Example 5 gives

an example of the Global-Topk semantics.

Example 5. Consider the top-2 query in Example 1. Clearly, the scoring function here is

the Overall Score. The following table shows all the possible worlds and their probabil-

ities. For each world, the names of the people in the top-2 answer set of that world are

underlined.
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Possible World Prob

W1 � H 0.042

W2 � tAidanu 0.018

W3 � tBobu 0.378

W4 � tChrisu 0.028

W5 � tAidan,Bobu 0.162

W6 � tAidan, Chrisu 0.012

W7 � tBob, Chrisu 0.252

W8 � tAidan,Bob, Chrisu 0.108

Chris is in the top-2 answer of W4,W6,W7, so the top-2 probability of Chris is 0.028�

0.012 � 0.252 � 0.292. Similarly, the top-2 probability of Aidan and Bob are 0.9 and 0.3,

respectively. 0.9 ¡ 0.3 ¡ 0.292, therefore Global-Topk will return tAidan,Bobu.

Note that top-k answer sets may be of cardinality less than k for some possible worlds.

We refer to such possible worlds as small worlds. In Example 5, W1...4 are all small worlds.

3.2.3 Other Semantics

We present here the most well-established top-k semantics in the literature.

Soliman et al. [52] proposes two semantics for top-k queries in probabilistic relations.

 U-Topk: return the most probable top-k answer set that belongs to possible world(s);

 U-kRanks: for i � 1, 2, . . . , k, return the most probable ith-ranked tuples across all

possible worlds.

Hua et al. [32] independently proposes PT-k, a semantics based on Global-Topk prob-

ability as well. PT-k takes an additional parameter: probability threshold pτ P p0, 1s.

 PT-k: return every tuple whose probability of being in the top-k answers in possible

worlds is at least pτ .

Example 6. Continuing Example 5, under U-Topk semantics, the probability of top-2 an-

swer set tBobu is 0.378, and that of tAidan,Bobu is 0.162 � 0.108 � 0.27. Therefore,
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tBobu is more probable than tAidan,Bobu under U-Topk. In fact, tBobu is the most

probable top-2 answer set in this case, and will be returned by U-Topk.

Under U-kRanks semantics, Aidan is in 1st place in the top-2 answer of W2, W5, W6,

W8, therefore the probability of Aidan being in 1st place in the top-2 answers in the possible

worlds is 0.018 � 0.162 � 0.012 � 0.108 � 0.3. However, Aidan is not in 2nd place in the

top-2 answer of any possible world, therefore the probability of Aidan being in 2nd place is

0. This is summarized in the following table.

Aidan Bob Chris

Rank 1 0.3 0.63 0.028

Rank 2 0 0.27 0.264

U-kRanks selects the tuple with the highest probability at each rank (underlined) and

takes the union of them. In this example, Bob wins at both Rank 1 and Rank 2. Thus, the

top-2 answer returned by U-kRanks is tBobu.

PT-k returns every tuple with its Global-Topk probability above the user specified

threshold pτ , therefore the answer depends on pτ . Say pτ � 0.6, then PT-k return tAidanu,

as it is the only tuple with a Global-Topk probability at least 0.6.

The postulates introduced in Section 3.2.1 lay the ground for analyzing different seman-

tics. In Table 3.1, a single “X” (resp. “�”) indicates that postulate is (resp. is not) satisfied

under that semantics. “X{�” indicates that, the postulate is satisfied by that semantics in

simple probabilistic relations, but not in the general case.

Semantics Exact k Faithfulness Stability

Global-Topk X X/� X

PT-k � X/� X

U-Topk � X/� X

U-kRanks � � �

Table 3.1: Postulate Satisfaction for Different Se-

mantics
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For Exact k, Global-Topk is the only semantics that satisfies this postulate. Example

6 illustrates the case where U-Topk, U-kRanks and PT-k violate this postulate. It is not

satisfied by U-Topk because a small possible world with a high probability could dominate

other worlds. In this case, the dominating possible world might not have enough tuples. It

is also violated by U-kRanks because a single tuple can win at multiple ranks in U-kRanks.

In PT-k, if the threshold parameter pτ is set too high, then less than k tuples will be returned

(as in Example 6). As pτ decreases, PT-k return more tuples. In the extreme case when pτ

approaches 0, every tuple with a positive Global-Topk probability will be returned.

For Faithfulness, Global-Topk violates it when exclusion rules lead to a highly re-

stricted distribution of possible worlds, and are combined with an unfavorable scoring

function (see Appendix A (5)). PT-k violates Faithfulness for the same reason (see Ap-

pendix A (6)). U-Topk violates Faithfulness since it requires all tuples in a top-k answer

set to be compatible. This postulate can be violated when a high-score/probability tuple

could be dragged down arbitrarily by its compatible tuples which are not very likely to

appear (see Appendix A (7)). U-kRanks violates both Faithfulness and Stability. Under U-

kRanks, instead of a set, a top-k answer is an ordered vector, where ranks are significant.

A change in a tuple’s probability/score might have unpredictable consequence on ranks,

therefore those two postulates are not guaranteed to hold (see Appendix A (8)(12)).

Faithfulness is a postulate which can lead to significant pruning in practice. Even

though it is not fully satisfied by any of the four semantics, some degree of satisfaction

can still be beneficial, as it will help us find pruning rules. For example, our optimization

in Section 3.3.2 explores the Faithfulness of Global-Topk in simple probabilistic databases.

Another example: one of the pruning techniques in [32] explores the Faithfulness of exclu-

sive tuples in general probabilistic databases as well.

See Appendix A for the proofs of the results in Table 3.1.

It worths mentioning here that the intention of Table 3.1 is to provide a list of semantic

postulates, so that users would be able to choose the appropriate postulates for an applica-

tion. For example, in a government contract bidding, only k companies from the first round

will advance to the second round. The score is inverse to the price offered by a company,

and the probability is the probability that company will complete the task on time. The
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constraint of k is hard, and thus Exact k is a must for the top-k semantics chosen. In con-

trast, during college admission, where the score reflects the qualifications of an applicant

and the probability is the probability of offer acceptance, while we intend to have a class of

k students, there is usually room for fluctuation. In this case, Exact k is not a must. It is the

same story with Faithfulness and Stability: Faithfulness is required in applications such as

auctions, where the score is the value of an item and the probability is the availability of the

item. In this case, it is natural to aim at the “best deals”, i.e., items with high value and high

availability. Stability is a common postulate required by many dynamic applications. For

example, we want to maintain a list of k best sellers, where the score is inverse to the price

of an item and the probability is its availability. It is to be expected that a discounted price

and improved availability of an item should not have an adverse influence on the item’s

stand on the list of k best sellers1.

In short, we are not advertising that a specific semantics is superior/inferior to any

other semantics using Table 3.1. Rather, with the help of Table 3.1, we hope that users

will be able to search for the most appropriate semantics based on the right combination of

postulates for their applications.

Recently, Cormode et al. [19] proposed a new semantics, Expected Rank, and showed

that it satisfies Exact k and Stability, but not Faithfulness. They also introduced new

postulates: containment, unique-rank and value-invariance, and studied the postulate sat-

isfaction of different semantics including Global-Topk. Roughly speaking, containment

stipulates the containment relationship between top-k answers when increasing k in top-k

queries. Unique-rank demands a uniquely ranked list of tuples as the top-k answer. Value-

invariance requires that the top-k answer stays the same as long as the change in the scoring

function is order-preserving. Some of those three postulates are more intuitive than others.

However, again, it is up to the application to decide on the desirable subset of postulates.

1In real life, we sometimes observe cases when stability does not hold: a cheaper Wii console with
improved availability does not make it more popular than it was. The reason could be psychological.
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3.3 Query Evaluation under Global-Topk

3.3.1 Simple Probabilistic Relations

We first consider a simple probabilistic relation Rp � xR, p, Cy under an injective scoring

function s.

Proposition 3.3.1. Given a simple probabilistic relation Rp � xR, p, Cy and an injective

scoring function s over Rp, if R � tt1, t2, . . ., tnu and t1 ¡s t2 ¡s . . . ¡s tn, the following

recursion on Global-Topk queries holds:

qpk, iq �

$''''&
''''%

0 k � 0

pptiq 1 ¤ i ¤ k

pqpk, i� 1q
p̄pti�1q
ppti�1q

� qpk � 1, i� 1qqpptiq otherwise

(3.3)

where qpk, iq � Pk,sptiq and p̄pti�1q � 1� ppti�1q.

Proof. See Appendix B.

Notice that Equation (3.3) involves probabilities only, while the scores are used to de-

termine the order of computation.

Example 7. Consider a simple probabilistic relation Rp � xR, p, Cy, where R � tt1, t2,

t3, t4u, pptiq � pi, 1 ¤ i ¤ 4, C � ttt1u, tt2u, tt3u, tt4uu, and an injective scoring function

s such that t1 ¡s t2 ¡s t3 ¡s t4. The following table shows the Global-Topk probability of

ti, where 0 ¤ k ¤ 2.

k t1 t2 t3 t4

0 0 0 0 0

1 p1 p̄1p2 p̄1p̄2p3 p̄1p̄2p̄3p4

2 p1 p2 pp̄2 � p̄1p2qp3 ppp̄2 � p̄1p2qp̄3

�p̄1p̄2p3qp4

Row 2 (bold) is each ti’s Global-Top2 probability. Now, if we are interested in a top-2

answer in Rp, we only need to pick the two tuples with the highest value in Row 2.
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Theorem 3.3.1 (Correctness of Algorithm 1). Given a simple probabilistic relation Rp �

xR, p, Cy, a non-negative integer k and an injective scoring function s, Algorithm 1 cor-

rectly computes a Global-Topk answer set of Rp under the scoring function s.

Proof. Algorithm 1 maintains a priority queue to select the k tuples with the highest

Global-Topk value. Notice that the nondeterminism is reflected in Line 6 of Algorithm

1 as the maintenance of the priority queue in the presence of tying elements. As long as

Line 2 of Algorithm 1 correctly computes the Global-Topk probability of each tuple in R,

Algorithm 1 returns a valid Global-Topk answer set. By Proposition 3.3.1, Algorithm 2

correctly computes the Global-Topk probability of tuples in R.

Algorithm 1 is a one-pass computation over the probabilistic relation, which can be

easily implemented even if secondary storage is used. The overhead is the initial sorting

cost (not shown in Algorithm 1), which would be amortized by the workload of consecutive

top-k queries.

Algorithm 1 (Ind Topk) Evaluate Global-Topk Queries in a Simple Probabilistic Relation
under an Injective Scoring Function
Require: Rp � xR, p, Cy, k

(tuples in R are sorted in the decreasing order based on the scoring function s)
1: Initialize a fixed cardinality pk � 1q priority queue Ans of xt, proby pairs, which com-

pares pairs on prob, i.e., the Global-Topk probability of t;
2: Calculate Global-Topk probabilities using Algorithm 2, i.e.,

qp0 . . . k, 1 . . . |R|q � Ind Topk SubpRp, kq;

3: for i � 1 to |R| do
4: Add xti, qpk, iqy to Ans;
5: if |Ans| ¡ k then
6: remove a pair with the smallest prob value from Ans;
7: end if
8: end for
9: return tti|xti, qpk, iqy P Ansu;

Algorithm 2 takesOpknq to compute the dynamic programming (DP) table. In addition,

Algorithm 1 uses a priority queue to maintain the k highest values, which takes Opn log kq.

Altogether, Algorithm 1 takes Opknq time.
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Algorithm 2 (Ind Topk Sub) Compute Global-Topk Probabilities in a Simple Probabilis-
tic Relation under an Injective Scoring Function
Require: Rp � xR, p, Cy, k

(tuples in R are sorted in the decreasing order based on the scoring function s)
1: qp0, 1q � 0;
2: for k1 � 1 to k do
3: qpk1, 1q � ppt1q;
4: end for
5: for i � 2 to |R| do
6: for k1 � 0 to k do
7: if k1 � 0 then
8: qpk1, iq � 0;
9: else

10: qpk1, iq � pptiqpqpk1, i� 1q
p̄pti�1q
ppti�1q

� qpk1 � 1, i� 1qq;

11: end if
12: end for
13: end for
14: return qp0 . . . k, 1 . . . |R|q;

The major space use in Algorithm 1 is the bookkeeping of the DP table in Line 2

(Algorithm 2). A straightforward implementation of Algorithm 1 and Algorithm 2 takes

Opknq space. However, notice that in Algorithm 2, the column qp0 . . . k, iq depends on the

column qp0 . . . k, i�1q only, and only the kth value qpk, i�1q in the column qp0 . . . k, i�1q

will be used in updating the priority queue in Line 4 of Algorithm 1 later. Therefore, in

practice, we can reduce the space complexity to Opkq by moving the update of the priority

queue in Algorithm 1 to Algorithm 2, and using a vector of size k � 1 to keep track of the

previous column in the DP table. To be more specific, in Algorithm 2, each time we finish

computing the current column based on the previous column in the DP table, we update

the priority queue with the kth value in the current column and then replace the previous

column with the current column. For readability, we present here the original algorithms

without this optimization for space.

3.3.2 Threshold Algorithm Optimization

Fagin et al. [25] proposes Threshold Algorithm (TA) for processing top-k queries in a mid-

dleware scenario. In a middleware system, an object has m attributes. For each attribute,
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Algorithm 1TA (TA Ind Topk)

(1) Go down T list, and fill in entries in the DP table. Specifically, for t � tj ,
compute the entries in the jth column up to the kth row. Add tj to the top-k
answer set Ans, if any of the following conditions holds:

(a) Ans has less than k tuples, i.e., |Ans|   k;

(b) The Global-Topk probability of tj , i.e., qpk, jq, is greater than the
lower bound of Ans, i.e., LBAns, where LBAns � mintiPAns qpk, iq.

In the second case, we also need to drop a tuple with the lowest Global-
Topk probability in order to preserve the cardinality of Ans.

(2) After we have seen at least k tuples in T , we go down P list to find the first
p whose tuple t has not been seen. Let p � p, and we can use p to estimate
the threshold, i.e., upper bound (UP ) of the Global-Topk probability of
any unseen tuple. Assume t � ti,

UP � pqpk, iq
p̄ptiq
pptiq

� qpk � 1, iqqp.

(3) If UP ¡ LBAns, Ans might be updated in the future, so go back to (1).
Otherwise, we can safely stop and report Ans.

there is a sorted list ranking objects in the decreasing order of its score on that attribute.

An aggregation function f combines the individual attribute scores xi, i�1, 2, . . . ,m to

obtain the overall object score fpx1, x2, . . . , xmq. An aggregation function is monotonic

iff fpx1, x2, . . . , xmq ¤ fpx11, x
1
2, . . . , x

1
mq whenever xi ¤ x1i for every i. Fagin et al. [25]

shows that TA is optimal in finding the top-k objects in such a system.

Denote T and P for the list of tuples in the decreasing order of score and probability,

respectively. Following the convention in [25], t and p are the last value seen in T and P ,

respectively.

Theorem 3.3.2 (Correctness of Algorithm 1TA). Given a simple probabilistic relationRp �

xR, p, Cy, a non-negative integer k and an injective scoring function s over Rp, Algorithm

1TA correctly finds a Global-Topk answer set.

Proof. See Appendix B.

The optimization above aims at an early stop. Bruno et al. [10] carries out an extensive
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experimental study on the effectiveness of applying TA in RDMBS. They consider various

aspects of query processing. One of their conclusions is that if at least one of the indices

available for the attributes2 is a covering index, that is, it is defined over all other attributes

and we can get the values of all other attributes directly without performing a primary index

lookup, then the improvement by TA can be up to two orders of magnitude. The cost of

building a useful set of indices once would be amortized by a large number of top-k queries

that subsequently benefit form such indices. Even in the lack of covering indices, if the data

is highly correlated, in our case, that means high-score tuples having high probabilities, TA

would still be effective.

TA is guaranteed to work as long as the aggregation function is monotonic. For a simple

probabilistic relation, if we regard score and probability as two special attributes, Global-

Topk probability Pk,s is an aggregation function of score and probability. The closeness

between Faithfulness and the monotonicity of Global-Topk probability makes the satis-

faction of Faithfulness a strong indication of a possible TA optimization. Theorem 3.3.2

confirms that TA is applicable to the computation of Global-Topk. Consequently, assuming

that we have an index on probability as well, we can guide the dynamic programming (DP)

in Algorithm 2 by TA. Now, instead of computing all kn entries for DP, where n � |R|,

the algorithm can be stopped as early as possible. A subtlety is that Global-Topk proba-

bility Pk,s is only well-defined for t P R, unlike in [25], where an aggregation function is

well-defined over the domain of all possible attribute values. Therefore, compared to the

original TA, we need to achieve the same behavior without referring to virtual tuples which

are not in R.

U-Topk satisfies Faithfulness in simple probabilistic relations. An adaptation of the

TA algorithm in this case is available in [53]. TA is not applicable to U-kRanks. Even

though we can define an aggregation function per rank, rank � 1, 2, . . . , k, for tuples

under U-kRanks, the violation of Faithfulness (cf. Appendix A (8)) suggests a violation of

monotonicity of those k aggregation functions. PT-k computes Global-Topk probabilities

as well, and is therefore a natural candidate for TA in simple probabilistic relations.

2Probability is typically supported as a special attribute in DBMS.
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3.3.3 Arbitrary Probabilistic Relations

Induced Event Relation

In the general case of probabilistic relations (Definition 3.1.1), each part of the partition C

can contain more than one tuple. The crucial independence assumption in Algorithm 1 no

longer holds. However, even though tuples from one part of the partition C are not indepen-

dent, tuples from different parts are. In the following definition, we assume an identifier

function id. For any tuple t, idptq identifies the part where t belongs. We show how to

reduce the arbitrary case to the simple case using the notion of induced event relation.

Definition 3.3.1 (Induced Event Relation). Given a probabilistic relation Rp � xR, p, Cy,

an injective scoring function s overRp and a tuple t P Cidptq P C, the event relation induced

by t, denoted by Ep � xE, pE, CEy, is a probabilistic relation whose support relation E

has only one attribute, Event. The relation E and the probability function pE are defined

by the following two generation rules:

• Rule 1: tet P E and pEptetq � pptq;

• Rule 2: @Ci P C ^ Ci � Cidptq.

pDt1 P Ci ^ t1 ¡s tq ñ pteCi P Eq and pEpteCi q �
¸
t1PCi
t1¡st

ppt1q.

No other tuples belong to E. The partition CE is defined as the collection of singleton

subsets of E. An induced event relation is a simple probabilistic relation.

Except for one special tuple generated by Rule 1, each tuple in the induced event re-

lation (generated by Rule 2) represents an event eCi associated with a part Ci P C. Given

the tuple t, the event eCi is defined as “there is a tuple from the part Ci with a score higher

than that of t”. The probability of this event, denoted by ppteCi q, is the probability that eCi

occurs.

The role of the special tuple tet and its probability pptq will become clear in Proposition

3.3.2. Let us first look at an example of an induced event relation.
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Example 8. Given Rp as in Example 2, we would like to construct the induced event re-

lation Ep � xE, pE, CEy for tuple t=(Temp: 15) from C2. By Rule 1, we have tet P E,

pEptetq � 0.6. By Rule 2, since t P C2, we have teC1
P E and pEpteC1

q �
°
t1PC1
t1¡st

ppt1q �

pppTemp: 22qq � 0.6. Therefore,

Event (E)

tet

teC1

Prob (pE)

0.6

0.6

Evaluating Global-Topk Queries

With the help of induced event relations, we can reduce Global-Topk in the general case to

Global-Topk in simple probabilistic relations.

Proposition 3.3.2. Given a probabilistic relation Rp � xR, p, Cy and an injective scoring

function s, for any t P Rp, the Global-Topk probability of t equals the Global-Topk prob-

ability of tet when evaluating top-k in the induced event relation Ep � xE, pE, CEy under

the injective scoring function sE : E Ñ R, sEptetq � 1
2

and sEpteCi q � i:

PRp

k,s ptq � PEp

k,sEptetq.

Proof. See Appendix B.

In Proposition 3.3.2, the choice of the function sE is rather arbitrary. In fact, any injec-

tive function giving tet the lowest score will do. Every tuple other than tet in the induced

event relation corresponds to an event that a tuple with a score higher than that of t oc-

curs. We want to track the case that at most k � 1 such events happen. Since any induced

event relation is simple (Definition 3.3.1), Proposition 3.3.2 illustrates how we can reduce

the computation of PRp

k,s ptq in the original probabilistic relation to a top-k computation in

a simple probabilistic relation, where we can apply the DP technique described in Section

3.3.1. The complete algorithms are shown as Algorithm 3 and Algorithm 4.

In Algorithm 4, we first find the part Cidptq where t belongs. In Line 2, we initialize

the support relation E of the induced event relation with the tuple generated by Rule 1 in

Definition 3.3.1. For any part Ci other than Cidptq, we compute the probability of the event
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Algorithm 3 (IndEx Topk) Evaluate Global-Topk Queries in a General Probabilistic Re-
lation under an Injective Scoring Function
Require: Rp � xR, p, Cy, k, s

(tuples in R are sorted in the decreasing order based on the scoring function s)
1: Initialize a fixed cardinality k�1 priority queueAns of xt, proby pairs, which compares

pairs on prob, i.e., the Global-Topk probability of t;
2: for t P R do
3: Calculate PRp

k,s ptq using Algorithm 4, i.e.,

PRp

k,s ptq � IndEx Topk SubpRp, k, s, tq;

4: Add xt, PRp

k,s ptqy to Ans;
5: if |Ans| ¡ k then
6: remove a pair with the smallest prob value from Ans;
7: end if
8: end for
9: return tt|xt, PRp

k,s ptqy P Ansu;

Algorithm 4 (IndEx Topk Sub) Calculate PRp

k,s ptq using an induced event relation
Require: Rp � xR, p, Cy, k, s, t P R

(tuples in R are sorted in the decreasing order based on the scoring function s)
1: Find the part Cidptq P C such that t P Cidptq;
2: E � ttetu, where pEptetq � pptq;
3: for Ci P C and Ci � Cidptq do
4: ppeCiq �

°
t1PCi
t1¡st

ppt1q;

5: if ppeCiq ¡ 0 then
6: E � E Y tteCiu, where pEpteCi q � ppeCiq;
7: end if
8: end for
9: Use Algorithm 2 to compute Global-Topk probabilities in Ep � xE, pE, CEy under the

scoring function sE , i.e.,

qp0 . . . k, 1 . . . |E|q � Ind Topk SubpEp, kq

10: PRp

k,s ptq � PEp

k,sEptetq � qpk, |E|q;
11: return PRp

k,s ptq;
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eCi according to Definition 3.3.1 (Line 4), and add it to E if its probability is non-zero

(Lines 5-7). Since all tuples from the same part are exclusive, this probability is the sum

of the probabilities of all qualifying tuples in that part. If no tuple from Ci qualifies, this

probability is zero. In this case, we do not care whether any tuple from Ci will be in the

possible world or not, since it does not have any influence on whether t will be in top-k

or not. The corresponding event tuple is therefore excluded from E. Note that, by default,

any probabilistic database assumes that any tuple not in the support relation has probability

zero. Line 9 uses Algorithm 2 to compute PEp

k,sEptetq. Note that Algorithm 2 requires all

tuples be sorted on score. Since we already know the scoring function sE , we simply need

to organize tuples based on sE when generating E. No extra sorting is necessary.

Theorem 3.3.3 (Correctness of Algorithm 3). Given a probabilistic relation Rp � xR, p,

Cy, a non-negative integer k and an injective scoring function s, Algorithm 3 correctly

computes a Global-Topk answer set of Rp under the scoring function s.

Proof. The top-level structure of Algorithm 3 resembles that of Algorithm 1. Therefore,

as long as Line 3 in Algorithm 3 correctly computes the Global-Topk probability of each

tuple in R, Algorithm 3 returns a valid Global-Topk answer set. Lines 1-8 in Algorithm

4 compute the event relation induced by the tuple t. By Proposition 3.3.2, Lines 9-10 in

Algorithm 4 correctly compute the Global-Topk probability of t.

In Algorithm 4, Lines 3-8 take Opnq time to build E (we need to scan all tuples within

each part). The call to Algorithm 2 in Line 9 takes Opk|E|q, where |E| is no more than

the number of parts in partition C, which is in turn no more than n. So Algorithm 4 takes

Opknq. Algorithm 3 make n calls to Algorithm 4 to compute PRp

k,s ptq for every tuple t P

R. Again, Algorithm 3 uses a priority queue to select the final answer set, which takes

Opn log kq. The entire algorithm takes Opkn2 � n log kq � Opkn2q.

A straightforward implementation of Algorithm 3 and Algorithm 4 take Opknq space,

as the call to Algorithm 2 in Algorithm 4 could take up to Opk|E|q space. However, by

using a spatially optimized version of Algorithm 2 mentioned in Section 3.3.1, this DP

table computation in Algorithm 4 can be completed in Opkq space. Algorithm 4 still needs
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Op|E|q space to store the induced event relation computed between Lines 3-8. Since |E|

has an upper bound n, the total space is therefore Opk � nq.

3.3.4 Optimizations for Arbitrary Probabilistic Relations

In the previous section, we presented the basic algorithms to compute Global-Topk prob-

abilities in general probabilistic relations. In this section, we provide two heuristics, Roll-

back and RollbackSort, to speed up this computation. Our optimizations are similar to

prefix sharing optimizations in [32], although the assumptions and technical details are dif-

ferent. In our terminology, the aggressive and lazy prefix sharing in [32] assume the ability

to “look ahead” in the input tuple stream to locate the next tuple belonging to every part. In

contrast, Rollback assumes no extra information, and RollbackSort assumes the availability

of aggregate statistics on tuples.

Rollback and RollbackSort take advantage of the following two facts in the basic algo-

rithms:

Fact 1: The overlap of the event relations induced by the consecutive tuples in the original

relation;

Rollback and RollbackSort are based on the following “incremental” computation of

induced event relations for tuples in R. By Definition 3.3.1, for any tuple t P R, only

tuples with a higher score will have an influence on t’s induced event relation. Given

a scoring function s, consider two adjacent tuples ti, ti�1 in the decreasing order of

scores, which is the processing order in Algorithm 3. Denote by Ei and Ei�1 their

induced event relations under the function s, respectively.

Case 1: ti and ti�1 are exclusive.

Then ti and ti�1 have the same induced event relation except for the one tuple

generated by Rule 1 in each induced event relation.

Ei � ttetiu � Ei�1 � tteti�1
u. (3.4)

Case 2: ti and ti�1 are independent, and ti�1 is independent of t1, . . . , ti�1 as well.
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Recall that any tuple tj exclusive to ti, even though it has a score higher than

that of ti, i.e., 1 ¤ j ¤ i�1, does not contribute toEi due to the existence of teti
in Ei. However, tuple ti�1 is independent of such tuple tj , and therefore both ti

and such tuple tj contribute to ti�1’s induced event relation. In Ei�1, instead of

teti , there is an event tuple teCidptiq
, which corresponds to the event that one tuple

from Cidptiq appears. The fact that ti�1 is independent of t1, . . . , ti�1 guarantees

that there is no tuple in Ei � ttetiu incompatible with the event tuple teti�1

generated by Rule 1 in Ei�1. Therefore, all event tuples in Ei � ttetiu should

be retained in Ei�1. Consequently,

Ei � ttetiu � Ei�1 � tteCidptiq
, teti�1

u. (3.5)

Case 3: ti and ti�1 are independent, and ti�1 is incompatible with at least one tuple

from t1, . . . , ti�1.

In this case, like in Case 2, the first part of the condition guarantees the existence

of teCidptiq
in Ei�1. However, the second part of the condition essentially states

that some tuple from Cidpti�1q has a score higher than that of ti. Thus, there is

an event tuple teCidpti�1q
in Ei, which is incompatible with teti�1

generated by

Rule 1 in Ei�1, and therefore should not appear in Ei�1. As a result, besides

the one tuple generated by Rule 1 in each induced event relation, Ei�1 and Ei

also differ in the event tuple teCidptiq
and teCidpti�1q

.

Ei � tteCidpti�1q
, tetiu � Ei�1 � tteCidptiq

, teti�1
u. (3.6)

Fact 2: The arbitrary choice of the scoring function sE in Proposition 3.3.2.

Recall that in Proposition 3.3.2, the event tuple tet has the same Global-Topk prob-

ability in the induced event relation under any scoring functions sE giving tet the

lowest score.
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Rollback

In Rollback, we use an annotated pk � 1q � n table T a to support two major operations for

each induced event relation: (1) the creation of the induced event relation, and (2) the com-

putation in the dynamic programming (DP) table to calculate the Global-Topk probability

of the tuple inducing it. T a is analogous to the DP table that we have been using so far.

In addition, each column in T a is annotated with ppart id, probq of an event tuple in the

current induced event relation.

By Fact 1, it is clear that the creation of induced event relations is incremental if we

do it for tuples in the processing order in Algorithm 3, i.e., the decreasing order of scores.

Rollback exploits this order and piggybacks the creation of the induced event relation to

the computation in the DP table.

By Fact 2, we can reuse the scoring function to the greatest extent between two con-

secutive induced event relations, and therefore avoid the recomputation of a part of the DP

table.

Without loss of generality, assume t1 ¡ t2 ¡ . . . ¡ tn, and the tuple just processed

is ti, 1 ¤ i ¤ n. By “processed”, we mean that there is a DP table for computing the

Global-Topk probability, denoted by DPi, where each column is associated with an event

tuple in ti’s induced event relation Ei. Assume |Ei| � li, then there are li columns in DPi.

Obviously, li ¤ i since only t1, t2, . . . , ti can contribute to Ei. In fact, li � i when all i

tuples are independent. In this case, each tuple corresponds to a distinct event tuple in Ei.

When there are exclusive tuples in Ei, li   i. In this case, if a tuple from t1, t2, . . . , ti�1

is incompatible with ti, it is ignored due to the existence of teti in Ei. For other exclusive

tuples, the tuples from the same part collapse into a single event tuple in Ei. Moreover,

the probability of such event tuple is the sum of the probabilities of all exclusive tuples

contributing to it.

Now, consider the next tuple to be processed, ti�1, its induced event relation Ei�1,

and the DP table DPi�1 to compute the Global-Topk probability in Ei�1. If the current

situation is of Case 1, then Ei and Ei�1 only differ in the event tuple generated by Rule 1.

Recall that the only requirement on the scoring function used in an induced event relation
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is to assign the lowest score to the event tuple generated by Rule 1. This requirement is

translated into associating the last column in the DP table with the tuple generated by Rule

1. Therefore, we can take the first li � 1 columns from DPi and reuse them in DPi�1. In

other words, by reusing the scoring function in DPi as much as possible based on Fact 2,

the resulting DPi�1 table differs from DPi only in the last column. In practice, DPi�1 is

computed incrementally by modifying the last column of DPi in place. In other word, we

have the content of DPi stored in the data structure T a used in Rollback. By modifying

the last column of T a and changing the annotation, we can have DPi�1 in T a. Denoted

by colcur the current last column in DPi. In DPi�1, colcur should be reassociated with the

event tuple teti�1
, i.e.,

colcur.part id � idpti�1q,

colcur.prob � ppti�1q.

It is easy to see that the incremental computation cost is the cost of computing k�1 entries

in colcur.

Similarly for Case 2, the first li � 1 columns in DPi can be reused. The two new event

tuples in DPi�1 are teCidptiq
and teti�1

. To compute DPi�1, we need to change the associ-

ation of two columns, colcur and colcur�1. The last column in DPi (colcur) is reassociated

with teCidptiq
:

colcur.part id � idptiq,

colcur.prob �
¸

tj2PCidptiq
1¤j2¤i

pptj2q.

The last column in DPi�1 (colcur�1) is associated with teti�1
:

colcur�1.part id � idpti�1q,

colcur�1.prob � ppti�1q.
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Example 9. Consider the following data3, and a top-2 query.

t1

t2

t3

t4

t5

Part Score

C1 0.9

C2 0.8

C3 0.7

C1 0.6

C2 0.5

Prob.

0.3

0.1

0.2

0.4

0.7

Tuples are processed in the decreasing order of their scores, i.e., t1, t2, . . . , t5. Figure 3-

1 illustrates each DPi table, i.e., the content of T a, after the processing of tuple ti. The

annotation ppart id, probq of each column is also illustrated. The entry in bold is the

Global-Topk probability of the corresponding tuple inducing the event relation.

Take the processing of t3 for example. Since t3 is independent of t2 and t1, this is Case 2.

Therefore, the last column in DP2 (col2) needs to be reassociated with teCidpt2q
� teC2

in

E3. In DP3,

col2.part id � idpt2q � 2,

col2.prob �
¸

tj2PC2

1¤j2¤2

pptj2q � ppt2q � 0.1.

The last column in DP3 (col3) is associated with the event tuple tet3 generated by Rule 1 in

E3:

col3.part id � idpt3q � 3,

col3.prob � ppt3q � 0.2.

Compared toDP2, the first column with an annotation change inDP3 is col3. The DP table

needs to be recomputed from col3 (inclusive) upwards. In this case, it is only col3. Notice

that, even though the annotation of col2 does not change from DP2 to DP3, its meaning

3We explicitly include partition information into the representation, and thus the horizontal lines do not
represent partition here.
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H
HHH

HHk
col col1

p1, 0.3q
0 0
1 0.3
2 0.3

(a) DP1

H
HHH

HHk
col col1

p1, 0.3q
col2
p2, 0.1q

0 0 0
1 0.3 0.07
2 0.3 0.1

(b) DP2

HH
HHHHk

col col1
p1, 0.3q

col2
p2, 0.1q

col3
p3, 0.2q

0 0 0 0
1 0.3 0.07 0.126
2 0.3 0.1 0.194

(c) DP3

HH
HHHHk

col col1
p2, 0.1q

col2
p3, 0.2q

col3
p1, 0.4q

0 0 0 0
1 0.1 0.18 0.288
2 0.1 0.2 0.392

(d) DP4

HHH
HHHk

col col1
p3, 0.2q

col2
p1, 0.7q

col3
p2, 0.7q

0 0 0 0
1 0.2 0.56 0.168
2 0.2 0.7 0.602

(e) DP5

Figure 3-1: DP table evolution in Rollback
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changes: in DP2, col2 is associated with tet2 in E2; in DP3, col2 is associated with teCidpt2q
in E3 instead.

In Case 1 and Case 2, the event tuple which we want to “erase” from Ei, i.e., teti , is

associated with the last column in DPi. In Case 3, by Equation (3.6), we want to “erase”

from Ei the event tuple teCidpti�1q
in addition to teti . Assume teCidpti�1q

is associated with

colj in DPi, and the columns in DPi are

col1, . . . , colj�1, colj, colj�1, . . . , colcur�1, colcur

which correspond to

teCi1
, . . . , teCij�1

, teCij
, teCij�1

, . . . , teCicur�1
, teti

in Ei, respectively. Obviously, ij � idpti�1q. By Equation (3.6),

Ei�1 � tteCi1
, . . . , teCij�1

, teCij�1
, . . . , teCicur�1

, teCidptiq
, teti�1

u.

By Fact 2, as long as teti�1
is associated with the last column inDPi�1, the column associa-

tion order of other tuples inEi�1 does not matter in computing the Global-Topk probability

of ti�1. By adopting a column association order such that

teCi1
, . . . , teCij�1

are associated with

col1, . . . , colj�1

respectively in DPi�1, we can reuse the first j � 1 columns already computed in DPi.

Recall that in our DP computation, the values in a column depend on the values in its

previous column. Once we change the values in colj , every colj1 , j1 ¡ j, needs to be

recomputed regardless. Therefore, the recomputation cost is the same for every column
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association order of event tuples

teCij�1
, . . . , teCicur�1

, teCidptiq

In Rollback, we simply use this order above as the column association order. In fact, the

name of this optimization, Rollback, refers to the fact that we are “rolling back” the compu-

tation in the DP auxiliary data structure T a until we hit colj and recompute all the columns

with an index equal to or higher than j.

Example 10. Continuing Example 9, consider the processing of t5. t5 is independent of t4,

while t5 and t2 are exclusive. Therefore, this is Case 3. We first locate colj associated with

teCidpt5q
� teC2

in DP4. In this case, it is col1. Then, we roll all the way back to col1 in DP4,

erasing every column on the way including col1. Since colj � col1, there is no column from

DP4 that we can reuse in DP5. We move on to recompute colj1 , j ¤ j1, in DP5 that are

associated with teC3
and teCidpt4q

� teC1
. In particular, col2 in DP5 is associated with teC1

.

Thus,

col2.part id � 1,

col2.prob �
¸

tj2PC1,1¤j2¤4

pptj2q

� ppt1q � ppt4q

� 0.3� 0.4

� 0.7.

The last column in DP5 is again associated with the event tuple tet5 generated by Rule 1 in

E5.

Out of the five tuples, the processing of t1, t2, t3 is of Case 2, and the processing of t4, t5

is of Case 3. Whenever we compute/recompute the DP table, the event tuples associated

with the columns are from the induced event relation, and therefore independent. Thus,

every DP table computation progresses in the same fashion as that with the DP table in

Example 7.
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Finally, we keep the Global-Top2 probability of each tuple (from the original proba-

bilistic relation) in a priority queue. When we finish processing all the tuples, we get the

top-2 winners. In this example, the priority queue is updated every time we get an en-

try in bold. The winners are t5 and t4 with the Global-Top2 probability 0.602 and 0.392,

respectively.

RollbackSort

For the rollback operation in Case 3 of Rollback, define its depth as the number of columns

recomputed in rolling back excluding the last column. For example, when processing t5

in Example 10, col1, col2 and col3 are recomputed in DP5. Therefore the depth of this

rollback operation is 3� 1 � 2.

Recall that in Case 3 of Rollback, we adopt an arbitrary order

teCij�1
, . . . , teCicur�1

, teCidptiq

to process those event tuples in DPi�1. The Global-Topk computation in Ei�1 does not

stipulate any particular order over those tuples. Any permutation of this order is equally

valid. The intuition behind RollbackSort is that we will be able to find a permutation that

will reduce the depth of future rollback operations (if any), given additional statistics on

the probabilistic relation Rp, namely the count of the tuples in each part of the partition.

Theoretically, it requires an extra pass over the relation to compute the statistics. In practice,

however, this extra pass is often not needed because this statistics can be precomputed and

stored.

In RollbackSort, if the current situation is Case 3, we do a stable sort on

teCij�1
, . . . , teCicur�1

, teCidptiq

in the non-decreasing order of the number of unseen tuples in its corresponding part, and

then use the resulting order to process those event tuples. The intuition is that each unseen

tuple has the potential to trigger a rollback operation. By pushing the event tuple with the
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most unseen tuples close to the end of the current DP table, we could reduce the depth of

future rollback operations. In order to facilitate this sorting, we add one more component

unseen to the annotation of each column in T a.

Example 11. We redo the problem in Example 9 and Example 10 using RollbackSort. Now,

the annotation of each column becomes ppart id, prob, unseenq. The evolution of the DP

table is shown in Figure 3-2. The statistics on all parts are: 2 tuples in C1, 2 tuples in C2

and 1 tuple in C3.

Consider the processing of t1 in DP1. As we just see one tuple t1 from C1, there is one

more unseen tuple from C1 coming in the future. Therefore, col1.unseen � 1. All the other

unseen annotations are computed in the same way.

When processing t4 (Case 3), the column associated with teCidpt4q
in DP3 is col1. We

roll back to col1 as before and recompute all the columns upwards in DP4. Notice that,

the recomputation is performed in the order teC3
, teC2

, in contrast to the order teC2
, teC3

used in Example 10 (Figure 3-1(d)). C2 has one more unseen tuple which can trigger the

rollback operation while there are no more unseen tuples from C3. The benefit of this order

becomes clear when we process t5. Now, we only need to rollback to col2 in DP4. The

depth of this rollback operation is 1. Recall that the depth of the same rollback operation

is 2 in Example 10. In other words, we save the computation of 1 column by applying

RollbackSort.

Rollback and RollbackSort significantly improve the performance in practice, as we

will see in Section 3.4. The price we pay for this speedup is an increase in the space usage.

The space complexity is Opknq for both optimization. The quadratic theoretic bound on

running time remains unchanged.

3.4 Experiments

We report here an empirical study on various optimization techniques proposed in Section

3.3.2 and Section 3.3.4, as the behavior of the straightforward implementation of our algo-

rithms is pretty much predicted by the aforementioned theoretical analysis. We implement
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H
HHH

HHk
col col1

p1, 0.3, 1q
0 0
1 0.3
2 0.3

(a) DP1

H
HHH

HHk
col col1

p1, 0.3, 1q
col2

p2, 0.1, 1q
0 0 0
1 0.3 0.07
2 0.3 0.1

(b) DP2

HH
HHHHk

col col1
p1, 0.3, 1q

col2
p2, 0.1, 1q

col3
p3, 0.2, 0q

0 0 0 0
1 0.3 0.07 0.126
2 0.3 0.1 0.194

(c) DP3

HH
HHHHk

col col1
p3, 0.2, 0q

col2
p2, 0.1, 1q

col3
p1, 0.4, 0q

0 0 0 0
1 0.2 0.08 0.288
2 0.2 0.1 0.392

(d) DP4

HHH
HHHk

col col1
p3, 0.2, 0q

col2
p1, 0.7, 0q

col3
p2, 0.7, 0q

0 0 0 0
1 0.2 0.56 0.168
2 0.2 0.7 0.602

(e) DP5

Figure 3-2: DP table evolution in RollbackSort

39



all the algorithms in C++ and run experiments on a machine with Intel Core2 1.66G CPU

running Cygwin on Windows XP with 2GB memory.

Each synthetic dataset has a uniform random score distribution and a uniform random

probability distribution. There is no correlation between the score and the probability. The

size (n) of the dataset varies from 5K up to 1M. In a dataset of a general probabilistic

relation, x is the percentage of exclusive tuples and s is the max number of exclusive tuples

in a part from the partition. In other words, in a general probabilistic relation of size n,

there are rnxs tuples involved in a non-trivial part from the partition. The size of each part

is a random number from r2, ss. Unless otherwise stated, x defaults to 0.1 and s defaults to

20. The default value of k in a top-k query is 100.

For simple relations, the baseline algorithm Basic is the space optimized version of Al-

gorithm 1 and 2 mentioned in Section 3.3.1. TA integrates the TA optimization technique

in Section 3.3.2. For general relations, the baseline algorithm Reduction is a straightfor-

ward implementation of Algorithm 3 and 4. Rollback and RollbackSort implements the

two optimization techniques in Section 3.3.4, respectively.

Summary of experiments

We draw the following conclusions from the forthcoming experimental results:

 Optimizations such as TA, Rollback and RollbackSort are effective and significantly

reduce the running time. On average, TA saves about half of the computation cost

in simple relations. Compared to Reduction, Rollback and RollbackSort improve the

running time up to 2 and 3 orders of magnitude, respectively.

 Decreasing the percentage of exclusive tuples (x) improves the running time of Roll-

back and RollbackSort. When x is fixed, increasing the max number of tuples in each

part (s) improves the running time of Rollback and RollbackSort.

 For general probabilistic relations, RollbackSort scales well to large datasets.
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Figure 3-3: Performance of Optimizations
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3.4.1 Performance of Optimizations

Figure 3-3(a) illustrates the improvement of TA over Basic for simple probabilistic rela-

tions. While Basic is already linear in terms of n, TA still saves a significant amount of

computation, i.e., a little less than half. It worths emphasizing that there is no correlation

between the score and the probability in our datasets. It is well-known that TA optimiza-

tion has a better performance when there is a positive correlation between attributes, and a

worse performance when there is a negative correlation between attributes. Therefore, the

dataset we use, i.e., with no correlation, should represent an average case.

For general probabilistic relations, Figure 3-3(b) illustrates the performance of Reduc-

tion, Rollback and RollbackSort when n varies from 5K to 100K. For the baseline algorithm

Reduction, we show only the first three data points, as the rest are off the chart. The curve

of Reduction reflects the quadratic theoretical bound. From Figure 3-3(b), it is clear that

the heuristic Rollback and RollbackSort greatly reduce the running time over the quadratic

bound. The improvement is up to 2 and 3 orders of magnitude for Rollback and Rollback-

Sort, respectively.

3.4.2 Sensitivity to Parameters

Our second set of experiments studies the influence of various parameters on Rollback and

RollbackSort. The results are shown in Figure 3-4. Notice the difference between the

scale of y-axis of Figure 3-4(a) (resp. Figure 3-4(c)) and that of Figure 3-4(b) (resp. Figure

3-4(d)). RollbackSort outperforms Rollback by one order of magnitude.

Figure 3-4(a) and 3-4(b) show the impact of varying the percentage of exclusive tuples

(x) in the dataset. It is to be expected that with the increase of the percentage of exclusive

tuples, more rollback operations are needed in both Rollback and RollbackSort. However,

Rollback shows a linear increase, while RollbackSort shows a trend more than linear but

less than quadratic.

Figure 3-4(c) and 3-4(d) illustrate the impact of the size of the parts in the partition.

In these two sets of experiments, we fix the total number of exclusive tuples, and vary the

max size of a part (s). A large s suggests fewer but relatively larger parts in the partition,

42



as compared to a small s. For both Rollback and RollbackSort, we see a similar trend

that as s increases, the running time decreases. The relative decrease in Rollback is larger

than that in RollbackSort, which can be explained by the fact that RollbackSort is already

optimized for repetitive occurrences of tuples from the same part, and therefore it should

be less subjective to the size of parts.

3.4.3 Scalability
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Figure 3-5: Scalability of RollbackSort

As we have already seen analytically in Section 3.3.1 and empirically in Figure 3-3(a),

the algorithm for simple probabilistic relations scales linearly to large datasets. TA can

further improve the performance.

For general probabilistic databases, Figure 3-5 shows that RollbackSort scales well to

large datasets. Figure 3-5(a) illustrates the running time of RollbackSort when n increases

to 1M tuples. The trend is more than linear, but much slower than quadratic. Figure 3-5(b)

shows the impact of k on the running time. Notice that, the general trend in Figure 3-5(b)

is linear except there is a “step-up” when k is about 500. We conjecture that this is due to

the non-linear maintenance cost of the priority queue used in the algorithm.
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3.5 Complexity

For completeness, we list in Table 3.2 the complexity of the best known algorithm for the

semantics in the literature.

Semantics Simple Probabilistic DB General Probabilistic DB
Global-Topk Opknq Opkn2q
PT-k Opknq Opkn2q
U-Topk Opn log kq Opn log kq
U-kRanks Opknq Opkn2q
Expected Rank Opn log kq Opn log kq

Table 3.2: Time Complexity of Different Semantics
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Chapter 4

Top-k Queries in Uncertain Databases

under General Scoring Functions

In Chapter 3, we assume that the scoring function is injective. It is a simplification which

can be lifted. In fact, we often encounter scoring functions where ties are common in

reality, e.g., hotel ratings. In this chapter, we study the semantics and the computational

problem of top-k queries in probabilistic databases under general scoring functions, i.e.,

with ties. To the best of our knowledge, this is the first attempt to address the tie problem

in a rigorous manner.

4.1 Semantics and Postulates

4.1.1 Global-Topk Semantics with Allocation Policy

Under a general scoring function, the Global-Topk semantics remains the same. However,

the definition of Global-Topk probability in Definition 3.2.1 needs to be generalized to

handle ties.

Recall that under an injective scoring function s, there is a unique top-k answer set

S in every possible world W . When the scoring function s is non-injective, there may

be multiple top-k answer sets S1, . . . , Sd, each of which is returned nondeterministically.

Therefore, for any tuple t P XSi, i � 1, . . . , d, the world W contributes PrpW q to the
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Global-Topk probability of t. On the other hand, for any tuple t P pYSi�XSiq, i � 1 . . . , d,

the world W contributes only a fraction of PrpW q to the Global-Topk probability of t.

The allocation policy determines the value of this fraction, i.e., the allocation coefficient.

Denote by αpt,W q the allocation coefficient of a tuple t in a world W . Let allk,spW q �

YSi, i � 1, . . . , d.

Definition 4.1.1 (Global-Topk Probability under a General Scoring Function). Assume a

probabilistic relation Rp � xR, p, Cy, a non-negative integer k and a scoring function s

over Rp. For any tuple t in R, the Global-Topk probability of t, denoted by PRp

k,s ptq, is the

sum of the (partial) probabilities of all possible worlds of Rp whose top-k answer set may

contain t.

PRp

k,s ptq �
¸

WPpwdpRpq
tPallk,spW q

αpt,W qPrpW q. (4.1)

With no prior bias towards any tuple, it is natural to assume that each of S1, . . . , Sd is

returned nondeterministically with an equal probability. Notice that this probability has

nothing to do with tuple probabilities. Rather, it is determined by the number of equally

qualified top-k answer sets. Hence, we have the following Equal allocation policy.

Definition 4.1.2 (Equal Allocation Policy). Assume a probabilistic relationRp � xR, p, Cy,

a non-negative integer k and a scoring function s over Rp. For a possible world W P

pwdpRpq and a tuple t P W , let a � |tt1 P W |t1 ¡s tu| and b � |tt1 P W |t1 �s tu|

αpt,W q �

$&
%

1 if a   k and a� b ¤ k
k � a
b

if a   k and a� b ¡ k

This notion of Equal allocation policy is in the spirit of uniform allocation policy in-

troduced in [11] to handle imprecision in OLAP, although the specified goals are different.

Note that [11] also introduces other allocation policies based on additional information.

In our application, it is also possible to design other allocation policies given additional

information.
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4.1.2 Satisfaction of Postulates

The semantic postulates in Section 3.2.1 are directly applicable to Global-Topk with al-

location policy. In Appendix A, we show that the Equal allocation policy preserves the

semantic postulates of Global-Topk.

4.2 Query Evaluation in Simple Probabilistic Relations

Definition 4.2.1. Let Rp � xR, p, Cy be a probabilistic relation, k a non-negative integer

and s a general scoring function over Rp. Assume that R � tt1, t2, . . . , tnu, t1 ©s t2 ©s

. . . ©s tn. Let TR
p

k,ris, k ¤ i, be the sum of the probabilities of all possible worlds of exactly

k tuples from tt1, . . . , tiu:

TR
p

k,ris �
¸

WPpwdpRpq
|WXtt1,...,tiu|�k

PrpW q

As usual, we omit the superscript in TRpk,ris, i.e., Tk,ris, when the context is unambiguous.

Remark 4.2.1 shows that in a simple probabilistic relation Tk,ris can be computed efficiently.

Remark 4.2.1. Let Rp � xR, p, Cy be a simple probabilistic relation, k a non-negative

integer and s a general scoring function over Rp. Assume that R � tt1, t2, . . . , tnu, t1 ©s

t2 ©s . . . ©s tn. For any i, 1 ¤ i ¤ n � 1, TR
p

k,ris can be computed using the DP table for

computing the Global-Topk probabilities inRp under an order-preserving injective scoring

function s1 such that t1 ¡s1 t2 ¡s1 . . . ¡s1 tn.

Proof. By case study,

• Case 1: If k � 0, 1 ¤ i ¤ n� 1, then

TR
p

k,ris �
¹

1¤j¤i
pptjq �

PRp

1,s1pti�1q

ppti�1q
(4.2)
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• Case 2: For every 1 ¤ k ¤ i ¤ n� 1, by the definition of TRpk,ris, we have

TR
p

k,ris �
¸

WPpwdpRpq
|WXtt1,...,tiu|¤k

PrpW q �
¸

WPpwdpRpq
|WXtt1,...,tiu|¤k�1

PrpW q

In the DP table computing the Global-Topk probabilities of tuples in Rp under the

injective scoring function s1, we have

PRp

k�1,s1pti�1q �
¸

WPpwdpRpq
ti�1Ptopk�1,s1 pW q

PrpW q ps1 is injectiveq

�
¸

WPpwdpRpq
|WXtt1,...,tiu|¤k
ti�1PW

PrpW q

� ppti�1q
¸

WPpwdpRpq
|WXtt1,...,tiu|¤k

PrpW q (tuples are independent)

Therefore,

TR
p

k,ris �
PRp

k�1,s1pti�1q

ppti�1q
�
PRp

k,s1pti�1q

ppti�1q
(4.3)

Remark 4.2.2 shows that we can compute Global-Topk probability under a general

scoring function in polynomial time for an extreme case, where the probabilistic relation

is simple and all tuples tie in scores. As we will see shortly, this special case plays an

important role in our major result in Proposition 4.2.1.

Remark 4.2.2. Let Rp � xR, p, Cy be a simple probabilistic relation, k a non-negative

integer and s a general scoring function over Rp. Assume that R � tt1, . . . , tmu and

t1 �s t2 �s . . . �s tm. For any tuple ti, 1 ¤ i ¤ m, the Global-Topk probability of ti, i.e.,

PRp

k,s ptiq, can be computed using Remark 4.2.1.

Proof. If k ¡ m, it is trivial that PRp

k,s ptiq � pptiq. Therefore, we only prove the case when

k ¤ m. According to Equation (4.1), for any i, 1 ¤ i ¤ m,
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PRp

k,s ptiq �
m̧

j�1

¸
WPpwdpRpq
tiPallk,spW q,|W |�j

αpti,W qPrpW q

�
m̧

j�1

¸
WPpwdpRpq
tiPW,|W |�j

αpti,W qPrpW q pSince all tuple tie , allk,spW q � W q

�
ķ

j�1

¸
WPpwdpRpq
tiPW,|W |�j

αpti,W qPrpW q �
m̧

j�k�1

¸
WPpwdpRpq
tiPW,|W |�j

αpti,W qPrpW q

�
ķ

j�1

¸
WPpwdpRpq
tiPW,|W |�j

PrpW q �
m̧

j�k�1

k

j

¸
WPpwdpRpq
tiPW,|W |�j

PrpW q

With out loss of generality, assume i � m, then the above equation becomes

PRp

k,s ptmq �
ķ

j�1

¸
WPpwdpRpq
tmPW,|W |�j

PrpW q �
m̧

j�k�1

k

j

¸
WPpwdpRpq
tmPW,|W |�j

PrpW q

� pptiqp
ķ

j�1

TR
p

j�1,rm�1s �
m̧

j�k�1

k

j
TR

p

j�1,rm�1sq (4.4)

By Remark 4.2.1, every TR
p

j�1,rm�1s, 0 ¤ j � 1 ¤ m � 1, can be computed by the

DP table computing Global-Topk probabilities in Rp under an order-preserving injective

scoring function s1 via Equation (4.2) or (4.3). Therefore, Equation (4.4) can be computed

using Remark 4.2.1.

Based on Remark 4.2.1 and Remark 4.2.2, we design Algorithm 5 and prove its cor-

rectness in Theorem 4.2.1 using Proposition 4.2.1.

Assume Rp � xR, p, Cy where R � tt1, t2, . . . , tnu and t1 ©s t2 ©s . . . ©s tn. For

any tl P R, il is the largest index such that til ¡s tl, and jl is the largest index such that

tjl ©s tl. Note that t1, . . ., til are tuples with a score higher than that of tl, and til�1, . . ., tjl

are tuples tying with tl.

Intuitively, Algorithm 5 and Proposition 4.2.1 convey the idea that, in a simple proba-
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bilistic relation, the computation of Global-Topk probabilities under the Equal allocation

policy can be simulated by the following procedure:

(S1) Independently flip a biased coin with probability pptjq for each tuple tj P R �

tt1, t2, . . . , tnu, which gives us a possible world W P pwdpRpq;

(S2) Return a top-k answer set S of W nondeterministically (with equal probability in the

presence of multiple top-k sets). The Global-Topk probability of tl is the probability

that tl P S.

The above Step (S1) can be further refined into:

(S1.1) Independently flip a biased coin with probability pptjq for each tuple tj P RA �

tt1, t2 . . . , tilu, which gives us a collection of tuples WA;

(S1.2) Independently flip a biased coin with probability pptjq for each tuple tj P RB �

ttil�1, . . . , tnu, which gives us a collection of tuples WB. W � WA Y WB is a

possible world from pwdpRpq;

In order for tl to be in S, WA can have at most k�1 tuples. Let |WA| � k1, then k1   k.

Every top-k answer set of W contains all k1 tuples from WA, plus the top-pk � k1q tuples

from WB. For tl to be in S, it has to be in the top-pk � k1q set of WB. Consequently, the

probability of tl P S, i.e., the Global-Topk probability of tl, is the joint probability that

|WA| � k1   k and tl belongs to the top-pk � k1q set of WB. The former is Tk1,rils and

the latter is PRpB
k�k1,sptlq , where Rp

B is Rp restricted to RB. Again, due to the independence

among tuples, Step (S1.1) and Step (S1.2) are independent, and their joint probability is

simply the product of the two.

Further notice that since tl has the highest score in RB and all tuples are independent

in RB, and any tuple with a score lower than that of tl does not have an influence on

P
RpB
k�k1,sptlq. In other words, PRpB

k�k1,sptlq � P
Rpsptlq
k�k1,sptlq, where Rp

sptlq is Rp restricted to all

tuples tying with tl in R. Notice that the computation of PRpsptlq
k�k1,sptlq is the extreme case

addressed in Remark 4.2.2.

Algorithm 5 elaborates the algorithm based on the idea above, where m � jl � il is the

number of tuples tying with tl (including tl).
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Furthermore, Algorithm 5 exploits the overlapping among DP tables and makes the

following two optimizations:

1. Use a single DP table to collect the information needed to compute all Tk1,rils, k
1 �

0, . . . , k � 1, l � 1, . . . , n and k1 ¤ il (Line 2).

Notice that by definition, when 1 ¤ l ¤ n, 1 ¤ il ¤ n � 1. It is easy to see that the

DP table computing Tk�1,rn�1s subsumes all other DP tables.

2. Use a single DP table to compute all PRpsptlq
k�k1,sptlq, k

1 � 0, . . . , k � 1, for a tuple tl

(Lines 8-14).

Notice that by Equation (4.4), for different k1, the computation of PRpsptlq
k�k1,sptlq requires

the same set of TR
p
sptlq

j�1,rm�1s values (Lines 9-11). In Line 13, PRpsptlq
k�k1,sptlq is abbreviated

as Plpk2q, where k2 � k � k1, to emphasize the changing parameter k1.

Each DP table computation uses a call to Algorithm 2 (Line 2 in Algorithm 5, Line 3

in Algorithm 6).

Algorithm 6 (Ind Topk Gen Sub) Compute the DP table for Global-Topk probabilities

in a Simple Probabilistic Relation under an All-Tie Scoring Function
Require: Rp

spttargetq � xR, p, Cy, ttarget,m

(make sure that |R| � m, ttarget P R)

1: Rearrange tuples in R such that R � tt1, . . . , tm�1, tmu and tm � ttarget;

2: Assume the injective scoring function s1 is such that t1 ¡s1 . . . ¡s1 tm�1 ¡s1 ttarget;

3: Get the DP table

qtiep0 . . .m, 1 . . .mq � Ind Topk SubpRp
spttargetq,mq;

4: return qtiep0 . . .m, 1 . . .mq;

Proposition 4.2.1. Let Rp � xR, p, Cy be a simple probabilistic relation where R �

tt1, . . . , tnu, t1 ©s t2 ©s . . . ©s tn, k a non-negative integer and s a scoring function.
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Algorithm 5 (Ind Topk Gen) Evaluate Global-Topk Queries in a Simple Probabilistic
Relation under a General Scoring Function
Require: Rp � xR, p, Cy, k

(tuples in R are sorted in the non-increasing order based on the scoring function s)
1: Initialize a fixed cardinality pk � 1q priority queue Ans of xt, proby pairs, which com-

pares pairs on prob, i.e., the Global-Topk probability of t;
2: Get the DP table for computing Tk1,ris, k1 � 0, . . . k � 1, i � 1, . . . , n� 1, k1 ¤ i using

Algorithm 2, i.e.,
qp0 . . . k, 1 . . . |R|q � Ind Topk SubpRp, kq;

3: for l � 1 to |R| do
4: m � jl � il;
5: if m �� 1 then
6: Add xtl, qpk, lqy to Ans;
7: else
8: Get the DP table for computing PRpsptlq

k�k1,sptlq, i.e., Plpk � k1q, k1 � 0, . . . , k � 1
qtiep0 . . .m, 1 . . .mq � Ind Topk Gen SubpRp

sptlq, tl,mq;
9: for k2 � 0 to m� 1 do

10:

T
Rpsptlq
k2,rm�1s �

qtiepk2 � 1,mq � qtiepk2,mq
pptlq

;

11: end for
12: for k2 � 1 to k do
13:

Plpk
2q � pptlqp

k2¸
j�1

T
Rpsptlq
j�1,rm�1s �

m̧

j�k2�1

k2

j
T
Rpsptlq
j�1,rm�1sq;

14: end for
15: PRp

k,s ptlq � 0;
16: for k1 � 0 to k � 1 do
17:

Tk1,rils �
qpk1 � 1, il � 1q � qpk1, il � 1q

pptil�1q
;

18:
PRp

k,s ptlq � PRp

k,s ptlq � Tk1,rils � Plpk � k
1q;

19: end for
20: Add xtl, PRp

k,s ptlqy to Ans;
21: end if
22: if |Ans| ¡ k then
23: remove a pair with the smallest prob value from Ans;
24: end if
25: end for
26: return tti|xti, proby P Ansu;
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For every tl P R, the Global-Topk probability of tl can be computed by the following

equation:

PRp

k,s ptlq �
k�1̧

k1�0

Tk1,rils � P
Rpsptlq
k�k1,sptlq (4.5)

where Rp
sptlq is Rp restricted to tt P R|t �s tlu.

Proof. See Appendix B.

Theorem 4.2.1 (Correctness of Algorithm 5). Given a probabilistic relation Rp � xR, p,

Cy, a non-negative integer k and a general scoring function s, Algorithm 5 correctly com-

putes a Global-Topk answer set of Rp under the scoring function s.

Proof. In Algorithm 5, by Remark 4.2.1, Line 2 and Line 17 correctly compute Tk1,ris for

0 ¤ k1 ¤ k � 1, 1 ¤ i ¤ n � 1, k1 ¤ i. The entries in Line 8 serve to compute Line 10

by Equation (4.2) and (4.3). Recall that Rp
sptlq is Rp restricted to all tuples tying with tl,

which is the extreme case addressed in Remark 4.2.2. By Remark 4.2.2, Line 8 collects

the information to compute PRpsptlq
k�k1,sptlq, i.e., Plpk2q, 1 ¤ k2 � k � k1 ¤ k. Lines 12-14

correctly compute those values by Equation (4.4). Here, any non-existing TR
p
sptlq

j�1,rm�1s, i.e.,

j � 1 R r0,m � 1s, is assumed to be zero. By Proposition 4.2.1, Lines 15-19 correctly

compute the Global-Topk probability of tl. Also notice that in Line 6, the Global-Topk

probability of a tuple without tying tuples is retrieved directly. It is an optimization as the

code handling the general case (i.e., m ¡ 1, Lines 8-20) works for this special case as

well. Again, the top-level structure with the priority queue in Algorithm 5 ensures that a

Global-Topk answer set is correctly computed.

In Algorithm 5, Line 2 takes Opknq, and for each tuple, there is one call to Algorithm

6 in Line 8, which takes Opm2
maxq, where mmax is the maximal number of tying tuples.

Lines 9-11 take Opmmaxq. Lines 12-14 take Opkmmaxq. Therefore, Algorithm 5 takes

Opnmaxpkmmax,m
2
maxqq altogether.

As before, the major space use is the computation of the two DP tables in Line 2 and

Line 8. A straightforward implementation leads toOpknq andOpm2
maxq space, respectively.

Therefore, the total space is Opnmaxpk,mmaxqq. Using a similar space optimization in

53



Section 3.3.1, the space use for the two DP tables can be reduced to Opkq and Opmmaxq,

respectively. Hence, the total space is Opmaxpk,mmaxqq.

4.3 Query Evaluation in General Probabilistic Relations

Recall that under an injective scoring function, every tuple t in a general probabilistic

relation Rp � xR, p, Cy induces a simple event relation Ep, and we reduce the computation

of t’s Global-Topk probability in Rp to the computation of tet’s Global-Topk probability in

Ep.

In the case of general scoring functions, we use the same reduction idea. However, now

for each part Ci P C, Ci � Cidptq, tuple t induces inEp two exclusive tuples teCi,¡ and teCi,� ,

corresponding to the event eCi,¡ that “there is a tuple from the part Ci with a score higher

than that of t” and the event eCi,� that “there is a tuple from the part Ci with a score equal

to that of t”, respectively. In addition, in Definition 4.3.1, for the ease of description, we

allow the existence of tuples with probability 0, which does not affect the technical results.

This is an artifact whose purpose will become clear in Theorem 4.3.1.

Definition 4.3.1 (Induced Event Relation under General Scoring Functions). Given a prob-

abilistic relation Rp � xR, p, Cy, a scoring function s over Rp and a tuple t P Cidptq P C,

the event relation induced by t, denoted by Ep � xE, pE, CEy, is a probabilistic relation

whose support relationE has only one attribute,Event. The relationE and the probability

function pE are defined by the following four generation rules and the postprocess step:

• Rule 1.1: tet,� P E and pEptet,�q � pptq;

• Rule 1.2: tet,¡ P E and pEptet,¡q � 0;

• Rule 2.1:

@Ci P C ^ Ci � Cidptq.pteCi,¡ P Eq and pEpteCi ,¡q �
°
t1PCi
t1¡st

ppt1q;
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• Rule 2.2:

@Ci P C ^ Ci � Cidptq.pteCi,� P Eq and pEpteCi ,�q �
°
t1PCi
t1�st

ppt1q.

ttet,� , tet,¡u P CE and tteCi,� , teCi,¡u P C
E .

Postprocess step: only when pEpteCi ,¡q and pEpteCi ,�q are both 0, delete both teCi ,¡ and

teCi ,�.

Proposition 4.3.1. Given a probabilistic relation Rp � xR, p, Cy and a scoring function s,

for any t P Rp, the Global-Topk probability of t equals the Global-Topk probability of tet,�

when evaluating top-k in the induced event relation Ep � xE, pE, CEy under the scoring

function sE : E Ñ R, sEptet,¡q �
1
2
, sEptet,�q �

1
2
, sEpteCi ,�q �

1
2

and sEpteCi,¡q � i:

PRp

k,s ptq � PEp

k,sEptet,�q.

Proof. See Appendix B.

Notice that the induced event relation Ep in Definition 4.3.1, unlike its counterpart un-

der an injective scoring function, is not simple. Therefore, we cannot utilize the algorithm

in Proposition 4.2.1. Rather, the induced relation Ep is a special general probabilistic re-

lation, where each part of the partition contains exactly two tuples. Recall that we allow

tuples with probability 0 now. For this special general probabilistic relation, the recur-

sion in Theorem 4.3.1 (Equation (4.6), (4.7)) collects enough information to compute the

Global-Topk probability of tet,� in Ep (Equation (4.8)).

Definition 4.3.2 (Secondary Induced Event Relations). Let Ep � xE, pE, CEy be the event

relation induced by tuple t under a general scoring function s. Without loss of generality,

assume

E � tteC1,¡
, teC1,�

, . . . , teCm�1,¡
, teCm�1,�

, tet,¡ , tet,�u,

and we can split E into two non-overlapping subsets E¡ and E� such that

E¡ � tteC1,¡
, . . . , teCm�1,¡

, tet,¡u,

E� � tteC1,�
, . . . , teCm�1,�

, tet,�u.
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The two secondary induced event relation Ep
¡ and Ep

� are Ep restricted to E¡ and E�,

respectively. They are both simple probabilistic relations which are mutually related. For

every 1 ¤ i ¤ m� 1, the tuple ti,¡ (ti,� resp.) refers to teCi,¡ (teCi,� resp.). The tuple tm,¡

(tm,� resp.) refers to tet,¡ (tet,� resp.).

In spirit, the recursion in Theorem 4.3.1 is close to the recursion in Proposition 3.3.1,

even though they are not computing the same measure. The following table does a com-

parison between the measure q in Proposition 3.3.1 and the measure u in Theorem 4.3.1:

Measure �
°
PrpW q

|ttj|tj P W,

j ¤ i, tj �s tu|

qpk, iq
(1) W contains ti

(2) W has no more than k tuples from tt1, t2, . . . , tiu
1

u¡pk, i, bq
(1) W contains ti

(2) W has exactly k tuples from tt1,¡, t2,¡, . . . , ti,¡u
b

u�pk, i, bq
(1) W contains ti

(2) W has exactly k tuples from tt1,�, t2,�, . . . , ti,�u
b

Under the general scoring function sE , a possible world of an induced relation Ep may

partially contribute to the tuple tm,�’s Global-Topk probability. The allocation coefficient

depends on the combination of two factors: the number of tuples that are strictly better than

tm,� and the number of tuples tying with tm,�. Therefore, in the new measure u, first, we

add one more dimension to keep track of b, i.e., the number of tying tuples of a subscript

no more than i in a world. Second, we keep track of distinct pk, bq pairs. Furthermore, the

recursion on the measure u differentiates between two cases: a non-tying tuple (handled

by u¡) and a tying tuple (handled by u�), since those two types of tuples have different

influences on the values of k and b.

Formally, let u¡pk1, i, bq (u�pk1, i, bq resp.) be the sum of the probabilities of all the

possible worlds W of Ep such that

1. ti,¡ P W (ti,� P W resp.)

2. i is the k1th smallest tuple subscript in world W

56



3. the world W contains b tying tuples, i.e., tuples from E�, with subscript less than or

equal to i.

The equations (4.6) and (4.7) resemble Equation (3.3), except that now, since we intro-

duce tuples with probability 0 to ensure that each part of CE has exactly two tuples, we need

to address the special cases when a divisor can be zero. Notice that, for any i, 1 ¤ i ¤ m,

at least one of pEpti,¡q and pEpti,�q is non-zero, otherwise, they are not in Ep by definition.

Theorem 4.3.1. Given a probabilistic relationRp � xR, p, Cy, a scoring function s, t P Rp,

and its induced event relation Ep � xE, pE, CEy, where |E| � 2m, the recursion in Table

4.1 on u¡pk1, i, bq and u�pk1, i, bq holds, where bmax is the number of tuples with a positive

probability in Ep
�. The Global-Topk probability of tet,� in Ep under the scoring function

sE can be computed by the following equation:

PEp

k,sEptet,�q � PEp

k,sEptm,�q

�
bmax̧

b�1

p
ķ

k1�1

u�pk1,m, bq �
k�b�1¸
k1�k�1

k � pk1 � bq
b

u�pk1,m, bqq (4.8)

Proof. See Appendix B.

Recall that we designed Algorithm 1 based on the recursion in Proposition 3.3.1. Simi-

larly, a DP algorithm based on the mutual recursion in Theorem 4.3.1 can be designed. We

are going to skip the details. Instead, we show how the algorithm works using Example 12

below.

The time complexity of the recursion in Theorem 4.3.1 determines the complexity of

the algorithm. It takes Opbmaxn
2q for one tuple, and Opbmaxn

3q for computing all n tuples.

Recall that mmax is the maximal number of tying tuples in R, and thus bmax ¤ mmax.

Again, the priority queue takes Opn log kq. Altogether, the algorithm takes Opmmaxn
3q

time.

The space complexity of this algorithm is Opbmaxn
2q in a straightforward implementa-

tion and Opbmaxnq if space optimized as in Section 3.3.1.
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When i � 1, 0 ¤ k1 ¤ m and 0 ¤ b ¤ bmax,

u¡pk
1, 1, bq �

"
pEpt1,¡q k1 � 1, b � 0
0 otherwise

u�pk1, 1, bq �
"
pEpt1,�q k1 � 1, b � 1
0 otherwise

For every i, 2 ¤ i ¤ m, 0 ¤ k1 ¤ m and 0 ¤ b ¤ bmax,

u¡pk
1, i, bq � (4.6)

Condition Formula
k1 � 0 0

1 ¤ k1 ¤ m, pEpti�1,¡q ¡ 0
pu¡pk1, i� 1, bq

1� pEpti�1,¡q � pEpti�1,�q
pEpti�1,¡q

�u¡pk1 � 1, i� 1, bq
�u�pk1 � 1, i� 1, bqqpEpti,¡q

1 ¤ k1 ¤ m, pEpti�1,¡q � 0
and 0 ¤ b   bmax

pu�pk1, i� 1, b� 1q
1� pEpti�1,¡q � pEpti�1,�q

pEpti�1,�q
�u¡pk1 � 1, i� 1, bq
�u�pk1 � 1, i� 1, bqqpEpti,¡q

1 ¤ k1 ¤ m, pEpti�1,¡q � 0
and b � bmax pu¡pk1 � 1, i� 1, bq � u�pk1 � 1, i� 1, bqqpEpti,¡q

u�pk1, i, bq � (4.7)
Condition Formula

k1 � 0 or b � 0 0

1 ¤ k1 ¤ m, 1 ¤ b ¤ bmax

and pEpti�1,�q ¡ 0
pu�pk1, i� 1, bq

1� pEpti�1,¡q � pEpti�1,�q
pEpti�1,�q

�u¡pk1 � 1, i� 1, b� 1q
�u�pk1 � 1, i� 1, b� 1qqpEpti,�q

1 ¤ k1 ¤ m, 1 ¤ b ¤ bmax

and pEpti�1,�q � 0
pu¡pk1, i� 1, b� 1q

1� pEpti�1,¡q � pEpti�1,�q
pEpti�1,¡q

�u¡pk1 � 1, i� 1, b� 1q
�u�pk1 � 1, i� 1, b� 1qqpEpti,�q

Table 4.1: Recursion in Theorem 4.3.1
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Example 12. When evaluating a top-2 query in Rp � xR, p, Cy, consider a tuple t P R and

its induced event relation Ep � xE, pE, CEy

E¡ teC1,¡
teC2,¡

teC3,¡
tet,¡

pt1q pt3q pt5q pt7q

pE 0.6 0.5 0.2 0

E� teC1,�
teC2,�

teC3,�
tet,�

pt2q pt4q pt6q pt8q

pE 0 0.25 0.6 0.4

In order to compute the Global-Topk probability of t8 (i.e., tet,�) inEp, Theorem 4.3.1 leads

to the following DP tables, each for a distinct combination of a b value and a secondary

induced relation, where bmax � 3.

kzt t1 t3 t5 t7
0 0 0 0 0
1 0.6 0.2 0.02 0
2 0 0.3 0.07 0
3 0 0 0.06 0
4 0 0 0 0

(a) (b � 0, Ep
¡)

kzt t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0.02 0
3 0 0 0.03 0
4 0 0 0 0

(b) (b � 1, Ep
¡)

kzt t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(c) (b � 2, Ep
¡)

kzt t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(d) (b � 3, Ep
¡)

kzt t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(e) (b � 0, Ep
�

)

kzt t2 t4 t6 t8
0 0 0 0 0
1 0 0.1 0.06 0.008
2 0 0.15 0.21 0.036
3 0 0 0.18 0.052
4 0 0 0 0.024

(f) (b � 1, Ep
�

)

kzt t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0.06 0.032
3 0 0 0.09 0.104
4 0 0 0 0.084

(g) (b � 2, Ep
�

)

kzt t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0.024
4 0 0 0 0.036

(h) (b � 3, Ep
�

)

Figure 4-1: Mutual Recursion in Example 12

The computation of each entry follows the mutual recursion in Theorem 4.3.1, for ex-

ample,

u¡p2, t5, 0q � pu¡p1, t3, 0q � u�p1, t4, 0q � u¡p2, t3, 0q
1� pEpt3q � pEpt4q

pEpt3q
qpEpt5q

� p0.2� 0� 0.3
1� 0.5� 0.25

0.5
q0.2 � 0.07
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u�p2, t6, 1q � pu¡p1, t3, 0q � u�p1, t4, 0q � u�p2, t4, 1q
1� pEpt3q � pEpt4q

pEpt4q
qpEpt6q

� p0.2� 0� 0.15
1� 0.5� 0.25

0.25
q0.6 � 0.21

Finally, under the scoring function sE defined in Proposition 4.3.1

PEp

k,sEptet,�q � PEp

2,sEpt8q

�
3̧

b�1

p
2̧

k1�1

u�pk1, 8, bq �
2�b�1¸
k1�2�1

2� pk1 � bq
b

u�pk1, 8, bqq

� u�p1, t8, 1q � u�p2, t8, 1q

�u�p1, t8, 2q � u�p2, t8, 2q �
1

2
u�p3, t8, 2q

�u�p1, t8, 3q � u�p2, t8, 3q �
2

3
u�p3, t8, 3q �

1

3
u�p3, t8, 4q

� 0.008� 0.036� 0� 0.032�
1

2
0.104� 0� 0�

2

3
0.024�

1

3
0.036

� 0.156

Bold entries in Figure 4-1 are involved in the above equation.

4.4 Conclusion

We study the semantic and computational problems for top-k queries in probabilistic databases

in Chapter 3 and Chapter 4.

In Chapter 3, we propose three postulates to categorize top-k semantics in probabilistic

databases and discuss their satisfaction by the semantics in the literature. Those postulates

are the first step to analyze different semantics. We do not think that a single semantics is

superior/inferior to other semantics just because of postulate satisfaction. Rather, we deem

that the choice of the semantics should be guided by the application. The postulates help

to create a profile of each semantics.

We propose a new top-k semantics, Global-Topk, which satisfies the postulates to a

large degree. We study the computational problem of query evaluation under Global-Topk
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semantics for simple and general probabilistic relations when the scoring function is in-

jective. For simple probabilistic relations, we propose a dynamic programming algorithm

and effectively optimize it with Threshold Algorithm. For general probabilistic relations,

we show a polynomial reduction to the simple case, and design Rollback and RollbackSort

optimizations to speed up the computation. We conduct an empirical study to verify the

effectiveness of those optimizations.

In Chapter 4, we extend the Global-Topk semantics to general scoring functions and

introduce the concept of allocation policy to handle ties in score. To the best of our knowl-

edge, this is the first attempt to address the tie problem rigorously. Previous work either

does not consider ties or uses an arbitrary tie-breaking mechanism. Advanced dynamic pro-

gramming algorithms are proposed for query evaluation under general scoring functions for

both simple and general probabilistic relations.

We provide theoretical analysis following every algorithm proposed.

4.5 Future Work

Recently, several new semantics and variants of the existing semantics have been proposed

in the literature [53, 19]. So far, the research reported in the literature has primarily fo-

cused on independent and exclusive relationships among tuples [52, 53, 32, 56, 19]. It will

be interesting to investigate other complex relationships between tuples. Other possible di-

rections include top-k aggregate queries [53], top-k evaluation in other uncertain database

models proposed in the literature [49] and more general preference queries in probabilistic

databases.
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Chapter 5

Preference Strength in Probabilistic

Ranking Queries

In probabilistic database research, there have been elevated interests in top-k queries [52,

32, 58, 19, 28, 42, 60], skylines [50, 3, 44, 57], nearest neighbor queries [15, 14, 5, 13] and

other forms of ranking queries [43]. More often than not, the semantics of those queries

is about the trade-off between probability and score. However, an interesting phenomenon

is that we tend to overlook the importance of score in designing the semantics for various

queries. Take top-k queries for example. Example 13 illustrates one shortcoming of the

Global-Topk semantics. Other semantics of top-k queries, e.g. U-Topk [52], U-kRanks

[52] and PT-k [32], suffer from the same problem.

Example 13. A travel agent is buying two tickets. The choices are as follows.

Flight(duration, price, . . .) Score

FL10(5.1h, $99) 0.9

FL20(5h, $200) 0.6

FL30(5.1h, $205) 0.59

FL40(5.2h, $210) 0.58

On-time

0.3

0.4

0.1

0.7

where the Score is the normalized score of each flights based on their duration, price, ser-

vice etc., and On-time is the probability that flight is on-time based on historical statistics.
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This decision problem can be formulated as a top-k query over the above probabilistic re-

lation, where k � 2. The Global-Topk return tFL40p0.5838q, FL20p0.4qu. However, the

agent is under the pressure of saving cost, and since FL20 is not significantly better on time

compared to FL10 and FL10 is a lot cheaper than FL20, he might prefer FL10 instead.

In Example 13, Global-Topk is not able to reflect the preference based on how much

better/worse each alternative is when compared to other alternatives, since the original

Global-Topk semantics uses ordinal scores. In ordinal scores, the preference among tu-

ples remain unchanged as long as the order induced by scores over tuples does not change.

In other words, the magnitude of scores does not matter as long as the order induced re-

mains unchanged. While this property could be desirable in some applications, it might be

counterintuitive in others, e.g., Example 13.

Example 13 illustrates an application where cardinal scores are desirable. While Exam-

ple 13 exemplifies the semantics of Global-Topk of top-k queries in probabilistic databases,

the ordinal score is a prevalent problem in various kinds of ranking problems in probabilis-

tic databases.

In general, the use of scores is a natural way to express the “degree of preference” when

the alternatives, i.e., tuples, are certain. Notice that preference strength is not an issue in

ranking in deterministic databases: as long as t1 is better than t2 by some standard, we have

to choose t1 before choosing t2. However, when we start considering uncertain data, we

might want to trade in a little probability for a large margin in score. There is a natural

trade-off between probability and score.

In this chapter, we investigate the integration of preference strength into the semantics

of top-k queries in probabilistic databases.

5.1 Preference Strength in Probabilistic Top-k Queries

5.1.1 Sensitivity Postulates

Recall that we introduce three postulates, namely Exact k, Faithfulness and Stability, in

Chapter 3 to facilitate the selection of the desirable semantics based on the user’s applica-
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tion. Now, we introduce two more postulates: Sensitivity to Probability and Sensitivity to

Score.

Recall the notions used in Chapter 3. For a probabilistic relationRp � xR, p, Cy, denote

by Ansk,spRpq the collection of all top-k answer sets of Rp under the scoring function s.

Denote by Y Ansk,spRpq the union of all top-k sets, i.e., Y Ansk,spRpq � YSPAnsk,spRpqS.

 Sensitivity to Probability: WhenRp � xR, p, Cy is sufficiently large (|C| ¡ |YAnsk,spRpq|)

and k ¡ 0, then for every t P R � Y Ansk,spRpq, there exists a probability function

p1 � p, such that pRpq1 � xR, p1, Cy and t P Y Ansk,sppRpq1q.

 Sensitivity to Score: WhenRp � xr, p, Cy is sufficiently large (|C| ¡ |Y Ansk,spRpq|)

and k ¡ 0, then for every t P Y Ansk,spRpq, there exists a scoring function s1 � s,

such that t P Y Ansk,s1pRpq.

Intuitively, those two sensitivity postulates require that the semantics should be dom-

inated by neither probability nor score. Rather, the semantics should reflect the trade-off

between those two factors. The use of ordinal scores makes it rather difficult to satisfy Sen-

sitivity to Score. In fact, all the semantics considered so far (U-Topk, U-kRanks, Global-

Topk and PT-k) do not satisfy Sensitivity to Score. On the other hand, all of them satisfy

Sensitivity to Probability. This clearly indicates that we weigh probability and score un-

equally in designing those semantics.

5.1.2 Global-Topkγ,β Semantics

We propose Global-Topkγ,β semantics, which integrates preference strength and satisfies

both Sensitivity to Probability and Sensitivity to Score postulates.

Definition 5.1.1 (Global-Topkγ,β Value). Assume a probabilistic relation Rp � xR, p, Cy,

a non-negative integer k and a scoring function s : R ÞÑ p0, 1s. For every tuple t in

R, the Global-Topkγ,β value of t, denoted by vγ,β,R
p

k,s ptq, is the product of its Global-Topk

probability raised to γ and its score raised to β, where γ, β P r0, 1s.

vγ,β,R
p

k,s ptq � PRp

k,s ptq
γ � sptqβ (5.1)
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Following the notion in Chapter 3, PRp

k,s ptq is the Global-Topk probability of the tuple

t in the probabilistic relation Rp � xR, p, Cy under the scoring function s. In the rest of

this chapter, we omit the superscripts and subscripts in Definition 5.1 when the context is

unambiguous. That is, denote by P ptq the Global-Topk probability of the tuple t, and the

Global-Topkγ,β value of the tuple t is therefore

vγ,βptq � P ptqγ � sptqβ (5.2)

A parameterized semantics based on Global-Topkγ,β values is as follows:

 Global-Topkγ,β: return k highest-ranked tuples with the highest Global-Topkγ,β

value.

where γ, β P r0, 1s.

Notice that in Definition 5.1.1, we require the scores to be normalized in order to have

the same range as probabilities, i.e., p0, 1s.

Corollary 5.1.1. The Global-Topkγ,β semantics is a generalization of the Global-Topk

semantics.

Proof. When γ � 1 and β � 0, the Global-Topkγ,β value degenerates to the Global-Topk

probability.

Theorem 5.1.1. When γ1{β1 � γ2{β2, the Global-Topkγ1,β1 semantics induces the same

order over the tuples in the probabilistic relationRp � xR, p, Cy under the scoring function

s as the Global-Topkγ2,β2 semantics does.

Proof. We show that if γ1{β1 � γ2{β2, then for every ti, tj P R,

vγ1,β1ptiq ¡ vγ1,β1ptjq ô vγ2,β2ptiq ¡ vγ2,β2ptjq

which is a sufficient condition for the theorem to hold.
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vγ1,β1ptiq ¡ vγ1,β1ptjq

ô P ptiq
γ1sptiq

β1 ¡ P ptjq
γ1sptjq

β1

ô pP ptiqsptiq
β1
γ1 qγ1 ¡ pP ptjqsptjq

β1
γ1 qγ1

psince 0   γ1 ¤ 1q ô P ptiqsptiq
β1
γ1 ¡ P ptjqsptjq

β1
γ1 (5.3)

psince
γ1

β1

�
γ2

β2

q ô P ptiqsptiq
β2
γ2 ¡ P ptjqsptjq

β2
γ2

psince 0   γ2 ¤ 1q ô pP ptiqsptiq
β2
γ2 qγ2 ¡ pP ptjqsptjq

β2
γ2 qγ2 (5.4)

ô P ptiq
γ2sptiq

β2 ¡ P ptjq
γ2sptjq

β2

ô vγ2β2ptiq ¡ vγ2β2ptjq

Equation 5.3 and Equation 5.4 are due to the fact that the function y � xa is strictly

increasing on x ¡ 0 for any constant a P p0, 1s.

Theorem 5.1.1 shows that the Global-Topkγ,β is order-preserving as long as the ratio

between γ and β remains a constant. Notice that in the Global-Topkγ,β semantics, we only

care about the order induced by the Global-Topkγ,β values over tuples. In other words, the

exact Global-Topkγ,β value does not matter. Therefore, by Theorem 5.1.1, we can fix γ � 1

and only vary the β parameter in the Global-Topkγ,β semantics. We refer to the resulting

semantics as the Global-Topkβ semantics.

Example 14. In Example 13, by setting β � 1, the top-2 flights returned by Global-Topkβ

are tFL10, FL40u.

Corollary 5.1.2. The Global-Topkβ semantics is equivalent to the Global-Topk semantics

when β � 0.

In the Global-Topkβ semantics, the Global-Topkβ value of a tuple t is therefore denoted

by vβptq.
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5.1.3 Postulate Satisfaction

Corollary 5.1.2 illustrates that Global-Topkβ coincides with Global-Topk when β � 0.

Therefore, we are interested in the postulate satisfaction when β ¡ 0. Table 5.1 summarizes

the results. In addition, we also list in Table 5.1 the postulate satisfaction of the original

Global-Topk semantics, especially for the sensitivity postulates.

Semantics Exact k Faithfulness Stability Sens. to Prob. Sens. to Score

Global-Topkβ X X/� X X X

Global-Topk X X/� X X �

Table 5.1: Postulate Satisfaction for Global-Topkβ (β ¡ 0)

See Appendix C for the proofs of Table 5.1.

As we can see in Table 5.1, Global-Topkβ inherits most postulates of Global-Topk

except for Sensitivity to Score. The importance of this postulates lies in the additional

flexibility to specify the trade-off between probabilities and scores.

5.1.4 The Elicitation of the β Parameter

As true for any parameterized semantics, the parameter elicitation is important when the

user is unable to supply the parameters directly. If the user wants to use an ordinal score,

he/she should set β � 0. Generally speaking, a relatively smaller β emphasizes the proba-

bility factor while a relatively larger β emphasizes the score factor.

If the user is not able to specify the parameter, in most cases, he/she will be able to

supply training data for parameter elicitation.

Definition 5.1.2 (Training Dataset). A training dataset A is a collection of pairwise com-

parisons between tuples. If pti, tjq P A, then the tuple ti is preferred to the tuple tj by the

user, denoted by ti ¡u tj .

For each pairwise comparison in the training dataset, we can compute a feasible region

of the parameter β, such that every β value within that region leads to a Global-Topkβ
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semantics inducing an order over tuples that is consistent with the pairwise comparison.

Therefore, the elicitation of β from the training dataset becomes the computation of the

intersection of feasible regions derived from each pairwise comparison.

Definition 5.1.3 (Feasible Region). Assume a probabilistic relation Rp � xR, p, Cy, a non-

negative integer k, an injective scoring function s and a training dataset A. For every

ti, tj P R and pti, tjq P A, the corresponding feasible region Iij is the union of intervals on

the real line such that for every β P Iij , vβptiq ¡ vβptjq.

The feasible region of the training dataset A, denoted by IA, is the intersection of the

feasible regions of every pairwise comparison in A.

IA �
£

pti,tjqPA
Iij

For each pairwise comparison in the training set, the elicitation can be categorized into

the following four cases.

Case 1: If t1 ¡s t2, Pk,spt1q ¡ Pk,spt2q and t1 ¡u t2.

Feasible region: β ¡ 0

Case 2: If t1 ¡s t2, Pk,spt1q ¡ Pk,spt2q and t2 ¡u t1.

Feasible region: H. This pairwise comparison is inconsistent to our model.

Case 3: If t1 ¡s t2, Pk,spt1q   Pk,spt2q and t1 ¡u t2.

Feasible region: β ¡ logPk,spt2q�logPk,spt1q
log spt1q�log spt2q

Case 4: If t1 ¡s t2, Pk,spt1q   Pk,spt2q and t2 ¡u t1.

Feasible region: 0   β   logPk,spt2q�logPk,spt1q
log spt1q�log spt2q

Proposition 5.1.1. The feasible region of a pairwise comparison is a finite union of inter-

vals.

Proof. The feasible region of a pairwise comparison can only be one of the aforementioned

four cases. Each is a finite union of intervals.
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Proposition 5.1.2. The feasible region of a training dataset is a finite union of intervals.

Proof. The training dataset contains finitely many pairwise comparisons. Therefore, the

conclusion follows Proposition 5.1.1.

Definition 5.1.4 (Elicitation Problem). Assume a simple probabilistic relationRp � xR, p, Cy,

an injective scoring function s and a training dataset A. For every real number β, let fpβq

be the number of pairwise comparisons in A whose feasible regions contain β. The elici-

tation problem is to find tβ|maxβ¡0 fpβqu.

The purpose of elicitation is to find intervals on the real line which satisfy the largest

number of pairwise comparisons in the training set A.

Algorithm 7 illustrates the elicitation algorithm for the parameter β. From the afore-

mentioned case study, we know that the interval derived from a single pairwise comparison

is of the form p0, aq or pb,8q. Therefore, in Line 1 of Algorithm 7, those two types of

intervals are ordered on a and b, respectively. Notice that the total number of intervals are

no more than the cardinality of the training datasetA, i.e., n�m ¤ |A|, since each pairwise

comparison produces at most one interval, and the empty intervals are filtered out. In Line

2, we mark the real line p0,8q with points from Sa � ta1, . . . , anu and Sb � tb1, . . . , bmu,

and rename each point with ci, i � 1, . . . ,m�n in non-decreasing order. ci, 1 ¤ i ¤ n�m

partition p0,8q into m � n � 1 intervals. For each end of those intervals, whether it is an

open or close end depends on whether it is a left or right end, and whether it is from Sa or

Sb. Line 7 to Line 19 determines whether each end is open or close for all intervals. 8 is

always an open end of an interval.

Theorem 5.1.2. Assume a simple probabilistic relation Rp � xR, p, Cy, an injective scor-

ing function s and a training dataset A. For every β P I� returned by Algorithm 7,

fpβq � maxβ¡0 fpβq.

Proof. We show that

1. Intervals created by ci in Line 6-Line 27 cover the entire range p0,8q;

The intervals in I are disjoint and their union covers p0,8q. For example, if the

current ci, i � 1, . . . ,m � n, is the right end of the current interval and ci P Sa,
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Algorithm 7 β Elicitation Algorithm
Require: a probabilistic relation Rp � xR, p, Cy, a non-negative integer k, a scoring func-

tion s, a training set A
Ensure: a collection of intervals where the β value satisfies as many pairwise comparisons

in A as possible
1: Compute the feasible region for each pair in A and sort the resulting non-empty inter-

vals into
tp0, a1q, . . . , p0, anqu Y tpb1,8q, . . . , pbm,8qu

such that 0   a1 ¤ . . . ¤ an and 0   b1 ¤ . . . ¤ bm.
2: Let Sa � ta1, . . . , anu and Sb � tb1, . . . , bmu. Let ci P Sa Y Sb, i � 1, . . . ,m� n and

0   c1 ¤ . . . ¤ cm�n

3: c0 � 0, cm�n�1 � 8
4: wa � n, wb � 0
5: I � H
6: for i � 1 to m� n� 1 do
7: if ci�1 P Sa then
8: if ci P Sa or ci �� 8 then
9: Icur � rci�1, ciq

10: else
11: Icur � rci�1, cis
12: end if
13: else
14: if ci P Sa or ci �� 8 then
15: Icur � pci�1, ciq
16: else
17: Icur � pci�1, cis
18: end if
19: end if
20: I � I Y tIcuru
21: fpIcurq � wa � wb
22: if ci P Sa then
23: wa � wa � 1
24: else if ci P Sb then
25: wb � wb � 1
26: end if
27: end for
28: return

I� � max
fpIiq

tIi|Ii P Iu
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then ci is a close right end (Line 9, Line 15). In the next iteration, ci becomes the

left end of the next interval, which is open (Line 9, Line 11). For ci P Sb, similar

reasoning applies. For the boundary case c0 � 0, since c0 R Sa, either Line 15 or

Line 17 is applicable to this case, which results in an open left end. For the case that

cm�n�1 � 8, either Line 9 or Line 15 applies, which leads to an open right end.

2. For every interval Ii P I , every Global-Topkβ semantics where β P Ii satisfies fpIiq

number of pairwise comparisons in the training dataset A. Line 21 computes the

fpIiq number for every interval in Ii P I .

For every β ¡ 0, the total number of intervals from Sa Y Sb which contain β is

the number of pairwise comparisons satisfied by the corresponding Global-Topkβ

semantics. It is easy to verify that every β value from the interval raj, aj�1q, 1 ¤

j   n is contained in n � j intervals p0, aj�1q, . . . , p0, anq from Sa. Every β value

from the interval p0, a1q is contained in all the n intervals p0, a1q, . . . , p0, anq from

Sa, while every β value from the interval pan,8q is not contained in any interval

from Sa. Similarly, every β value from pbl, bl�1s, 1 ¤ l   m is contained in l

intervals tpb1,8q, . . . , pbl,8qu from Sb. Every β from p0, b1q is not contained in

any interval from Sb, while every β from pbm,8q is contained in all the m intervals

pb1,8q, . . . , pbm,8q from Sb. In Algorithm 7, fpIiq � n � j � l if and only if

Ii � raj, aj�1q and Ii � pbl, bl�1s (Line 3-Line 27), which is the number of intervals

from Sa Y Sb containing β for every β P Ii.

3. Algorithm 7 returns every interval which contains β values that lead to the largest

number of satisfied pairwise comparisons in the training dataset A.

Line 28 in Algorithm 7 returns all and only those intervals with the highest f values,

which is the number of pairwise comparisons satisfied in A by using any β from

those intervals.

The sorting in Line 1 and Line 2 takes Op|A| log |A|q time, where |A| is the size of

the training dataset. Both the computation of f values (Line 3-Line27) and finding the
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intervals with the maximal f value (Line 28) take a linear sweep over the Op|A|q intervals.

Altogether, Algorithm 7 runs in Op|A| log |A|q time.

The Generalized Elicitation of the Parameter β A generalized situation with β elic-

itation is when the user is only able to provide pairwise comparison training data with

uncertainty. In such cases, each pair in the training dataset is associated with a probability.

Definition 5.1.5 (Probabilistic Training Dataset). A probabilistic training dataset A is a

collection of probabilistic pairwise comparisons between tuples. If pti, tj, pijq P A, then the

tuple ti is preferred to the tuple tj by the user with a probability pij , i.e., Prpti ¡u tjq � pij ,

where 0   pij ¤ 1.

Such uncertainty can be a result of:

1. different confidence levels of pairwise comparisons given as feedback, where the

probability indicates the confidence level, or

2. an aggregation of feedbacks collected from multiple users, where the probability is

the percentage of users confirming the corresponding preference.

In either case, it is possible for two incompatible pairwise comparisons to coexist, i.e.,

pti, tj, pijq P A and ptj, ti, pjiq P A. In this case, pij � pji ¤ 1.

It is possible to generalize the β elicitation problem (Definition 5.1.4) and techniques in

Algorithm 7 to incorporate uncertainty in the training dataset. In the generalized elicitation

problem in Definition 5.1.6, the intervals derived from pairwise comparisons are now as-

sociated with a weight, which is the probability of the corresponding pairwise comparison.

The elicitation goal is to find intervals on the real line, where every β value maximizes the

weighted total number of satisfiable pairwise comparisons in the training dataset A.

Definition 5.1.6 (Generalized Elicitation Problem). Assume a simple probabilistic relation

Rp � xR, p, Cy, an injective scoring function s and a probabilistic training dataset A. For

every real number β, let fpβq be the weighted sum of the number of pairwise comparisons

in A whose feasible regions contain β, where the weights are the probabilities associated

with the pairwise comparisons. The elicitation problem is to find tβ|maxβ¡0 fpβqu.
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Algorithm 8 Generalized β Elicitation Algorithm
Require: a probabilistic relation Rp � xR, p, Cy, a non-negative integer k, a scoring func-

tion s, a training set A of pairwise comparisons with a probability
Ensure: a collection of intervals where the β value maximizes the weighted sum of pair-

wise comparisons in A
1: Compute the feasible region for each pairwise comparison in A and sort the resulting

non-empty intervals into

txp0, a1q, pa1y, . . . , xp0, anq, panyu Y txpb1,8q, pb1y, . . . , xpbm,8q, pbmyu

such that 0   a1 ¤ . . . ¤ an and 0   b1 ¤ . . . ¤ bm. Each interval is associated with
the probability of the pairwise comparison giving rise to it.

2: Let Sa � ta1, . . . , anu and Sb � tb1, . . . , bmu. Let ci P Sa Y Sb, i � 1, . . . ,m� n and

0   c1 ¤ . . . ¤ cm�n

3: c0 � 0, cm�n�1 � 8
4: wa �

°n
i�1 pai , wb � 0, ia � 1, ib � 1

5: I � H
6: for i � 1 to m� n� 1 do
7: if ci�1 P Sa then
8: if ci P Sa or ci �� 8 then
9: Icur � rci�1, ciq

10: else
11: Icur � rci�1, cis
12: end if
13: else
14: if ci P Sa or ci �� 8 then
15: Icur � pci�1, ciq
16: else
17: Icur � pci�1, cis
18: end if
19: end if
20: I � I Y tIcuru
21: fpIcurq � wa � wb
22: if ci P Sa then
23: wa � wa � paia , ia � ia � 1
24: else if ci P Sb then
25: wb � wb � pbib , ib � ib � 1
26: end if
27: end for
28: return I� � maxfpIiqtIi|Ii P Iu
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Algorithm 8 illustrates the algorithm for eliciting β via a probabilistic training dataset.

Algorithm 8 differs from Algorithm 7 in

1. Line 1, where each interval is associated with a weight, which is the probability of

the pairwise comparison where it is derived, and

2. Line 4, Line 23 and Line 25, fpIiq computes the weighted sum of the number of

pairwise comparisons satisfied.

In particular, Algorithm 7 is a special case of Algorithm 8 when pai � pbj � 1 for every

i � 1, . . . , n and j � 1, . . . ,m, which suggests the pairwise comparisons in the training set

are certain, i.e., of probability 1, in the case of Algorithm 7. Notice that the incompatible

pairwise comparisons in the training dataset A is not a problem. Their feasible regions do

not overlap, and there will not be an interval where we count both incompatible pairwise

comparisons.

The runtime of Algorithm 8 follows that of Algorithm 7. It is Op|A| log |A|q including

the sorting.

5.1.5 Experiments

We conduct an experimental study on Global-Topkβ semantics and the parameter β elici-

tation. We implementation the Global-Topkβ semantics in C++ and run experiments on a

machine with Intel Core2 1.66G CPU running Cygwin on Windows XP with 2GB memory.

Each synthetic dataset is a simple probabilistic database containing n tuples, where n

varies from 100 up to 100K. The size n defaults to 104. Each dataset has a uniform random

score distribution and a uniform random probability distribution. Scores are normalized so

that their values are between 0 and 1. The probabilities and the scores can be uncorrelated

(corr � 0), negatively correlated (corr   0) or positive correlated (corr ¡ 0). The

correlation corr between probabilities and scores is a real number in r�1, 1s.

The parameter β ranges from 0.1 to 10. The default value of k in a top-k query is 50.

Summary of experiments

We draw the following conclusions from the forthcoming experimental results:
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 The top-k result evolves when the β value changes. When β increases, the discrep-

ancy in the top-k results first increases and then decreases. It changes most rapidly

when β is at a peak value greater than 1. The peak shifts to the right when the dataset

size increases.

 The top-k result evolves more smoothly when the ratio k{n is high.

 The discrepancy of the top-k results is more significant when the dataset has a high

negative correlation. It grows sublinearly with k, and the growth gets slower when

the data correlation becomes more positive.

 We experiment with a metric to compare top-k results as sets, as well as a metric

to compare top-k results as vectors. By comparing the two metrics, we see that the

change in the tuple membership in the top-k result contributes more to the top-k

result discrepancy when β increases. This trend is more obvious for datasets of a

high negative correlation.

 The elicitation of β value is more accurate when the user has a strong bias in the

trade-off of probabilities and scores, which is interpreted as either a very low or a

very high β value.

 Both the lack of correlation and a strong negative/positive correlation in the dataset

is helpful to the β elicitation.

Distance Measure for Comparing Two Top-k lists

Normalized Minimizing Kendall Distance We need a distance measure to compare two

top-k results. The Kendall distance, or sometimes referred to as the Kemeny distance in the

literature, has been shown to be desirable in comparing rankings in the IR research [22].

We adopt the normalized version of minimizing Kendall distance in [24] for this task.

Fagin et al. [24] proves that it is in an equivalent class of many other popular measures.

Definition 5.1.7 (Minimizing Kendall Distance [24]). Given a relation R, and two top-

k lists τ1 and τ2, Kpτ1, τ2q is the minimizing Kendall distance between τ1 and τ2. Let
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τ1,2 � τ1 Y τ2.

Kpτ1, τ2q �
¸

pti,tjqPτ1,2�τ1,2,i j
Ki,jpτ1, τ2q

where Ki,j � 1 if it falls in one of the following two cases, Ki,j � 0 otherwise.

Case 1 Both ti and tj appear in τ1 and τ2, but in opposite order;

Case 2 Both ti and tj appear in exactly one top-k list, and only the one ranked lower appears

in the other top-k list.

Case 3 Exactly one of ti and tj appears in exactly one of τ1 and τ2.

Intuitively, Kpτ1, τ2q counts the number of distinct ordered pairs of τ1,2 which are

ranked in the opposite order by τ1 and τ2. Here, ranking in the opposite order can be

either explicit (Case 1), or implicit (Case 2 and Case 3). In all cases, we can infer that ti

and tj are ranked in the opposite order in every two permutations of R extending τ1 and

τ2, respectively. It is called minimizing Kendall distance because it is the lower bound of

the number of pairs ranked in the opposite order in any two permutations of R extending

τ1 and τ2, respectively.

The maximum value of Kpτ1, τ2q � k2, which happens when the two top-k lists are

disjoint. This is also the denominator used in the normalized version of K. We use the

normalized minimizing Kendall distance as the distance measure in our experiments. K

stands for the normalized distance from now on. It is a real number from r0, 1s. It reaches

0 when the two top-k lists are identical and reaches 1 when the they are disjoint. Notice

that if the two top-k lists contain the same set of tuples but are in the reverse order to each

other, then the Kendall distance is pkpk�1q{2q{pk2q � pk�1q{p2kq � 1{2. Intuitively, the

larger the Kendall distance, the smaller the intersection of the two lists and/or more reverse

pairs in the two lists. Similarly, a small Kendall distance suggests a large overlap of the

two lists and less reverse pairs in the two lists.

The degree of overlap of two top-k lists can be captured by the classical Jaccard dis-

tance. The Jaccard distance of two top-k list τ1 and τ2 is defined by

Jpτ1, τ2q �
|τ1 Y τ2| � |τ1 X τ2|

|τ1 Y τ2|
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Proposition 5.1.3. Given two top-k lists τ1 and τ2, their normalized Kendall distance

Kpτ1, τ2q and their Jaccard distance Jpτ1, τ2q satisfies Jpτ1, τ2q ¤
a
Kpτ1, τ2q.

Proof. Assume the two lists τ1 and τ2 differ in ndiff tuples, then each top-k list has ndiff

tuples not in the other list. Every ordered pair pti, tjq P pτ1 � τ2q � pτ2 � τ1q falls in Case

3 of Definition 5.1.7, and therefore has Ki,jpτ1, τ2q � 1. Therefore, k2Kpτ1, τ2q ¥ n2
diff .

On the other hand, the Jaccard distance Jpτ1, τ2q �
ndiff
k

. Altogether, we have Jpτ1, τ2q ¤a
Kpτ1, τ2q.

In some experiments, we calculate the Jaccard distance Jpτ1, τ2q as well as the Kendall

distance Kpτ1, τ2q in comparing top-k results. This helps us to understand the composition

of the Kendall distance better. Roughly speaking, J2pτ1, τ2q out of Kpτ1, τ2q is caused by

memberships of the top-k list only, while the rest is caused by pairwise orders together with

the memberships.

Evolvement of Top-k Results with β

Figure 5-1(a) illustrates the evolvement of top-k results with increasing β values. We com-

pute the Kendall distance of two top-k lists returned by the Global-Topkβ semantics param-

eterized by consecutive β values from t1{10, 1{8, 1{6, 1{4, 1{2, 1, 2, 4, 6, 8, 10u. In order to

be unbiased with regard to the data correlation, each data point in Figure 5-1(a) is the aver-

age Kendall distance of 13 datasets with correlations evenly ranging from �1 to 1.

Each curve in Figure 5-1(a) corresponds to a group of datasets of the same size. We

observe in Figure 5-1(a) that for datasets of size 100,1K and 10K, with the increase of

β, the Kendall distance increases to a peak value and then decreases. The peak value of

each curve is a β value to the right of 1, and it shifts to the right with the increase in the

data size (n � 100, n � 1K, n � 10K). It seems that the decrease does not happen for

n � 10K. However, noticing the shift of peak values, it may well be that the peak value

of curve n � 100K locates at the further right of the figure and is therefore not displayed.

Therefore, Figure 5-1(a) shows that the change in top-k result is most significant when the

β value is close to the peak value for datasets of the same size. Both extremely small or

large β values have little influence over the top-k results.
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Figure 5-1: Global-Topkβ Semantics Comparison
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We observe in Figure 5-1(a) that the curve corresponding to datasets of a large size is

rougher than that corresponding to datasets of a small size. As a proof, we zoom in on

the curve n � 1K and the curve n � 100K in Figure 5-1(a). The results are shown in

Figure 5-1(c) and Figure 5-1(d), respectively. In both figures, we show only 5 out of the

11 datasets of different correlations for clarity. It is clear now that change in the Kendall

distance is smooth in Figure 5-1(c), while it is rough in Figure 5-1(d), where the data size

is larger. One explanation is that, as we fix k to 50 in this experiments, the percentage of

the top-k result decreases with the increase in data size. For example, in a dataset of size

1K, the top-k result contains 0.5% of the population, while in a dataset of size 100K, the

top-k result contains merely 0.005% of the population. Therefore, the change in the top-k

result is more significant in a large dataset.

Evolvement of Top-k Results v.s. Data Correlation

Figure 5-1(b) illustrates average Kendall distances for datasets of data correlations rang-

ing from �0.8 to 0.8. For each data point in Figure 5-1(b), we average over the Kendall

distances of two top-k lists returned by the Global-Topkβ semantics parameterized by con-

secutive β values from t1{10, 1{8, 1{6, 1{4, 1{2, 1, 2, 4, 6, 8, 10u. The general trend is that

the change in top-k results is less significant for datasets where the probability and the

score have a higher positive correlation. This trend fits our semantic design nicely. Recall

that the Global-Topkβ semantics satisfies the Faithfulness postulate. In its proof (c.f., Ap-

pendix C), we can see that if a tuple t1 is of both a higher probability and a higher score

than those of a tuple t2, then the Global-Topkβ probability of t1 is higher than that of t2.

In other words, their relative order in the Global-Topkβ ranking is predetermined. On the

other hand, a high positive correlation between probabilities and scores suggests more such

pairs of tuples, and therefore it is less flexibility in producing different top-k results in such

datasets.

Evolvement of Top-k Results v.s. k

Figure 5-1(e) illustrates average Kendall distances for top-k queries with k ranging from

100 to 900. We use five datasets, each contains 104 tuples and is with correlation evenly
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ranging from �0.8 to 0.8. Same as before, each data point in Figure 5-1(e) corresponds to

the average Kendall distances of two top-k lists returned by the Global-Topkβ semantics

parameterized by consecutive β values from t1{10, 1{8, 1{6, 1{4, 1{2, 1, 2, 4, 6, 8, 10u. In

Figure 5-1(e), the average Kendall distance increases with k. All five datasets display

a similar sublinear increasing trend, however, the increase gets slower when the positive

correlation in the dataset increases.

Evolvement of Top-k Composition

This set of experiments study the composition top-k results. We use five datasets with a

correlation ranging from �0.8 to 0.8. For each dataset, we compute the top-k lists returned

by the Global-Topkβ with consecutive β values from t1{6, 1{4, 1{2, 1, 2, 4, 6u. Then, we

compute the Kendall distance and the Jaccard distance for every two consecutive top-k

lists returned. The result is shown in Figure 5-1(f). The quantity reported in Figure 5-1(f)

is J2{K, i.e. the percentage of the Kendall distance caused by the memberships of the

top-k list only. We use datasets of size 104 and set k � 500 in this set of experiments.

We can see from Figure 5-1(f) that in general the quantity J2{K increases with the

β value regardless of the data correlation. On the other hand, the increase in β implies

that more weight is given to the score value. Therefore, Figure 5-1(f) shows that a larger

fraction of the Kendall distance is derived from the memberships of top-k lists when more

weight is given to the score value. In Figure 5-1(f), this trend is more obvious when the

probability and the score are of a high negative correlation.

Parameter β Elicitation

Our final set of experiments is on the elicitation of the parameter β. We focus on the gen-

eralized parameter β elicitation problem in Algorithm 8, where each pairwise comparison

is associated with a probability. The β elicitation problem in Algorithm 7 is a special case

of this problem. In this set of experiment, we use a dataset of 1000 tuples and correlation

�1. Parameter k is fixed to 20. The elicitation process is set up as follows.

1. Assume the ground truth β value and compute the Global-Topkβ value for each tuple

80



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0.1 0.13 0.17 0.25 0.5 1 2 4 6 8 10

in
te

rv
al

 le
ng

th

true beta

trn=100
trn=200

trn=300
trn=400

trn=500

(a) Avg Interval Length v.s. β

 9.4

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8
in

te
rv

al
 e

nd

corr

int_start int_end

(b) Interval v.s. corr (β � 10)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

in
te

rv
al

 le
ng

th

corr

int_len

(c) Interval Length v.s. corr (β � 10)

Figure 5-2: β Elicitation
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in the dataset;

2. Generate 5 user feedback training datasets. Each contains trn non-trivial and con-

sistent pairwise comparisons, i.e., Case 3 and Case 4 in Section 5.1.4. Each pairwise

comparison is associated with a probability randomly chosen from p0, 1s;

3. Run the elicitation algorithm (Algorithm 8) with a training set, and compute the

length of the interval returned by the algorithm;

4. Take 5 runs of the above step, each time with a different training set, and return the

average interval length.

We use the elicited interval length to measure the quality of elicitation. A small interval

can identify the true β value more accurately than a large interval. Figure 5-2(a) illustrates

the results where we experiment with a true β value ranging from 1{10 to 10, and a training

set size trn ranging from 100 to 500. Each curve in Figure 5-2(a) represents a set of

experiments using training sets of the same size. It follows our intuition that the larger the

training data size, the more accurate the elicitation result, i.e., a smaller the interval length.

In addition, the elicitation result of a large training dataset is also more stable than that of

a small one in terms of the fluctuation in between consecutive true β values. In general,

the elicitation result is more accurate when the true β tends to the two extremes, which

follows the intuition that it is easier to elicit when the user’s preference is biased towards

probabilities or scores.

Figure 5-2(b) and Figure 5-2(c) shows the influence of the data correlation on the elici-

tation quality. We fix the true β � 10 and k � 300. Figure 5-2(b) shows the average elicited

start and end values of the intervals for datasets of different correlations, while Figure 5-

2(c) show the corresponding interval length. In Figure 5-2(c), we observe double peaks

in the curve. The elicitation is more accurate when the correlation between probabilities

and scores are either low (corr � 0), or high (negatively or positively). The experiments

suggest that user feedbacks are needed when the correlation in the dataset is moderate.
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5.1.6 Related Work

The concept of preference strength has been discussed under the name of preference inten-

sity or preference difference in the literature of decision making, utility theory, operations

research and psychology. The literature related to our work can be roughly divided into

two areas. One studies the decision making under risk/uncertainty and the other studies the

preference strength in decision making.

For the former, risk management in utility theory [39] discusses how to use extensive

measurement, i.e. an axiomatic method, to measure risk. The results are built on a different

uncertain data model. Essentially, given a probabilistic database Rp � xR, p, Cy, instead

of measuring each tuple t P R , this model measures each part C P C. Choices are made

among parts other than tuples. Another theory uses the same model is the expected utility

theory [39]. For a more recent survey and comparison between those two theories, please

refer to Fishburn’s survey [26]. Due to the difference in the underlying data model, it is not

clear how we can utilize those results in our context.

For the latter, [38] gives a historical review of ordinal v.s. cardinal utility and also

simplifies earlier derivations of cardinal utility. It summarizes the context where cardinal

utility is usually accepted, and decision making under risk/uncertainty is one of them. It

points out that if “preference difference are not rejected per se, then it follows that relatively

simple consistency conditions already imply cardinal utility”. [18, 2] discusses the problem

of eliciting a consensus of preferences given the information of degree of preferences. [54]

discusses the application of preference strength in multiple criteria decision making. It also

gives a result concerning strength of preference in decision making under risk.
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Chapter 6

Set Preferences

In this chapter, we propose a framework to handle set preferences 1. We start by introducing

several notions that will be used in this framework, including those inherited from the tuple

preference framework proposed by Chomicki [16].

6.1 Basic Notions

For a relation schema R � xA1, . . . , Amy, we define the domain of R as the cross product

of the domains of its attributes, i.e. DompRq � DompA1q � . . .�DompAmq.

Definition 6.1.1 (Tuple Preference [16]). Given a relation schema R � xA1, . . . , Amy, a

tuple preference relation ¡ is a subset of rDompRqs2. If for a first order formula C,

Cpt1, t2q ô t1 ¡ t2

then the tuple preference is defined by the formula C. We then denote the preference rela-

tion by ¡C . The indifference relation �C generated by ¡C is

t1 �C t2 ô t1 £ t2 ^ t2 £ t1

As a binary relation, a preference relation ¡ can have typical properties such as ir-

1An earlier version of some of the results was presented in [59].
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reflexivity, asymmetry, transitivity, negative transitivity and connectivity. Like other binary

relations, a preference relation ¡ can be a strict partial order, a weak order, or a total or-

der. Interested readers can consult Section 2.1 for the definitions of various properties and

orders of binary relations.

For a tuple preference, the computation of the best tuples is embedded into Relational

Algebra (RA) in the form of a winnow operator.

Definition 6.1.2 (Winnow Operator [16]). If R is a relation schema and ¡C a preference

relation over R, then the winnow operator is written as ωCpRq, and for every instance r of

R: ωCprq � tt P r| Dt1 P r.t1 ¡C tu.

We make the standard assumptions of the relational model of data. In particular, we as-

sume that we have two attribute domains: rational numbers (Q) and uninterpreted constants

(D).

We capture the quantities of interest for subsets using subset features.

Definition 6.1.3 (Subset Feature). Given a relation r, a subset feature Fp�q is a function:

subsetsprq ÞÑ DompFq, where DompFq (either Q or D) is the domain of feature F .

Definition 6.1.4 (Subset Profile Schema). Given a relation r, a subset profile schema Γ is

a schema xF1, . . . ,Fmy, where Fi is a subset feature, i � 1, . . . ,m.

Definition 6.1.5 (Subset Profile Relation). Given a relation r and its subset profile schema

Γ � xF1, . . . ,Fmy, the subset profile relation γ is defined as

γ � tt|Ds P subsetsprq, t � xF1psq, . . . ,Fmpsqyu.

The tuple xF1psq, . . . ,Fmpsqy is the profile of s under Γ, denoted by profileΓpsq.

6.2 Aggregate Feature Definition

In this work, we consider single-valued features whose value is a real number, as it is often

the case in real applications [21]. This is achieved by defining features as aggregate values
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in Definition 6.2.1. Other possible features includes boolean features, which we do not

consider here.

Definition 6.2.1 (Aggregate Subset Features). Given a relation r with schema R, an ag-

gregate subset feature F is defined by a parameterized SQL query of the form

SELECT expr FROM $S WHERE condition

where

(1) $S is a distinguished set parameter whose values can be instantiated to an arbitrary

subset of r, i.e. Domp$Sq � subsetsprq;

(2) expr is of the form aggr([DISTINCT] A), where aggr P tmin , max , sum,

count, avgu, A is an attribute of R, or a function of constants and the above ag-

gregates.

(3) the FROM list contains a single item which is $S or an alias for $S;

Example 15. In Example 3, the quantity of interest in (C1), (C2) and (C3) is captured by

the subset feature F1,F2 and F3, respectively.

F1 � SELECT sum(price) FROM $S

F2 � SELECT count(title) FROM $S WHERE genre=’sci-fi’

F3 � SELECT count(DISTINCT vendor) FROM $S

where S is a set parameter that can be substituted by any 3-subset of Book, since Alice

decides to buy three books.

Given any subset s of Book, we can evaluate the value of each feature by instantiating

the set parameter in the feature definition with s. Assume s � ta1, a2, a3u, then F1psq is

the scalar result of the query

SELECT sum(price) FROM s

which is $15.00 � $20.00 � $25.00 � $60.00. Similarly, F2psq � 2 due to the eval-

uation result of SELECT count(title) FROM s WHERE genre=’sci-fi’, and

F3psq � 2 due to that of SELECT count(DISTINCT vendor) FROM s.

The following example illustrates a subset profile schema and relation based on aggre-

gate subset features in Example 15.
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Example 16. Continuing Example 15. Let the subset profile schema Γ � xF1,F2y. The

profile relation γ contains, among others, the following tuples: p$60, 2q, which is the profile

of the subsets ta1, a2, a3u and ta2, a3, a5u; and p$61, 2q, which is the profile of ta3, a7, a8u.

6.3 Profile-based Set Preferences

Now we can define set preferences over subsets as tuple preferences over the corresponding

profiles. Typically, a tuple preference relation is defined using a first-order formula [16], as

is the case for the tuple preference for (C1) in Example 3.

Definition 6.3.1 (Set Preference). Given a relation schema R � xA1, . . . , Amy, a set pref-

erence relation Ï is a finite subset of the product rsubsetspDompRqqs2.

In principle, set preferences could also be defined using logic formulas. However,

second-order variables would be necessary. To avoid the conceptual and computational

complexity associated with such variables, we consider only set preferences that are based

on profile preferences.

Definition 6.3.2 (Profile-based Set Preference). Let Γ � xF1, . . . ,Fmy be a profile schema

and ¡C a tuple preference relation, which is a subset of rDompF1q � . . . �DompFmqs2.

A set preference Ï is based on Γ and ¡C if for every set s1 and s2,

s1 Ï s2 ô profileΓps1q ¡C profileΓps2q.

We then denote the set preference relation by ÏpΓ,Cq.

Proposition 6.3.1. If a tuple preference relation ¡C is a strict partial order, then for any

profile schema Γ, the set preference relation ÏpΓ,Cq is a strict partial order as well.

Recall that an essential component of set preferences consists of the desired values

or orders of the quantities of interests, which are captured by a preference relation over

profiles. In fact, in order to elaborate a set preference in our framework, a user needs to do

the following:
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1. Provide a subset profile schema by defining subset features F1, . . . ,Fm.

2. Specify the profile preference using a tuple preference formula.

Definition 6.3.2 provides a general framework for set preferences. As we will see

shortly in Section 6.4, we restrict the computation problem to the evaluation of set pref-

erences among subsets of fixed cardinality in this work. In our book purchase running

example (Example 3), Alice is buying three books. Example 17 and Example 18 of set

preferences build on Example 3, where we essentially work with subsets of fixed cardinal-

ity 3.

Example 17. Assume Γ � xF1,F2,F3y as in Example 15. We can define the proper

preference formula Ci, i � 1, . . . , 4 over Γ, such that individual set preference (C1-C3) is

based on Γ and ¡Ci. For example, we define ÏpΓ,C1q as

s1 ÏpΓ,C1q s2

ô xF1ps1q,F2ps1q,F3ps1qy ¡C1 xF1ps2q,F2ps2q,F3ps2qy

ô F1ps1q   F1ps2q.

Individual preference formulas can be the building blocks of more complicated prefer-

ences, where formulas are assembled to express union, intersection, prioritized composi-

tion and Pareto composition of preferences [16].

Example 18. Consider the prioritized composition of (C2) and (C1) in Example 3. Let the

profile schema Γ � xF1,F2,F3y, and the preference formula C4 over Γ be such that

s1 ÏpΓ,C4q s2 ô pF2ps1q � 1^ F2ps2q � 1q

_pF2ps1q � 1^ F2ps2q � 1^ F1ps1q   F1ps2qq

_pF2ps1q � 1^ F2ps2q � 1^ F1ps1q   F1ps2qq.

Then C4 is the prioritized composition of C2 and C1.
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6.4 Computing the Best k-subsets

We make a decision to work with subsets of fixed cardinality. There are two reasons for this

choice. First, fixed cardinality allows us to focus on the composition of a subset and the

interaction among the tuples in the subset. The cardinality of a subset might have influence

on certain set properties. For example, if we do not limit the cardinality in preference (C1),

then we certainly prefer small subsets, since buying fewer books costs less. In this extreme

case, the best subset would be the empty set which costs $0. However, in reality, this is

rarely what we intend. Likewise, many applications have an explicit or implicit requirement

on cardinality. For example, a board election typically has a fixed number of seats to be

filled. A university usually admits a class of a predetermined size. A poll company has

limited resources for interviewing only a certain number of people.

Definition 6.4.1 (k-subset). Given a relation r and a positive integer k, k ¤ |r|, a k-subset

s of r is a subset of r with cardinality k, i.e. s � r and |s| � k. Denote by k-subsetsprq the

set of all k-subsets of r.

Definition 6.4.2 (k-subset Profile Relation). Given a relation r and its subset profile schema

Γ � xF1, . . . ,Fmy, the k-subset profile relation γk is defined as

γk � tt|Ds P k-subsetsprq, t � xF1psq, . . . ,Fmpsqyu.

We omit the subscript k in γk when the context is unambiguous.

6.4.1 Basic Algorithm

For a tuple preference, the computation of the best tuples is embedded into Relational

Algebra (RA) in the form of a winnow operator (c.f., Definition 6.1.2). In addition to the

universal Nested Loops (NL) algorithm, many other efficient evaluation algorithms have

been proposed when the preference relation is a strict partial order. Among other, there are

Block Nested Loops (BNL) [7] and Sort-Filter-Skyline (SFS) [17].

In our framework, a set preference is formulated as a tuple preference relation ¡C

over a profile schema Γ, which in turn defines a winnow operator, i.e. ωCpΓq. The best
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k-subsets are computed by winnowing over the profile relation γ containing the profiles of

all k-subsets of a given relation r.

Algorithm 9 applies winnow on a stream of profiles of all k-subsets.

Algorithm 9 Basic Algorithm
Require: a profile schema Γ, a profile preference relation ¡C , a relation r and a positive

integer k, k   |r|
Ensure: the best k-subsets of r under the set preference ÏpΓ,Cq

1: Generate all k-subsets of relation r and for each compute its profile based on the
schema Γ, obtaining the profile relation γ.

2: Compute γ1 � ωCpγq using any winnow evaluation algorithm, e.g. BNL [7].
3: Retrieve the subsets corresponding to the profiles in γ1.

For the generation of candidates k-subsets in Line 1 of Algorithm 9, any sound and

complete k-subset generator suffices. We arbitrarily choose a lexicographical k-subset

generator[40] which produces k-subsets in the lexicographical order of the tuple indices.

An index vector representation of a k-subset is the vector of its tuple indices in ascending

order. For example, the index vector representation of a 3-subset tt2, t5, t1u is x1, 2, 5y.

The representation is unique for each distinct k-subset. Consequently, the enumeration of

k-subsets is equivalent to the enumeration of their index vector representations. Algorithm

10 illustrates the core algorithm used in the lexicographical k-subset generator. It takes the

index vector representation of a k-subset and returns the index vector representation of the

next k-subset in the lexicographical order (if any).

Algorithm 9 is only practical for a small k; for a large k, the number of k-subsets
�
n
k

�
can be very large, and exhaustive enumeration might not be acceptable. On the other hand,

since the number of best sets can be as large as
�
n
k

�
when the set preference relation ÏpΓ,Cq

is empty, the worst case complexity Ωpnkq is unavoidable.

In the following sections, we identify redundant k-subsets generated in the basic algo-

rithm, i.e., k-subsets whose profiles will be dominated by other profiles or whose profiles

are repeated. We propose two optimization techniques: superpreference and M-relation.

Roughly speaking, superpreference can filter out tuples that do not contribute to any best

k-subset, and M-relation groups together tuples that are exchangeable with regard to the

given set preference. Both techniques tends to reduce the number of candidate k-subsets
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Algorithm 10 k-subset Lexicographical Successor
Require: a relation r, a positive integer k, k   |r| and the index vector representation ~T

of a k-subset
Ensure: the index vector representation ~Tnext of the lexicographical successor of ~T

1: ~Tnext � ~T
2: n � |r|
3: i � k
4: while i ¥ 1 and ~T .i �� n� k � i do
5: i � i� 1
6: end while
7: if i==0 then
8: return “no more k-subsets”
9: else

10: for j � i to k do
11: ~Tnext.j � ~T .i� 1� j � i
12: end for
13: return ~Tnext
14: end if

and therefore speed up the preference query evaluation.

6.4.2 Superpreference

The idea is that, given the set preference relation ÏpΓ,Cq, we are trying to find a superpref-

erence relation ¡� such that if t1 ¡� t2, then every k-subset with t1 is preferred (under

ÏpΓ,Cq) to every k-subset with t2 as long as these two k-subsets are otherwise identical, and

vice versa.

Definition 6.4.3 (Superpreference Relation). Given a relation r, a positive integer k ¤ |r|

and a set preference relation ÏpΓ,Cq, the corresponding superpreference relation, denoted

by ¡�, is such that

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s1 P (k-1)-subsetsprztt1, t2uq,

s1 Y tt1u ÏpΓ,Cq s1 Y tt2us.

The cover of t is defined as the set of tuples dominating t under ¡�, i.e. coverptq �

tt1 P r|t1 ¡� tu. When t1 ¡� t2 ô t1 P r ^ t2 P r ^ C�pt1, t2q and C� is a first-order

formula, then we say that ¡� is locally defined using C�.
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Proposition 6.4.1. Given a relation r, a positive integer k   |r| and a set preference

relation ÏpΓ,Cq, for every s P k-subsetsprq,

rEs1 P k-subsetsprq, s1 ÏpΓ,Cq ss ñ r@t P s, coverptq � ss. (6.1)

Proof. If for some best k-subset s and some t P s, there is a tuple t1 P r such that t1 P

coverptq � s, then pszttuq Y tt1u ÏpΓ,Cq s, which is a contradiction.

Equation 6.1 is a necessary condition for a best k-subset. In Algorithm 11, we apply

Equation 6.1 in two places:

1. Every tuple t whose |coverptq| ¥ k is discarded, as it cannot be in any best k-subsets

(Line 2);

2. During the candidate k-subset generation in Line 3, we skip those candidate k-subsets

not leading to a best k-subset by Proposition 6.4.1. To be more specific, in Line 3

of Algorithm 11, we use a modified version of Algorithm 10 as the lexicographical

k-subset generator. This modified version applies a filter after Line 12 in Algorithm

10 to check whether property (6.1) holds for all the new elements generated from

Line 10 to Line 12. If not, it repeats Line 1 to Line 12 until it finds the first successor

k-subset satisfying property (6.1), or all k-subsets are exhausted.

Algorithm 11 Superpreference Algorithm
Require: a profile schema Γ, a profile preference relation ¡C , a relation r and a positive

integer k, k   |r|, ¡� locally defined using C�

Ensure: the best k-subsets of r under the set preference ÏpΓ,Cq
1: Do pairwise comparison between tuples in r, and determine coverptq for each t P r.
2: Let r1 � tt P r||coverptq|   ku.
3: Using a modified version of Algorithm 10 to generate all k-subsets s of r1 such that
@t P s, coverptq � s and compute the corresponding profile relation γ1 based on the
schema Γ.

4: Compute γ2 � ωCpγ1q using any winnow evaluation algorithm.
5: Retrieve the subsets corresponding to the profiles in γ2.

If the superpreference ¡� is a weak order, Algorithm 12 can further reduce the input

(r1) to the lexicographical k-subset generator, which leads to fewer candidate k-subsets.
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Algorithm 12 Superpreference Algorithm under Weak Order Superpreference
Require: a profile schema Γ, a profile preference relation ¡C , a relation r and a positive

integer k, k   |r|, ¡� locally defined using C�

Ensure: the best k-subsets of r under the set preference ÏpΓ,Cq
1: Let r1 � ωC�prq.
2: If |r1| ¥ k, generate all k-subsets of r1 and the corresponding profile relation γ1 based

on the schema Γ, otherwise r1 � r1 Y ωC�pr � r1q and repeat this step.
3: Compute γ2 � ωCpγ1q using any winnow evaluation algorithm.
4: Retrieve the subsets corresponding to the profiles in γ2.

In order to illustrate the importance of the weak order requirement in Algorithm 12, let

r1 � ωC�prq, r2 � ωC�pr�r1q, r3 � ωC�pr�r1�r2q . . . so on and so forth until all tuples

in r are exhausted. If the superpreference¡� is a weak order, then by the definition of weak

orders every tuple in r1Y. . .Yri is superpreferred to every tuple in r�r1�. . .�ri. In other

words, every tuple in r1Y . . .Y ri belongs to the cover of every tuple in r� r1� . . .� ri. If

r1Y . . .Y ri contains no less than k tuples, we already know that the cover of every tuple in

r� r1� . . .� ri has a cardinality no less than k, and therefore can be discarded. A general

strict partial order does not guarantee such a relationship and thus we have to keep track of

the covers of individual tuples (Algorithm 11).

It still remains to be shown how to construct the formula C� given the profile schema Γ

and the profile preference formula C. Our study shows that for restricted classes of profile

schemas and profile preference formulas, C� can be constructed systematically.

Definition 6.4.4 introduces an important class of features, i.e., additive features. As we

will see shortly in this section as well as in Section 6.4.4, the additivity of features enables

various efficient optimization techniques.

Definition 6.4.4 (Additive Subset Features). Given a relation r and a subset feature F , F

is additive if for every subset s P subsetsprq, and every t P r � s,

FpsY ttuq � Fpsq � fptq

Fpttuq � fptq

where f is a function of t only, called the base of F .
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Proposition 6.4.2. If an aggregate feature F is of the form

SELECT expr FROM $S WHERE simple-condition

where

(1) expr is of the form aggr(A), where aggr P {sum,count}, A is an attribute of

r, or a linear combination of constants and the above aggregates

(2) simple-condition does not contain subqueries

then F is additive.

Proof. Under the above conditions, we can show by case study that function fptq in Defini-

tion 6.4.4 always exists. For example, if the aggregate is sum,FpsYttuq � Fpsq�cptq�t.A,

where A is the quantity of interest in F , i.e. the attribute in SELECT clause, and cp�q is an

indicator function of the condition in the definition of F . An indicator function returns

1 when the condition is satisfied, 0 otherwise.

Theorem 6.4.1. If a profile-based set preference is defined as a constant-free DNF formula

s1 ÏpΓ,Cq s2 ô
nª
i�1

p
mi©
j�1

pFijps1q θFijps2qqq (6.2)

where θ P t�,�, ,¡,¤,¥u and Fij is an additive aggregate subset feature, then C� can

be defined by a first-order formula which is independent of k.

Proof. Assume s1 is a (k-1)-subset of the relation r, we have the following rewriting

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s

1 P (k-1)-subsetsprztt1, t2uq,

s1 Y tt1u ÏpΓ,Cq s1 Y tt2us

ô t1 P r ^ t2 P r ^ r@s
1 P (k-1)-subsetsprztt1, t2uq,

nª
i�1

p
mi©
j�1

pFijps1 Y tt1uq θFijps1 Y tt2uqqqs

Since Fij is additive, we can show by case study that each Fijps1Ytt1uq θFijps1Ytt2uq

is equivalent to a formula Dijpt1, t2q of t1 and t2 only. For example, assume aggr in Fij is
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sum, and θ is ¡, then with the abuse of the indicator function cijp�q as a boolean variable,

we have

Fijps1 Y tt1uq ¡ Fijps1 Y tt2uq

ô Fijps1q � cijpt1q � t1.Aij ¡ Fijps1q � cijpt2q � t2.Aij

ô pcijpt1q ^ cijpt2q ^ t1.Aij ¡ t2.Aijq

_pcijpt1q ^  cijpt2q ^ t1.Aij ¡ 0q

_p cijpt1q ^ cijpt2q ^ t2.Aij   0q

Therefore,

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s

1 P (k-1)-subsetsprztt1, t2uq,
nª
i�1

p
mi©
j�1

pDijpt1, t2qqqs

where Dijpt1, t2q is a formula with only variables t1 and t2. In particular, Dijpt1, t2q does

not contain the set variable s1. It can be shown that we can eliminate s1 in the above formula,

in which case,

t1 ¡
� t2 ô t1 P r ^ t2 P r ^

nª
i�1

p
mi©
j�1

pDijpt1, t2qqq

By rewriting every conjunct in C, we obtain C� �
�n

i�1p
�mi

j�1pDijpt1, t2qqq.

The additive subset features identified in Proposition 6.4.2 are eligible for the rewriting

technique in Theorem 6.4.1. However, this rewriting does not work for features defined by

min, or max, or avg with non-TRUE WHERE condition, since they are non-additive. In

those cases, if we rewrite Fpsq as an expression of s1 and t, the term(s) containing variable

s1 cannot be cancelled on both sides of θ. Intuitively, it states that we cannot determine

which of t1 and t2 is superpreferred without looking at the tuples in s1. For example,

consider the case where aggr is avg, the condition is non-TRUE, and θ is ¡, the

95



rewriting technique in Theorem 6.4.1 generates the following inequality:

Fijps1 Y tt1uq ¡ Fijps1 Y tt2uq

ô
bijps1q � Fijps1q � cijpt1q � t1.Aij

bijps1q � cijpt1q
¡
bijps1q � Fijps1q � cijpt2q � t1.Aij

bijps1q � cijpt2q

where bijps1q � |tt|t P s1 ^ cijptqu|. After simplifying the above inequality, we still have

terms of variable s1.

In most cases, we can use domain knowledge to significantly simplify the rewriting

approach described in Theorem 6.4.1. For the rewriting example in the proof of Theorem

6.4.1, if Aij is price, which is always positive, then the rewriting is simplified to

cijpt1q ^ pt1.Aij ¡ t2.Aij _ cijpt2qq

Example 19. In Example 3, consider the following preference

(C5) Alice wants to spend as little money as possible on sci-fi books.

(C6) Alice wants the total rating of books to be as high as possible.

and the set preference is the intersection of (C5) and (C6). Let Γ � xF5,F6y

F5 � SELECT sum(price) FROM $S WHERE genre=’sci-fi’

F6 � SELECT sum(rating) FROM $S

and s1 ÏpΓ,Cq s2 iff F5ps1q   F5ps2q ^ F6ps1q ¡ F6ps2q. The superpreference formula C�

obtained under the assumption that price ¡ 0 is

C�pt1, t2q ô t1.rating ¡ t2.rating ^ t2.genre � ’sci-fi’

^pt1.price   t2.price_ t1.genre � ’sci-fi’q.

Note that two important classes of preferences skyline [7] and p-skyline [47] can be

expressed in the form of the formula in (6.2).
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6.4.3 Properties of Superpreference

A Special Case

Proposition 6.4.3. For a constant-free DNF profile preference formula C (c.f., Equation

6.2), if all features in C are additive , then the superpreference ¡� constructed preserves

the order properties of ¡C (strict partial order, weak order and total order).

Proof. Similar to the proof of Theorem 6.4.1, for every t1 ¡� t2 and every s1 P (k-1)-subsetsprztt1, t2uq,

nª
i�1

p
mi©
j�1

pFijps1 Y tt1uq θFijps1 Y tt2uqqq

Since Fij is additive, we have

Fijps1 Y tt1uq θFijps1 Y tt2uq

ô pFijps1q � fijpt1qq θpFijps1q � fijpt2qq

ô fijpt1q θfijpt2q

ô Fijptt1uq θFijptt2uq

Therefore, the superpreference formula C� is

nª
i�1

p
mi©
j�1

pFijptt1uq θFijptt2uqqq

which is the exact formula C over singleton subsets.

By induction on k, it is easy to verify that if the formula C represents a strict partial

order (weak order, total order, resp.) in the domain of k-subsetsprq, then it is a strict partial

order (weak order, total order, resp.) in the domain of 1-subsetsprq, i.e., singleton subsets

of r. The conclusion follows.

In Proposition 6.4.3, the superpreference ¡� is by itself order-preserving. The integra-

tion of any domain knowledge might change the order property of ¡�. For example, in

Example 19, the set preference ¡C is a weak order while the superpreference ¡� is not. It

is due to the fact that we integrate the domain knowledge price ¡ 0 in ¡�.

97



General Superpreference

Proposition 6.4.3 states the property of superpreference in a special case. In general, strict

partial order is preserved by the superpreference rewriting, while weak order and total order

are not.

Proposition 6.4.4. For any set preference relation ÏpΓ,Cq, if the profile preference relation

¡C is a strict partial order (i.e. irreflexive and transitive), then the corresponding super-

preference relation ¡� is a strict partial order as well.

Proof. If ¡� is empty, then it is trivially true. Otherwise, we need to show that ¡� is

irreflexive and transitive. Given the irreflexitivity of ¡C , the irreflexitivity of ¡� can be

easily shown by contradiction. Here, we only prove the transitivity of ¡�.

We need to show that t1 ¡� t2 ^ t2 ¡� t3 ñ t1 ¡
� t3.

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s P (k-1)-subsetsprztt1, t2uq,

sY tt1u ÏpΓ,Cq sY tt2us (6.3)

t2 ¡
� t3 ô t2 P r ^ t3 P r ^ r@s P (k-1)-subsetsprztt2, t3uq,

sY tt2u ÏpΓ,Cq sY tt3us (6.4)

Therefore, consider any subset s P (k-1)-subsetsprztt1, t3uq. We have the following two

cases:

Case 1: t2 R s

By (6.3), (6.4) and the transitivity of ¡C , we have sY tt1u ÏpΓ,Cq sY tt3u.

Case 2: t2 P s

Let s1 � sztt2u, by (6.3),

s1 Y tt3u Y tt1u ÏpΓ,Cq s1 Y tt3u Y tt2u (6.5)

By (6.4),

s1 Y tt1u Y tt2u ÏpΓ,Cq s1 Y tt1u Y tt3u (6.6)
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By (6.5), (6.6) and the transitivity of ¡C , we have sY tt1u ÏpΓ,Cq sY tt3u.

Proposition 6.4.5. For some weak order profile preference relation ¡C (i.e., irreflexive,

transitive and negatively transitive) over a relation r, the corresponding superpreference

relation ¡� is not a weak order.

Proof. We show a counterexample here. S is a relation with the schema xB1, B2y. The

profile relation Γ � xF7,F8y. We are interested in k-subsets, where k � 2.

F7 � SELECT count(B1) % 2 FROM $S WHERE B1=TRUE

F8 � SELECT sum(B2) FROM $S

and the set preference is

s1 ÏpΓ,Cq s2 iff F7ps1q ¡ F7ps2q _ pF7ps1q � F7ps2q ^ F8ps1q ¡ F8ps1qq

In other words, the set preference is a prioritized composition of the two (weak order)

set preferences preferring larger values of F7 and F8, respectively. Chomicki [16] shows

that prioritized composition preserves weak order. Therefore, it is easy to see that the set

preference C is a weak order. For the superpreference computation, Theorem 6.4.1 is not

applicable because F7 is not additive. On the other hand, the feature F8 is additive.

In this particular example, we are able to compute the superpreference ¡� from Defi-

nition 6.4.3. In the following equation, c7p�q is the indicator function corresponding to the

feature F7. That is, for every tuple t, c7ptq � 1 if t.B1 �TRUE, otherwise c7ptq � 0.

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s

1 P (k-1)-subsetsprztt1, t2uq,

s1 Y tt1u ÏpΓ,Cq s1 Y tt2us

ô t1 P r ^ t2 P r ^ r@s
1 P (k-1)-subsetsprztt1, t2uq,

F7ps
1q xor c7pt1q ¡ F7ps

1q xor c7pt2q

_pF7ps
1q xor c7pt1q � F7ps

1q xor c7pt2q

^ F8ps
1q � f8pt1q ¡ F8ps

1q � f8pt2qqs

where f8 is the function corresponding to the additive feature F8 in Definition 6.4.4.
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• Case 1: c7pt1q � c7pt2q

For every s1, F7ps1q xor c7pt1q ¡ F7ps1q xor c7pt2q is always evaluated to FALSE.

Therefore,

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s

1 P (k-1)-subsetsprztt1, t2uq,

F7ps
1q xor c7pt1q � F7ps

1q xor c7pt2q

^ F8ps
1q � f8pt1q ¡ F8ps

1q � f8pt2qs

ô t1 P r ^ t2 P r ^ r@s
1 P (k-1)-subsetsprztt1, t2uq,

c7pt1q � c7pt2q ^ f8pt1q ¡ f8pt2qs

By expanding the definition of function c7 and function f8, we have

t1 ¡
� t2 ô t1.B1 � t2.B1 ^ t1.B2 ¡ t2.B2 (6.7)

• Case 2: c7pt1q � c7pt2q

For every s1, F7ps1q xor c7pt1q � F7ps1q xor c7pt2q is always evaluated to FALSE.

Therefore,

t1 ¡
� t2 ô t1 P r ^ t2 P r ^ r@s

1 P (k-1)-subsetsprztt1, t2uq,

F7ps
1q xor c7pt1q ¡ F7ps

1q xor c7pt2qs

As long as the relation r is not extremely limited, i.e., there are at least two (k-1)-

subsets with differentF7 values, then for some s1,F7ps1q xor c7pt1q ¡ F7ps1q xor c7pt2q

is evaluated to FALSE. Hence, there is no superpreference relationship between such

t1 and t2.

It is easy to verify that the superpreference ¡� defined by Equation 6.7 is not a weak

order.

Proposition 6.4.6. For some total order profile preference relation ¡C (i.e., irreflexive,

transitive and connected) over a relation r, the corresponding superpreference relation ¡�
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is not a total order.

Proof. Given a total order set preference, its superpreference can be empty. For example,

in the counterexample used in the proof of Proposition 6.4.5, assume the set preference C

is instead

s1 ÏpΓ,Cq s2 iff F7ps1q ¡ F7ps2q _ pF7ps1q � F7ps2q � 0 ^ F8ps1q ¡ F8ps2qq _

pF7ps1q � F7ps2q � 1^ F8ps1q   F8ps2qq

It is easy to verify that the set preference is a total order. The superpreference ¡� is

empty. This is because for any two tuples t1, t2 P r and any (k-1)-subset s P rztt1, t2u, the

comparison between sYtt1u and sYtt2u depends on t1.B1, t2.B2 and the number of tuples

with TRUE B1 value in s. For any relation with sufficiently many tuples and a non-extreme

B1 value distribution, i.e., |r| ¥ maxp4, k � 2q and at least two tuples of TRUE B1 values

and at least two tuples of FALSE B1 values, there are choices of s having an even number

of tuples with TRUE B1 value, as well as choices of s having an odd number of tuples with

TRUE B1 values. Consequently, there is not an unanimous order between s Y tt1u and

sY tt2u for every (k-1)-subset s P rztt1, t2u.

6.4.4 M-relation

Superpreference is a pruning technique in order to filter out tuples which do not contribute

to the best k-subsets. It reduces the size of the original relation, which leads to fewer candi-

date k-subsets. In other words, it prunes the inferior k-subsets during generation. Besides

the inferior k-subsets, we often observe redundant candidate k-subsets during generation,

as in Example 20.

Example 20. Assume we add two more tuples to the Book relation in Example 3
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Book:

title genre rating price vendor

a1 sci-fi 5.0 $15.00 Amazon

a2 biography 4.8 $20.00 B&N

a3 sci-fi 4.5 $25.00 Amazon

a4 romance 4.4 $10.00 B&N

a5 sci-fi 4.3 $15.00 Amazon

a6 romance 4.2 $12.00 B&N

a7 biography 4.0 $18.00 Amazon

a8 sci-fi 3.5 $18.00 Amazon

a9 romance 4.0 $20.00 Amazon

a10 history 4.0 $19.00 Amazon

and we have the same set preference ÏpΓ,Cq as that in Example 19. That is, Γ � xF5,F6y

F5 � SELECT sum(price) FROM $S WHERE genre=’sci-fi’

F6 � SELECT sum(rating) FROM $S

The tuple a7 and a9 are exchangeable with regard to the set preference, because for

every 2-subset s of Bookzta7, a9u, extending s with a7 or a9 leads to the same profile in

the profile relation, i.e., profileΓpsY ta7uq � profileΓpsY ta9uq. By the same argument,

a7, a9 and a10 are mutually exchangeable.

Example 20 illustrates possible redundancy in the k-subset generation. For example, if

we have already generated the 3-subset ta1, a2, a7u, we do not need to generate ta1, a2, a9u

or ta1, a2, a10u as neither leads to a new profile. It is therefore more efficient to consolidate

a7, a9, a10 into a meta-tuple, i.e., an M-tuple, m7,9,10, and consider only the M-tuple in the

generation of candidate k-subsets.

Based on the above idea, we define an exchangeability relation among tuples in Defini-

tion 6.4.5.

Definition 6.4.5 (Exchangeability Relation). Given a relation r, a positive integer k   |r|

and a set preference relation ÏpΓ,Cq, an equivalence relation �pΓ,Cq is an exchangeability
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relation over r if

t1 �pΓ,Cq t2 ñ t1 P r ^ t2 P r ^ r@s
1 P (k-1)-subsetsprztt1, t2uq, (6.8)

profileΓrmbs
ps1 Y tt1uq � profileΓrmbs

ps1 Y tt2uqs

Tuple t1 and t2 are exchangeable iff t1 �pΓ,Cq t2.

Notice the superficial similarity between Definition 6.4.5 and Definition 6.4.3. It is easy

to show that the exchangeability relation in Definition 6.4.5 is different from the indiffer-

ence relation induced by the superpreference relation in Definition 6.4.3.

Also notice that, given a set preference, there can be more than one exchangeability re-

lation according to Definition 6.4.5. For example, the equality relation where each equiv-

alence class contains exactly one tuple is a trivial exchangeability relation. In fact, any

equivalence relation contained in an exchangeability relation is another exchangeability

relation.

An exchangeability relation �pΓ,Cq over r is optimal if and only if it contains every

other exchangeability relation. That is, its corresponding partition of r is not a refinement

of the partition of any other exchangeability relation. Formally,

Definition 6.4.6 (Optimal Exchangeability Relation). An exchangeability relation �pΓ,Cq

over the relation r is optimal if and only if

t1 �pΓ,Cq t2 ô t1 P r ^ t2 P r ^ r@s
1 P (k-1)-subsetsprztt1, t2uq, (6.9)

profileΓrmbs
ps1 Y tt1uq � profileΓrmbs

ps1 Y tt2uqs

The optimal exchangeability relation is an equivalence relation.

Equation 6.9 defines the maximal exchangeability relation in terms of partition contain-

ment as the optimal one. It differs from Equation 6.8 in that it requires a sufficient condition

as well.

Example 21. For the relation in Example 20, assume the same set preference ÏpΓ,Cq in

Example 19, i.e., prefer spending less money on sci-fi books and higher book ratings. By
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Definition 6.4.5, one exchangeability relation and its partition are

�0 � tpai, aiq|i � 1, . . . , 10u

P0 � ttaiu|i � 1, . . . , 10u

Another exchangeability relation and its partition are

�1 � tpai, aiq|i � 1, . . . , 10u Y

tpa7, a9q, pa9, a7q, pa7, a10q, pa10, a7q, pa9, a10q, pa10, a9qu

P1 � ttaiu|i � 1, . . . , 6, 8u Y tta7, a9, a10uu

The exchangeability relation �0 is the equality relation. Since P0 is a refinement of P1,

i.e., P0 � P1, the exchangeability relation �0 is not optimal. It is easy to verify that �1

is optimal since the merge of any equivalence classes in partition P1 does not lead to an

exchangeability relation over the Book relation.

We introduce a profile consolidation optimization using M-relations. Given an ex-

changeability relation �pΓ,Cq, an M-relation contains M-tuples, and is such that there is

a one-one mapping between its M-tuples and parts in the partition of �pΓ,Cq.

There are various ways to define an M-relation corresponding to an exchangeability

relation. In Definition 6.4.7, we give one way of defining an M-relation using SQL. As

we will in Theorem 6.4.2, such M-relations corresponding to the optimal exchangeability

relation under certain conditions.

Before we introduce how to define an M-relation using SQL, we first classify the at-

tributes in a profile schema into three categories, based on their additivity and their involve-

ment in the set preference. Without loss of generality, the profile schema in a set preference

ÏpΓ,Cq is

Γ � t

relevanthkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj
F1, . . . ,Fmaloooooomoooooon

additive

,Fma�1, . . . ,Fmb ,Fmb�1
. . . ,Fmu,

where

(1) The features F1, . . . ,Fmb are the relevant features involved in the profile preference
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formula C, denote by Γrmbs. The features Fmb�1
, . . . ,Fm are not involved in C.

(2) The features F1, . . . ,Fma are additive (c.f., Definition 6.4.4).

In Definition 6.4.7, the M-relation is defined using a query on the distinct values of

attributes corresponding to the relevant features F1, . . . ,Fmb . Moreover, for the additive

relevant features F1, . . . ,Fma , tuples are grouped by their contribution to the calculation

of additive features over sets: in Definition 6.4.7, gi is either fi, the base of the additive

feature Fi, or fi with a default value, where i � 1, . . . ,ma. This procedure is expressed

using a subquery and a group-by clause in Definition 6.4.7.

The M-relation also keeps track of the number of tuples consolidated into an M-tuple,

which is the special attribute Acnt in Definition 6.4.7.

Definition 6.4.7 (M-relation using SQL). Given a relation r with schemaR, a non-negative

integer k and a set preference ÏpΓ,Cq, define the M-relation schema O � xA1, . . . , Ama ,

Ama�1, . . . , Amc , Acnty, and the M-relation o by the following SQL query:

SELECT g1pRq AS A1,..., gmapRq AS Ama, attrspFma�1, . . . ,Fmbq,

count(*) AS Acnt

FROM R

GROUP BY A1,..., Ama, attrspFma�1, . . . ,Fmbq

where

1. R is a tuple range variable;

2. gipRq, i � 1, . . . ,ma is either fi, or fi with a default value defined by the following

CASE statement:

CASE

WHEN condition THEN fipRq

ELSE default_value

END

3. attrspFma�1, . . . ,Fmbq � tAma�1, . . . , Amcu, i.e., the set of attributes mentioned

in the definitions of the features Fma�1, . . . ,Fmb;
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4. Acnt is a special attribute in the M-relation schema tracking the number of tuples

consolidated into a single M-tuple in the M-relation.

Example 22. Continuing Example 20, the M-relation schema is determined by the set

preference. For the set preference in Example 20, whose definition can be found in Example

19, its M-relation schema is xA5, A6, Acnty. Just for illustration purpose, we assume the

non-additive featureF3 is also a relevant feature in the set preference. Thus, the M-relation

schema becomes xA5, A6, A3, Acnty, and the M-relation is generated via the following SQL

query:

SELECT

CASE

WHEN r.genre=’sci-fi’ THEN r.price

ELSE 0

END AS A5, r.rating AS A6, r.vendor AS A3, count(*) AS Acnt

FROM r

GROUP BY A5, A6, A3

In the following M-relation o1, the subscripts of each M-tuple are the indices of tuples

consolidated into it.

A5 A6 A3 Acnt

m1 $15.00 5.0 Amazon 1

m2 $0.00 4.8 B&N 1

m3 $25.00 4.5 Amazon 1

m4 $0.00 4.4 B&N 1

m5 $15.00 4.3 Amazon 1

m6 $2.00 4.2 B&N 1

m7,9,10 $0.00 4.0 Amazon 3

m8 $18.00 3.5 Amazon 1

The actual M-relation o for Example 20 happens to be the above o1 relation with the

attributes xA5, A6, Acnty only.

In Example 22, we use a CASE statement for a feature definition in the M-relation. In

the CASE statement, the ELSE statement gives a default value for the new feature if the
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WHEN condition is not satisfied. The default value is 0 for A5 in Example 22. In general, it

can be any constant.

The purpose of M-relations is to identify exchangeable tuples as illustrated by Exam-

ple 20. In Definition 6.4.5, we formally define the exchangeability of tuples under a set

preference.

Theorem 6.4.2. For a constant-free DNF profile preference formula C (c.f., Equation 6.2)

and a relation r, if all features in C are additive, then the exchangeability relation corre-

sponding to the M-relation in Definition 6.4.7 is optimal over r.

Proof. The optimal exchangeability relation is

t1 �pΓ,Cq t2 ô t1 P r ^ t2 P r ^ r@s
1 P (k-1)-subsetsprztt1, t2uq,

profileΓrmbs
ps1 Y tt1uq � profileΓrmbs

ps1 Y tt2uqs

ô t1 P r ^ t2 P r ^ r@s
1 P (k-1)-subsetsprztt1, t2uq, @i, i � 1, . . . ,mb,

Fips1 Y tt1uq � Fips1 Y tt2uqs

Since all the features in formula C are additive, mb � ma, and for each additive feature

Fi, i � 1, . . . ,ma,

Fips1 Y tt1uq � Fips1 Y tt2uq

ô Fips1q � fipt1q � Fips1q � fipt2q

ô fipt1q � fipt2q

Therefore,

t1 �pΓ,Cq t2 ô t1 P r ^ t2 P r ^ r@s
1 P (k-1)-subsetsprztt1, t2uq, @i, i � 1, . . . ,ma,

fipt1q � fipt2qs

ô t1 P r ^ t2 P r ^ r@i � 1, . . . ,ma, fipt1q � fipt2qs
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This is exactly the partition we get from the SQL query in Definition 6.4.7. It is crucial

that all the features in formula C are additive. Otherwise, we do not have a base of a

non-additive feature.

Example 23. In Example 22, the partition generated by the M-relation is tta1u, . . ., ta6u,

ta7, a9, a10u, ta8uu, which is the exact partition corresponding to the optimal exchangeabil-

ity relation defined by Equation 6.9.

6.4.5 Computing Profiles via M-relations

Our goal is to compute the profiles from an M-relation directly. If we compute profiles only

from the k-subsets of the M-relation, we might miss some of the profiles in the original

relation. Say k � 2, and an M-tuple m1 corresponds to tuples t1 and t2 in the original

relation r. We therefore have a profile computed from the 2-subset tt1, t2u in the profile

relation γ. However, we cannot compute this profile from a k-subset of the M-relation,

since a k-subset of the M-relation contains at most one M-tuple m1 and tm1,m1u is not

a 2-subset of the M-relation. Hence, in order to compute the exact profiles of the original

relation, we need to compute profiles from the k-multisubsets (Definition 6.4.8) of an M-

relation.

Definition 6.4.8 (k-multisubset). Given an M-relation o and a positive integer k, k  °
miPomi.Acnt, a k-multisubset s of o is a multiset s of o and |s| � k, where the number of

occurrences of each M-tuple does not exceed its Acnt value. Denote by k-multisubsetspoq

the set of all k-multisubsets of o.

Theorem 6.4.3 states we can compute the projection of the profile relation γ to the

relevant features by evaluating those features of k-multisubsets.

It is crucial to the k-multisubset generation that the M-relation records the number of

tuples consolidated into each M-tuple. For example, in Example 20, assume a1 is the

only tuple consolidated to the M-tuple m1, then the 3-multisubset tm1,m7,9,10,m7,9,10u

represents 3 3-subsets of the original relation: a1 and any two tuples from ta7, a9, a10u.

The subtlety is that in the k-subset generation of the original tuples, each tuple can appear
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at most once in a candidate k-subset, while in the k-multisubset generation, each M-tuple

can appear multiple times in a candidate k-multisubset. The number of occurrences of

an M-tuple in a candidate k-multisubset is bounded from above by the number of tuples

consolidated into it.

The profile computed from a k-multisubset of an M-relation is the projection to relevant

features of the profile of the corresponding k-subset(s) of the original relation. Notice that

we already have all the information needed in order to compute this profile projection in

the M-relation. For an additive relevant feature, we keep each M-tuple’s contribution to

the calculation of this feature. For a non-additive relevant feature, we keep the values of

every attribute involved in the calculation of this feature. Therefore, in order to compute

this profile projection, we simply add up each M-tuple’s contribution for additive relevant

features, and compute the value of non-additive relevant features as we would do for a

k-subset.

Theorem 6.4.3. Assume o is an M-relation corresponding to a relation r. For each s P

k-subsetsprq, there is a s1 P k-multisubsetspoq, such that profileΓrmbs
psq � profileΓrmbs

ps1q,

and vice versa.

Proof. (ñ) The SQL query defining the M-relation o creates a surjection g : r Ñ o. For

each s P k-subsetsprq, without loss of generality, assume s � tt1, . . . , tku. Let gpsq �

tgpt1q, . . . , gptkqu � s1, and s1 P k-multisubsetspoq.

By Definition 6.4.4, for each additive feature Fi, i � 1, . . . ,ma, Fipsq � Fipszttkuq �

fiptkq, Fipsq �
°k
j�1 fiptjq. On the other hand, following the definition of the M-relation

(Definition 6.4.7), for the k-multisubset s1, we have Fips1q �
°k
j�1 gptjq.Ai �

°k
j�1 fiptjq.

Therefore, Fips1q � Fipsq.

For each non-additive relevant featureFi, i � ma�1, . . . ,mb,Fips1q � Fiptgpt1q, . . . , gptkquq.

By Definition 6.4.7, each tuple in s and its image in s1 have the same value on attributes

in Fi. That is, tj.Al � gptjq.Al where j � 1, . . . , k and l � ma � 1, . . . ,mc. Therefore,

Fips1q � Fiptt1, . . . , tkuq � Fipsq.

(ð) It is sufficient to show that for each s P k-multisubsetspoq, there is a s1 P k-subsetsprq

such that gps1q � s. Rewrite s as tm1 : c1, . . . ,mk1 : ck1u, k1 ¤ k, where mj : cj ,
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j � 1, . . . , k1, denotes that mj P o repeats cj times in s. Construct s1 as the union of any cj

tuples from tt P r|gptq � mju for j � 1, . . . , k1. It is easy to verify that gps1q � s.

Theorem 6.4.3 guarantees that the projection of the original profile relation computed

from the M-relation is sound and complete. Algorithm 13 uses M-relations to compute

the best k-subsets. Algorithm 13 is similar to Algorithm 9 except that it works on the

M-relation and uses a k-multisubset generator.

Algorithm 13 M-relation Algorithm
Require: a profile schema Γ, a profile preference relation ¡C , a relation r and a positive

integer k, k   |r|
Ensure: the best k-subsets of r under the set preference ÏpΓ,Cq

1: Compute the M-relation o by Definition 6.4.7.
2: Generate all k-multisubsets of o and for each compute the profile features in Γ relevant

to C, i.e.,Γrmbs, obtaining γ1, the projection of profile relation γ onto Γrmbs.
3: Compute γ2 � ωCpγ1q using any winnow evaluation algorithm.
4: Retrieve the subsets whose profile projections correspond to the elements of γ2.

We present in Algorithm 14 the core algorithm used in a k-multisubset generator. An

index vector representation of a k-multisubset is the vector of its tuple indices in the non-

decreasing order. The lexicographical order of k-multisubsets is defined as the lexico-

graphical order of their index vector representations. Algorithm 14 is a generalization of

Algorithm 10.

Example 24. Continuing Example 22, the following table gives a few examples of can-

didate k-subsets in Book and their corresponding k-multisubsets in the M-relation o, to-

gether with the corresponding profiles in the profile relation γ.

k-subsets of Book k-multisubsets of o profile

ta1, a2, a7u, ta1, a2, a9u, ta1, a2, a10u tm1,m2,m7,9,10u p$15.00, 13.8q

ta1, a7, a9u, ta1, a7, a10u, ta1, a9, a10u tm1,m7,9,10,m7,9,10u p$15.00, 13.0q

In fact, a k-subset generator of Book will enumerate all
�

10
3

�
� 120 candidate k-subsets

(k � 3), while a k-multisubset generator of the M-relation will only enumerate
�

7
3

�
+
�

7
2

�
��

7
1

�
�
�

7
0

�
� 64 k-multisubsets.
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Algorithm 14 k-multisubset Lexicographical Successor
Require: an M-relation o, a positive integer k, k  

°
miPomi.Acnt and the index vector

representation ~T of a k-multisubset
Ensure: the index vector representation ~Tnext of the lexicographical successor of ~T

1: {compute the last k-multisubset in the lex order}
2: id � |o|
3: for j � k to 1 do
4: {mid is the M-tuple with index id from M-relation o}
5: l � 1
6: while j ¡ 0 and l ¤ mid.Acnt do
7: ~Tlast.j � id
8: j � j � 1
9: l � l � 1

10: end while
11: id � id� 1
12: end for
13: {compute the next k-multisubset in the lex order}
14: ~Tnext � ~T
15: i � k
16: while i ¥ 1 and ~T .i �� ~Tlast.i do
17: i � i� 1
18: end while
19: if i==0 then
20: return “no more k-subsets”
21: else
22: id � ~T .i� 1
23: for j � i to k do
24: l � 1
25: while j ¤ k and l ¤ mid.Acnt do
26: ~Tnext.j � id
27: j � j � 1
28: l � l � 1
29: end while
30: id � id� 1
31: end for
32: return ~Tnext
33: end if
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By Definition 6.4.7, for k-multisubsets of the M-relation o, the definition of feature F5

is

SELECT sum(A5) FROM $S

and the definition of feature F6 is

SELECT sum(A6) FROM $S

We can compute a profile from a k-multisubset by computing its features. For example,

s � tm1,m2,m7,9,10u, then F5psq � m1.A5 � m2.A5 � m7,9,10.A5 � $15.00 � $0.00 �

$0.00 � $15.00, and F6psq � m1.A6 � m2.A6 � m7,9,10.A6 � 5.0 � 4.8 � 4.0 � 13.8.

Therefore, the profile of the multiset s is p$15.00, 13.8q.

The profile relation Γ contains 64 distinct profiles. In this particular example, the k-

multisubset generator eliminates all redundancy in the set generation: each candidate k-

multisubset returned by the generator leads to a distinct new profile. Though it is not

always the case in general, a k-multisubset generator still saves significant number of sets

generated in most cases.

Example 24 illustrates the savings achieved by the M-relation. In general, the benefit

of M-relations comes in three folds:

(1) Selectivity of attribute values.

The M-relation is defined by a GROUP BY SQL query in Definition 6.4.7, which

suggests that low selectivity of attribute values will lead to fewer M-tuples.

(2) Selectivity of WHERE conditions in feature definitions;

Since every feature definition is also a “mini-SQL” query, it is likely that tuple not

satisfying the WHERE condition of the feature definition will contribute a default

value in the feature evaluation. Recall that the M-relation definition query in Example

22 has default value 0 for attributeA5. Such default values fully exploit the selectivity

of the WHERE condition. A highly selective WHERE condition will lead to more tuples

with the default value, and therefore result in a smaller M-relation.

(3) Non-relevant attributes.
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The projection to attributes relevant to the set preference reduces the redundancy in

k-subset generation.

6.4.6 Hybrid

Superpreference and M-relation target two different aspects of pruning: superpreference

filters out tuples which cannot be part of any best k-subsets, while M-relation consoli-

dates exchangeable tuples and process k-subsets in groups. It is natural to combine them

to achieve further pruning. We propose here two possible combinations of those two op-

timizations: SM and MS. Without loss of generality, assume we are given a relation r, a

positive integer k   |r| and a set preference ÏpΓ,Cq.

• (SM) Superpreference followed by M-relation. (Algorithm 15)

Algorithm 15 Hybrid SM Algorithm
Require: a profile schema Γ, a profile preference relation ¡C , a relation r and a positive

integer k, k   |r|, ¡� locally defined using C�

Ensure: the best k-subsets of r under the set preference ÏpΓ,Cq
1: Do pairwise comparison between tuples in r, and determine coverptq for each t P r.
2: Let r1 � tt P r||coverptq|   ku.
3: Return the result of the M-relation Algorithm (Algorithm 13) with the input relation r1

and the profile preference relation ¡C restricted to r1 instead.

• (MS) M-relation followed by superpreference. (Algorithm 16)

In this algorithm, we apply the superpreference technique to the M-relation. The

difference between computing profiles from the original relation r and from

its M-relation o is that we use k-multisubsets instead of k-subsets in the latter

case. The profiles computed from the M-relation are the projection of the origi-

nal profiles to the relevant features. The profile computation of a k-multisubset

is straightforward. For an additive feature, simply sum up the values of the cor-

responding attribute of every M-tuples in the k-multisubset. For a non-additive

feature, the M-relation schema has every attribute involved in this feature and

we compute its value for the k-multisubset as before.
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In order to apply the superpreference optimization to an M-relation, we need to

generalize the notions of superpreference and cover to M-relations.

Recall that, in Definition 6.4.3, a tuple t1 is superpreferred to a tuple t2 if and

only if it is more beneficial to extend every (k-1)-subset with t1 instead of t2 to

get a k-subset. The superpreference relation ¡�
o in an M-relation o is similar:

an M-tuple m1 is superpreferred to an M-tuple m2 if and only if it is more

beneficial to extend every (k-1)-multisubset with m1 instead of m2 to get a k-

multisubset.

Similarly, the cover of an M-tuple m is the multiset of M-tuples m1 dominating

m under ¡�
o with each such m1 occurring m1.Acnt times, i.e., coverpmq �

tm1 P o,m1 repeats m1.Acnt times|m1 ¡�
o mu.

Algorithm 16 Hybrid MS Algorithm
Require: a profile schema Γ, a profile preference relation ¡C , a relation r and a positive

integer k, k   |r|, ¡� locally defined using C�

Ensure: the best k-subsets of r under the set preference ÏpΓ,Cq
1: Compute the M-relation o of the relation r.
2: Compute the superpreference relation ¡�

o in the M-relation o.
3: Compute o1 � tm P o||coverpmq|   ku, where coverpmq � tm1 P
o repeats m1.Acnt times|m1 ¡�

o mu.
4: Retrieve relation r1 � r contributing to the M-relation o1.
5: Return the result of the M-relation Algorithm (Algorithm 13) with the input relation r1

and the profile preference relation ¡C restricted to r1 instead.

6.5 Experiments

We reported here an experimental study of the performance of various query evaluation

algorithms proposed. We implemented all the algorithms in C++ and ran experiments on a

machine with Intel Core2 1.66GHz CPU running Cygwin on Windows XP with 2GB mem-

ory. We used a real dataset containing the information of 8000 book quotes from Amazon.

The data schema is xtitle, genre, rating, price, vendory. We implemented five algorithms:

NAIVE, SUPER, MREL, SM, MS. NAIVE is the basic algorithm in Algorithm 9. SUPER

and MREL are the implementation of Algorithm 11 and Algorithm 13, respectively. SM
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and MS are the hybrid algorithms in Section 6.4.6. Superpreference and M-relation are

both used but applied in different order in SM and MS.

For the performance measure, we focus on the number of candidate k-subsets (or k-

multisubsets) generated, as it is the dominant factor in each algorithm. There are usually

three major types of operations in each algorithm:

• Preprocessing: the superpreference filtering and/or the M-relation generation;

• Generation: candidate k-subset (or k-multisubset) generation;

• Winnow.

In Preprocessing, the superpreference filtering is implemented by computing cover for

each tuple, which takes quadratic time. The M-relation generation involves a GROUP BY

clause, and is therefore linear if implemented by hashing or Opn log nq if implemented

by sorting. As a result, Preprocessing and Winnow together have worst-case quadratic

complexity. On the other hand, Generation takes
�
n
k

�
time. When k    n, this is Opnkq.

When k � tn{2u,
�
n
k

�
is approximately 2n�1?

2πn
. Consequently, the complexity of Generation

dominates the complexity of all algorithms when k ¡ 2.

In our experiments, denote by g the number of sets generated in Generation. Recall the

definitions of feature F5 and F6 in Example 19.

F5 � SELECT sum(price) FROM $S WHERE genre=’sci-fi’

F6 � SELECT sum(rating) FROM $S

Furthermore, we define the following features:

F9 � SELECT sum(rating) FROM $S WHERE genre=’sci-fi’

F10 � SELECT sum(price) FROM $S

F11 � SELECT count(title) FROM $S WHERE genre=’sci-fi’

and price < 20.00

F12 � SELECT sum(rating) FROM $S WHERE rating >= 4.0

The set preferences we tested are listed in Table 6.1. They are all conjunctions since

disjunctions easily lead to cyclic preferences which are not strict partial orders. The corre-

sponding superpreferences and M-relation generation SQL queries are listed in Table 6.2
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and Table 6.3, respectively. Notice that the only difference between SP1 and SP2 is that we

apply the WHERE condition to the attribute price in F5 of SP1 while the same WHERE

condition is applied to the attribute rating in F9 of SP2. We intend to see the influence

of selectivity of attributes. In SP1, since price has a WHERE condition while rating

does not, the selectivity of rating is dominating. In contrast, in SP2, for a similar reason,

the selectivity of price is dominating.

Set Pref. Name Profile Schema Γ Profile Pref. Formula C
SP1 xF5,F6y F5ps1q   F5ps2q ^ F6ps1q ¡ F6ps2q
SP2 xF9,F10y F9ps1q ¡ F9ps2q ^ F10ps1q   F10ps2q
SP3 xF11,F12y F11ps1q ¡ F11ps2q ^ F12ps1q ¡ F12ps2q

Table 6.1: Set Preferences

Set Pref. Name Superpreference

SP1
t1.rating ¡ t2.rating ^ t2.genre � ’sci-fi’
^pt1.price   t2.price_ t1.genre � ’sci-fi’q

SP2
t1.price   t2.price^ t1.genre � ’sci-fi’
^pt1.rating ¡ t2.rating _ t2.genre � ’sci-fi’q

SP3
t1.genre � ’sci-fi’^ t1.price   20.00
^pt2.genre � ’sci-fi’_ t2.price ¥ 20.00q ^ t1.rating ¥ 4.0
^pt2.rating ¤ 4.0_ t1.rating ¡ t2.ratingq

Table 6.2: Superpreferences

Notice that SP1 is used extensively in our running examples. Its superpreference and M-

relation generating SQL already appears in Example 19 and Example 22 before. We list

them here for easy reference.

Summary of experiments

We drew the following conclusions from the forthcoming experimental results:

• SUPER, MREL, SM and MS are all effective in reducing the number of sets gener-

ated in Generation;

• The relative efficiency of the four optimization algorithms depends on the set prefer-

ence in question, in particular, the selectivity of the attributes and the WHERE condi-

tions in the feature definitions. In general, low attribute selectivity and high WHERE
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Set Pref. Name M-relation Generating SQL

SP1

SELECT *, count(*) AS Acnt
FROM (SELECT

CASE
WHEN r.genre=’sci-fi’ THEN r.price
ELSE 0

END AS A5, r.rating AS A6

FROM r)
GROUP BY A5, A6

SP2

SELECT *, count(*) AS Acnt
FROM (SELECT

CASE
WHEN r.genre=’sci-fi’ THEN r.rating
ELSE 0

END AS A9, r.price AS A10

FROM r)
GROUP BY A9, A10

SP3

SELECT *, count(*) AS Acnt
FROM (SELECT

CASE
WHEN r.genre=’sci-fi’

and r.price<20.00 THEN 1
ELSE 0

END AS A11,
CASE

WHEN r.rating¥4.0 THEN r.rating
ELSE 0

END AS A12,
FROM r)

GROUP BY A11, A12

Table 6.3: M-relation Generation SQLs
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condition selectivity enhance the performance. The best algorithm for each set pref-

erence generates only 0.01% of the candidate k-subsets generated by NAIVE.

• The best of SUPER, MREL, SM and MS for each set preference also improve the

scalability with input size n and k by several orders of magnitude.

• The hybrid algorithms SM and MS outperform the standalone optimizations SUPER

and MREL.

6.5.1 Performance

In our first experiment, we wanted to study how much computation we could save by

applying superpreference and/or M-relation optimization. We fixed k to be 3. We tested

the dataset up to 1000 tuples as some algorithms do not scale up well with n.

Figures 6-1(a), 6-1(c) and 6-1(e) illustrate the increase of the number g of sets Gen-

eration with the increase of input size n for SP1, SP2 and SP3, respectively. For the six

datasets of different sizes used, Figures 6-1(b), 6-1(d) and 6-1(f) show the average ratio of

the number of sets generated in each algorithm to that in NAIVE. Notice that the y-scale is

logarithmic in Figure 6-1.

As we can see from Figure 6-1, for standalone optimization techniques, i.e., SUPER

and MREL, the relative efficiency depends on the set preference. MREL is more efficient

in SP1 and SP3 (Figure 6-1(b), 6-1(f)), while SUPER is more efficient in SP2 (Figure 6-

1(d)). If we compare SP1 and SP2 in juxtaposition, it is clear the different reaction to

optimizations is caused by the different selectivity of the attribute rating and price: in

our largest dataset, there are 9 distinct rating values and 406 distinct price values. For

SUPER, the difference between the superpreferences of SP1 and SP2 are underlined.

¡� in SP1 �
pt1.rating ¡ t2.rating ^ t2.genre � ’sci-fi’^ t1.price   t2.priceq

_pt1.rating ¡ t2.rating ^ t2.genre � ’sci-fi’^ t1.genre � ’sci-fi’q

¡� in SP2 �
pt1.price   t2.price^ t1.genre � ’sci-fi’^ t1.rating ¡ t2.ratingq

_pt1.price   t2.price^ t1.genre � ’sci-fi’^ t2.genre � ’sci-fi’q
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Figure 6-1: Performance of Different Algorithms under Varying Input Size n
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SUPER is more effective in SP2 as the selectivity of price is higher than that of rating

and more tuples are superpreferred in SP2. For MREL, recall that the selectivity of ratingdominates

in SP1, while the selectivity of price dominates in SP2. The selectivity of rating is

much lower than that of price. Therefore, in SP1, we are able to consolidate more tuples

into one M-tuple on average. Therefore, MREL is more effective in SP1.

For SP3, since the WHERE conditions in both features of SP3 are more restricted than

that in SP1, e.g., the condition in F11 requires price<20.00 in addition to the condition

genre=’sci-fi’ used in F5, MREL is able to benefit more from the low selectivity

and therefore achieves higher efficiency.

The hybrid algorithms SM and MS benefit from both superpreferences and M-relations,

and in general have better performance than SUPER and MREL. An interesting phe-

nomenon is that SM outperforms MS when MREL outperforms SUPER (cf., Figure 6-1(b),

6-1(f)), and MS outperforms SM when SUPER outperforms MREL (cf., Figure 6-1(d)).

For all three set preferences (SP1, SP2 and SP3), the most efficient algorithm generates

only about 0.01% of the candidate k-subsets generated by NAIVE.

Not only do the optimizations help reducing the number of sets generated in Genera-

tion, they also improve the scalability with the input size n. For example, for SP1 (Figure

6-1(a)), NAIVE displays a cubic trend with the increase of n as predicted by the theoretic

analysis, i.e.
�
n
k

�
� Opnkq. SUPER displays a similar trend, while MREL grows slower

than that of SUPER, and MS and SM grow slower than that of MREL. In all three cases, i.e.,

SP1, SP2 and SP3, (Figure 6-1(a), Figure 6-1(c) and 6-1(e)), the best algorithm displays a

much slower trend compared to that of NAIVE.

Figure 6-2 illustrates the increase of the number g of sets in Generation with the in-

crease of k when n � 100. By our theoretical analysis, increasing k by 1 raises the com-

plexity of NAIVE fromOpnkq toOpnk�1q. It is not surprising that g values are off the chart

when k ¡ 4 for NAIVE. The performances of the other four algorithms again depend on

the specific set preference. The best algorithm for each set preference scales somewhere in

between linear and quadratic with the increase of k. Compared to the increase in n (Figure

6-1), the increase in k has a bigger influence on the performance for each algorithm (Figure

6-2).
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It is worth noticing that regardless of which set preference is used, the performance of

different algorithms is stable with the increase of n or k, as the curves of each algorithms

do not cross each other in Figure 6-1 or Figure 6-2. We have also seen in Figure 6-1 and

Figure 6-2 that it is crucial to choose the right algorithm given a set preference. A practical

strategy would be to take a small sample of the data, and try out the set preference with a

small k in order to pick the best algorithm. Notice that, even though the best of SM and MS

is better than the best of SUPER and MREL, SUPER and MREL are simpler and involve

less preprocessing, and thus could be desirable in some cases.
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6.5.2 SM v.s. MS

In the second set of experiments, we took a close look at the two best algorithms: SM and

MS. In Figure 6-1, SP2 and SP3 are biased towards the superpreference optimization and

M-relation optimization, respectively. We therefore focused on SP1, which is less biased

towards either optimization, when comparing SM and MS.

In Figure 6-3, we compare the analytics of the hybrid algorithms SM and MS when

k � 5 and n varies from 1000 to 8000 in SP1. Figure 6-3(a) illustrates the number of

sets generated in Generation (g) for different parameter settings. Figure 6-3(b) shows the

number of M-tuples after the superpreference step and the M-relation step in SM and MS.

Those are the M-tuples participating in the k-multisubset generation in both algorithms.

Their number has a positive correlation with the number of k-multisubsets generated (Fig-

ure 6-3(a)). In Figure 6-3(b), we can see that SM leads to 10% � 50% fewer M-tuples

compared to those in MS. The saving decreases with the increase of n. For each parameter

setting in Figure 6-3(a), SM generates g sets while MS generates slightly more than g sets.

The difference is relatively small compared to g. As a result, the two lines in Figure 6-3(a)

almost overlap with each other. Figure 6-3(c) displays the number of profiles computed

in SM and MS. The two lines also overlap with each other, since SM generates slightly

fewer profiles than MS does. As a reference, we also illustrate the number of best pro-

files in the profile relation in Figure 6-3(c). This number grows slower than the number of

profiles generated in both algorithms, which suggests room for further improvement. For

completeness, we show the number of best k-subsets in each parameter setting in Figure 6-

3(d), i.e., the result size. Both SM and MS correctly identify all the best k-subsets. There is

no obvious relationship between the input size n and the number of best k-subsets. On the

other hand, the number of best k-subsets is huge in general, i.e., in the order of 108 � 109.

In fact, the result size in Figure 6-3(d) is 2 � 5 orders of magnitude larger than the num-

ber of candidate sets generated (Figure 6-3(a)), which illustrates the compactness of the

M-relation representation.
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6.6 Related Work

There are many papers on preferences over tuples using either a qualitative or a quantitative

approach. However, there are only a few works on preferences over sets [29, 21, 6].

[6] is conceptually the closest to our work. It addresses the problem of finding an opti-

mal subset of a set of items according to given set preferences. The language for specifying

such preferences uses the attribute values of individual items within the set. Each set prop-

erty is based on the number of items satisfying a certain predicate. It is either an integer

value (Class 1), i.e., the number of items satisfying the predicate), or a boolean value (Class

2), i.e., whether the number of items satisfying the predicate is ¡ k. Given a collection of

set properties, a set preference is specified as either a TCP-net [9] or a scoring function.

[6] gives heuristic search algorithms for finding an optimal subset. [6] considers subsets of

any cardinality. For fixed-cardinality subsets, the language in [6] can easily be expressed

in our framework with a simple extension of Definition 6.2.1 to boolean features. Each

Class 1 set property in [6] can be translated to an aggregate subset feature with the count

aggregate. Those features are additive.

For simplicity, we do not discuss boolean features in Definition 6.2.1. In fact, the ex-

tension to boolean features can easily be accomplished by introducing a relational operator

in the SQL definition:

SELECT expr θ constant FROM $S WHERE condition

where θ P t�,�, ,¡,¤,¥u. Each Class 2 set property in [6] can be translated to such

a boolean feature. Such boolean features are additive when θ P t ,¡,¤,¥u. Otherwise,

they are non-additive.

The preference model in [6], i.e., either a scoring function or a TCP-net set preference,

can be captures by our set preference relation as well. General aggregate features are not

supported in [6].

[21] focuses on fixed-cardinality set preferences. It considers two subset features: di-

versity and depth, and the set preference as an objective function of maximizing the linear

combination of diversity and depth. Again, those cases can be expressed in our framework.

The subset features depth and diversity are weighted sums of the depth of attributes and
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diversity of attributes, respectively. The depth of an attribute is a utility function of the

most desirable attribute values of the set elements, which can be captured by a feature def-

inition with a WHERE clause specifying the desirable condition and a count aggregate2

in the SELECT clause. The diversity of an attribute is defined as 1 minus the skew of that

attribute’s values in the set. The computation of skew requires the values of mean, mode

and standard deviation of that attribute. Mean and mode can be captured by aggregates

avg and max, respectively. It is well-known that the standard deviation equals the square

root of the second moment minus the square of the mean. We can capture the second mo-

ment of attribute A by specifying sum(A*A) in the SELECT clause. In short, in order to

express the diversity of an attribute, we can define one feature for the attribute’s mean, one

feature for its mode, and one feature for its second moment. Features derived from depth,

features corresponding to the mean and the second moment of an attribute are additive,

while features corresponding to the mode of an attribute are not.

The preference model in [21] is maximizing an objective function composed of a linear

combination of depth and diversity. This can be easily captured by our set preference

relation.

We have just showed that we can express the set preferences in both [6] and [21] under

our current framework with the aforementioned techniques. In order to efficiently evaluate

the set preferences derived from [6, 21], the M-relation optimization is always applicable.

For the superpreference optimization, if the set preference formula describing the resulting

set preference relation can be written a constant-free DNF, then we can apply the super-

preference optimization in a systematic manner based to Theorem 6.4.1. Moreover, the

features and the preference model in [21] are of special forms that a specialized optimiza-

tion schema can be designed to achieve better optimization results.

[29] considers a new class of queries called OPAC (optimization and parametric aggre-

gation constraints) queries. Such queries aim at identifying sets of tuples that constitute

the solutions of optimization problems. [29] considers subsets of any cardinality. The

atomic parametric aggregation constraint is of the form aggrpAq   parameter and the

2In cases where values outside the desirable range are penalized to varying degrees, we need to either
define one feature for each degree of penalization
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objective function is min {maxpaggrpatomic constraintsqq. Approximation algorithms

are given for query evaluation. For fixed-cardinality subsets, again, the atomic aggrega-

tion constraints can be captured by k-subset features and the parameters and the objective

function can be captured by the preference formula over profiles in our framework.
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Appendix A

Semantic Postulates

Semantics Exact k Faithfulness Stability
: Global-Topk X(1) X/� (5) X(9)

PT-k � (2) X/� (6) X(10)

U-Topk � (3) X/� (7) X(11)

U-kRanks � (4) � (8) � (12)

: Postulates of Global-Topk semantics are proved under gen-

eral scoring functions with Equal allocation policy.

Table A.1: Postulate Satisfaction for Different Se-

mantics in Table 3.1

The following proofs correspond to the numbers next to each entry in the above table.

Assume that we are given a probabilistic relation Rp � xR, p, Cy, a non-negative integer k

and an injective scoring function s.

Exact k

(1) Global-Topk satisfies Exact k.

We compute the Global-Topk probability for each tuple in R. If there are at least k

tuples in R, we are always able to pick the k tuples with the highest Global-Topk

probability. In case when there are more than k � r � 1 tuple(s) with the rth highest
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Global-Topk probability, where r � 1, 2 . . . , k, only k� r�1 of them will be picked

nondeterministically.

(2) PT-k violates Exact k.

Example 6 illustrates a counterexample in a simple probabilistic relation.

(3) U-Topk violates Exact k.

Example 6 illustrates a counterexample in a simple probabilistic relation.

(4) U-kRanks violates Exact k.

Example 6 illustrates a counterexample in a simple probabilistic relation.

Faithfulness

(5) Global-Topk satisfies Faithfulness in simple probabilistic relations while it violates

Faithfulness in general probabilistic relations.

(5a) Simple Probabilistic Relations

By the assumption, t1 ¡s t2 and ppt1q ¡ ppt2q, so we need to show that

Pk,spt1q ¡ Pk,spt2q.

For every W P pwdpRpq such that t2 P allk,spW q and t1 R allk,spW q, obviously

t1 R W . Otherwise, since t1 ¡s t2, t1 would be in allk,spW q. Since all tuples are

independent, there is always a world W 1 P pwdpRpq, W 1 � pW ztt2uq Y tt1u

and PrpW 1q � PrpW qppt1qp̄pt2q
p̄pt1qppt2q . Since ppt1q ¡ ppt2q, PrpW 1q ¡ PrpW q.

Moreover, t1 will substitute for t2 in the top-k answer set to W 1. It is easy to

see that αpt1,W 1q � 1 in W 1 and also in any world W such that both t1 and t2

are in allk,spW q, αpt1,W q � 1.

Therefore, for the Global-Topk probability of t1 and t2, we have
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Pk,spt2q �
¸

WPpwdpRpq
t1Pallk,spW q
t2Pallk,spW q

αpt2,W qPrpW q �
¸

WPpwdpRpq
t1Rallk,spW q
t2Pallk,spW q

αpt2,W qPrpW q

 
¸

WPpwdpRpq
t1Pallk,spW q
t2Pallk,spW q

PrpW q �
¸

W 1PpwdpRpq
t1Pallk,spW 1q
t2RW 1

PrpW 1q

�
¸

WPpwdpRpq
t1Pallk,spW q
t2Pallk,spW q

αpt1,W qPrpW q �
¸

W 1PpwdpRpq
t1Pallk,spW 1q
t2RW 1

αpt1,W
1qPrpW 1q

¤
¸

WPpwdpRpq
t1Pallk,spW q
t2Pallk,spW q

αpt1,W qPrpW q �
¸

W 1PpwdpRpq
t1Pallk,spW 1q
t2RW 1

αpt1,W
1qPrpW 1q

�
¸

W 2PpwdpRpq
t1Pallk,spW 2q
t2PW 2

t2Rallk,spW 2q

αpt1,W
2qPrpW 2q

� Pk,spt1q.

The equality in ¤ holds when spt2q is among the k highest scores and there are

at most k tuples (including t2) with higher or equal scores. Since there is at

least one inequality in the above equation, we have

Pk,spt1q ¡ Pk,spt2q.

(5b) General Probabilistic Relations

The following is a counterexample.

Say k � 1, R � tt1, . . . , t9u, t1 ¡s . . . ¡s t9, tt1, . . . , t7, t9u are exclusive.

pptiq � 0.1, i � 1 . . . 7, ppt8q � 0.4, ppt9q � 0.3.

By Global-Topk, the top-1 answer is tt9u, while t8 ¡s t9 and ppt8q ¡ ppt9q,

which violates Faithfulness.

(6) PT-k satisfies Faithfulness in simple probabilistic relations while it violates Faithful-
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ness in general probabilistic relations.

For simple probabilistic relations, we can use the same proof in (5) to show that PT-k

satisfies Faithfulness. The only change would be that we need to show Pk,spt1q ¡ pτ

as well. Since Pk,spt2q ¡ pτ and Pk,spt1q ¡ Pk,spt2q, this is obviously true. For

general probabilistic relations, we can use the same counterexample in (5) and set

threshold pτ � 0.15.

(7) U-Topk satisfies Faithfulness in simple probabilistic relations while it violates Faith-

fulness in general probabilistic relations.

(7a) Simple Probabilistic Relations

By contradiction. If U-Topk violates Faithfulness in a simple probabilistic re-

lation, there exists Rp � xR, p, Cy and exists ti, tj P R, ti ¡s tj, pptiq ¡ pptjq,

and by U-Topk, tj is in the top-k answer set to Rp under the scoring function s

while ti is not.

S is a top-k answer set to Rp under the function s by the U-Topk semantics,

tj P S and ti R S. Denote by Qk,spSq the probability of S under the U-Topk

semantics. That is,

Qk,spSq �
¸

WPpwdpRpq
S�topk,spW q

PrpW q.

For any world W contributing to Qk,spSq, ti R W . Otherwise, since ti ¡s tj ,

ti would be in topk,spW q, which is S. Define a world W 1 � pW zttjuq Y ttiu.

Since ti is independent of any other tuple in R, W 1 P pwdpRpq and PrpW 1q �

PrpW qpptiqp̄ptjq
p̄ptiqpptjq . Moreover, topk,spW 1q � pSzttjuq Y ttiu. Let S 1 � pSzttjuq Y

ttiu, then W 1 contributes to Qk,spS 1q.
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Qk,spS
1q �

¸
WPpwdpRpq
S1�topk,spW q

PrpW q

¥
¸

WPpwdpRpq
S�topk,spW q

PrppW zttjuq Y ttiuq

�
¸

WPpwdpRpq
S�topk,spW q

PrpW q
pptiqp̄ptjq
p̄ptiqpptjq

�
pptiqp̄ptjq
p̄ptiqpptjq

¸
WPpwdpRpq
S�topk,spW q

PrpW q

�
pptiqp̄ptjq
p̄ptiqpptjq

Qk,spSq

¡ Qk,spSq,

which is a contradiction. The last inequality holds because pptiq ¡ pptjq.

(7b) General Probabilistic Relations

The following is a counterexample.

Say k � 2, R � tt1, t2, t3, t4u, t1 ¡s t2 ¡s t3 ¡s t4, t1 and t2 are exclusive, t3

and t4 are exclusive. ppt1q � 0.5, ppt2q � 0.45, ppt3q � 0.4, ppt4q � 0.3.

By U-Topk, the top-2 answer is tt1, t3u, while t2 ¡s t3 and ppt2q ¡ ppt3q,

which violates Faithfulness.

(8) U-kRanks violates Faithfulness.

The following is a counterexample.

Say k � 2, Rp is simple. R � tt1, t2, t3u, t1 ¡s t2 ¡s t3, ppt1q � 0.48, ppt2q �

0.8, ppt3q � 0.78.

The probabilities of each tuple at each rank are as follows:
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t1 t2 t3

rank 1 0.48 0.416 0.08112

rank 2 0 0.384 0.39936

rank 3 0 0 0.29952

By U-kRanks, the top-2 answer set is tt1, t3u while t2 ¡ t3 and ppt2q ¡ ppt3q, which

contradicts Faithfulness.

Stability

(9) Global-Topk satisfies Stability.

In the rest of this proof, let A be the set of all winners under the Global-Topk seman-

tics.

Part I: Probability.

Case 1: Winners.

For any winner t P A, if we only raise the probability of t, we have a new

probabilistic relation pRpq1 � xR, p1, Cy, where the new probability function

p1 is such that p1ptq ¡ pptq and for any t1 P R, t1 � t, p1pt1q � ppt1q. Note

that pwdpRpq � pwdppRpq1q. In addition, assume t P Ct, where Ct P C. By

Global-Topk,

PRp

k,s ptq �
¸

WPpwdpRpq
tPallk,spW q

αpt,W qPrpW q

and

P
pRpq1
k,s ptq �

¸
WPpwdpRpq
tPallk,spW q

αpt,W qPrpW q
p1ptq
pptq

�
p1ptq
pptq

PRp

k,s ptq.
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For any other tuple t1 P R, t1 � t, we have the following equation:

P
pRpq1
k,s pt1q �

¸
WPpwdpRpq
t1Pallk,spW q, tPW

αpt1,W qPrpW q
p1ptq
pptq

�
¸

WPpwdpRpq
t1Pallk,spW q, tRW
pCtzttuqXW�H

αpt1,W qPrpW q
c� p1ptq
c� pptq

�
¸

WPpwdpRpq
t1Pallk,spW q, tRW
pCtzttuqXW�H

αpt1,W qPrpW q

¤
p1ptq
pptq

p
¸

WPpwdpRpq
t1Pallk,spW q, tPW

αpt1,W qPrpW q

�
¸

WPpwdpRpq
t1Pallk,spW q, tRW
pCtzttuqXW�H

αpt1,W qPrpW q

�
¸

WPpwdpRpq
t1Pallk,spW q, tRW
pCtzttuqXW�H

αpt1,W qPrpW qq

�
p1ptq
pptq

PRp

k,s pt
1q,

where c � 1�
°
t2PCtzttu ppt

2q.

Now we can see that, t’s Global-Topk probability in pRpq1 will be raised to

exactly p1ptq
pptq times of that in Rp under the same weak order scoring function s,

and for any tuple other than t, its Global-Topk probability in pRpq1 can be raised

to as much as p1ptq
pptq times of that in Rp under the same scoring function s. As a

result, P pRpq1
k,s ptq is still among the highest k Global-Topk probabilities in pRpq1

under the function s, and therefore still a winner.

Case 2: Losers.

This case is similar to Case 1.

Part II: Score.
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Case 1: Winners.

For any winner t P A, we evaluate Rp under a new general scoring function s1.

Comparing to s, s1 only raises the score of t. That is, s1ptq ¡ sptq and for any

t1 P R, t1 � t, s1pt1q � spt1q. Then, in addition to all the worlds already totally

(i.e., αpt,W q � 1) or partially (i.e., αpt,W q   1) contributing to t’s Global-

Topk probability when evaluating Rp under the function s, some other worlds

may now totally or partially contribute to t’s Global-Topk probability. Because,

under the function s1, t might climb high enough to be in the top-k answer set

of those worlds. Moreover, if a possible world W contributes partially under

scoring function s, it is easy to see that it contributes totally under scoring

function s1.

For any tuple t2 other than t in R,

(i) If spt2q � sptq, then its Global-Topk probability under the function s1 either

stays the same (if the “climbing” of t does not knock that tuple out of the

top-k answer set in some possible world) or decreases (otherwise);

(ii) If spt2q � sptq, then for any possible world W contributing to t2’s Global-

Topk under scoring function s, αpt2,W q � k�a
b

, and now under scoring

function s1, α1pt2,W q � k�a�1
b�1

  k�a
b
� αpt2,W q. Therefore the Global-

Topk of t2 under scoring function s1 is less than that under scoring function

s.

Consequently, t is still a winner when evaluating Rp under the function s1.

Case 2: Losers.

This case is similar to Case 1.

(10) PT-k satisfies Stability.

In the rest of this proof, let A be the set of all winners under the PT-k semantics.

Part I: Probability.

Case 1: Winners.
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For any winner t P A, if we only raise the probability of t, we have a new

probabilistic relation pRpq1 � xR, p1, Cy, where the new probability function

p1 is such that p1ptq ¡ pptq and for any t1 P R, t1 � t, p1pt1q � ppt1q. Note

that pwdpRpq � pwdppRpq1q. In addition, assume t P Ct, where Ct P C. The

Global-Topk probability of t is such that

PRp

k,s ptq �
¸

WPpwdpRpq
tPtopk,spW q

PrpW q ¥ pτ

and

P
pRpq1
k,s ptq �

¸
WPpwdpRpq
tPtopk,spW q

PrpW q
p1ptq
pptq

�
p1ptq
pptq

PRp

k,s ptq ¡ PRp

k,s ptq ¥ pτ .

Therefore, P pRpq1
k,s ptq is still above the threshold pτ , and t still belongs to the

top-k answer set of pRpq1 under the function s.

Case 2: Losers.

This case is similar to Case 1.

Part II: Score.

Case 1: Winners.

For any winner t P A, we evaluateRp under a new scoring function s1. Compar-

ing to s, s1 only raises the score of t. Use a similar argument as that in (9) Part II

Case 1 but under injective scoring functions, we can show that the Global-Topk

probability of t is non-decreasing and is still above the threshold pτ . Therefore,

tuple t still belongs to the top-k answer set under the function s1.

Case 2: Losers.

This case is similar to Case 1.
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(11) U-Topk satisfies Stability.

In the rest of this proof, let A be the set of all winners under U-Topk semantics.

Part I: Probability.

Case 1: Winners.

For any winner t P A, if we only raise the probability of t, we have a new

probabilistic relation pRpq1 � xR, p1, Cy, where the new probabilistic function

p1 is such that p1ptq ¡ pptq and for any t1 P R, t1 � t, p1pt1q � ppt1q. In

the following discussion, we use superscript to indicate the probability in the

context of pRpq1. Note that pwdpRpq � pwdppRpq1q.

Recall that Qk,spAtq is the probability of a top-k answer set At � A under

U-Topk semantics, where t P At. Since t P At, Q1
k,spAtq � Qk,spAtq

p1ptq
pptq .

For any candidate top-k answer setB other thanAt, i.e., DW P pwdpRpq, topk,spW q �

B and B � At. By definition,

Qk,spBq ¤ Qk,spAtq.

For any world W contributing to Qk,spBq, its probability either increase p1ptq
pptq

times (if t P W ), or stays the same (if t R W and Dt1 P W, t1 and t are exclusive),

or decreases (otherwise). Therefore,

Q1
k,spBq ¤ Qk,spBq

p1ptq
pptq

.

Altogether,

Q1
k,spBq ¤ Qk,spBq

p1ptq
pptq

¤ Qk,spAtq
p1ptq
pptq

� Q1
k,spAtq.

Therefore, At is still a top-k answer set to pRpq1 under the function s and t P At

is still a winner.

Case 2: Losers.
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It is more complicated in the case of losers. We need to show that for any loser

t, if we decrease its probability, no top-k candidate answer set Bt containing t

will be a new top-k answer set under the U-Topk semantics. The procedure is

similar to that in Case 1, except that when we analyze the new probability of

any original top-k answer set Ai, we need to differentiate between two cases:

(a) t is exclusive with some tuple in Ai, or t has a score higher than that of

some tuple in Ai;

(b) t is independent of all the tuples in Ai and t has a score lower than that of

every tuple in Ai.

It is easier with (a), where all the worlds contributing to the probability of Ai

do not contain t. In (b), some worlds contributing to the probability of Ai

contain t, while others do not. And we calculate the new probability for those

two kinds of worlds differently. As we will see shortly, the probability of Ai is

non-decreasing in either (a) or (b).

For any loser t P R, t R A, by applying the technique used in Case 1, we have

a new probabilistic relation pRpq1 � xR, p1, Cy, where the new probabilistic

function p1 is such that p1ptq   pptq and for any t1 P R, t1 � t, p1pt1q � ppt1q.

Again, pwdpRpq � pwdppRpq1q.

For any top-k answer set Ai to Rp under the function s, Ai � A, and therefore

the loser t R Ai by definition. Denote by SAi all the possible worlds contributing

to Qk,spAiq. Based on the membership of t, SAi can be partitioned into two

subsets StAi and S t̄Ai .

SAi � tW |W P pwdpRpq, topk,spW q � Aiu;

SAi � StAi Y S
t̄
Ai
, StAi X S

t̄
Ai
� H,

@W P StAi , t P W and @W P S t̄Ai , t R W.

Qk,spAiq �
¸

WPpwdpRpq
WPStAi

PrpW q �
¸

WPpwdpRpq
WPS t̄Ai

PrpW q
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In case (a), StAi � H. For any world W P S t̄Ai , its probability is unchanged if it

contains one of t’s exclusive tuples, and is increasing if it does not contain any

tuple from the part Ct where t belongs.

Q1
k,spAiq �

¸
WPpwdpRpq
WPS t̄Ai ,CtXW�H

PrpW q �
¸

WPpwdpRpq
WPS t̄Ai ,CtXW�H

PrpW q
c� p1ptq
c� pptq

¥
¸

WPpwdpRpq
WPS t̄Ai ,CtXW�H

PrpW q �
¸

WPpwdpRpq
WPS t̄Ai ,CtXW�H

PrpW q

� Qk,spAiq.

where c � 1�
°
t1PCtzttu ppt

1q.

In case (b), t is independent of all the tuples in Ai and has a score lower than

that of every tuple in Ai. In this case,

°
WPpwdpRpq
WPStAi

PrpW q

°
WPpwdpRpq
WPS t̄Ai

PrpW q
�

pptq
1� pptq

and

Q1
k,spAiq �

¸
WPpwdpRpq
WPStAi

PrpW q
p1ptq
pptq

�
¸

WPpwdpRpq
WPS t̄Ai

PrpW q
1� p1ptq
1� pptq

�
¸

WPpwdpRpq
WPSAi

PrpW q

� Qk,spAiq.

We can see that in both cases, Q1
k,spAiq ¥ Qk,spAiq.

Now for any top-k candidate answer set containing t, say Bt such that Bt � A,
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by definition, Qk,spBtq   Qk,spAiq. Moreover,

Q1
k,spBtq � Qk,spBtq

p1ptq
pptq

  Qk,spBtq.

Therefore,

Q1
k,spBtq   Qk,spBtq   Qk,spAiq ¤ Q1

k,spAiq.

Consequently, Bt is still not a top-k answer set to pRpq1 under the function s.

Since no top-k candidate answer set containing t can be a top-k answer set to

pRpq1 under the function s, t is still a loser.

Part II: Score.

Again,Ai � A is a top-k answer set toRp under the function s by U-Topk semantics.

Case 1: Winners.

For any winner t P Ai, we evaluate Rp under a new scoring function s1. Com-

paring to s, s1 only raises the score of t. That is, s1ptq ¡ sptq and for any

t1 P R, t1 � t, s1pt1q � spt1q. In some possible world such that W P pwdpRpq

and topk,spW q � Ai, t might climb high enough to be in topk,s1pW q. Define T

to the set of such top-k candidate answer sets.

T � ttopk,s1pW q|W P pwdpRpq, t R topk,spW q ^ t P topk,s1pW qu.

Only a top-k candidate setBj P T can possibly end up with a probability higher

than that of Ai across all possible worlds, and thus substitute for Ai as a new

top-k answer set to Rp under the function s1. In that case, t P Bj , so t is still a

winner.

Case 2: Losers.

For any loser t P R, t R A. Using a similar technique to Case 1, the new scoring

function s1 is such that s1ptq   sptq and for any t1 P R, t1 � t, s1pt1q � spt1q.

When evaluating Rp under the function s1, for any world W P pwdpRpq such

that t R topk,spW q, the score decrease of t will not effect its top-k answer
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set, i.e., topk,s1pW q � topk,spW q. For any world W P pwdpRpq such that

t P topk,spW q, t might go down enough to drop out of topk,s1pW q. In this

case, W will contribute its probability to a top-k candidate answer set without

t, instead of the original one with t. In other words, under the function s1,

comparing to the evaluation under the function s, the probability of a top-k

candidate answer set with t is non-increasing, while the probability of a top-k

candidate answer set without t is non-decreasing1.

Since any top-k answer set to Rp under the function s does not contain t, it

follows from the above analysis that any top-k candidate answer set containing

t will not be a top-k answer set to Rp under the new function s1, and thus t is

still a loser.

(12) U-kRanks violates Stability.

The following is a counterexample.

Say k � 2, Rp is simple. R � tt1, t2, t3u, t1 ¡s t2 ¡s t3. ppt1q � 0.3, ppt2q �

0.4, ppt3q � 0.3.

t1 t2 t3

rank 1 0.3 0.28 0.126

rank 2 0 0.12 0.138

rank 3 0 0 0.036

By U-kRanks, the top-2 answer set is tt1, t3u.

Now raise the score of t3 such that t1 ¡s1 t3 ¡s1 t2.

t1 t3 t2

rank 1 0.3 0.21 0.196

rank 2 0 0.09 0.168

rank 3 0 0 0.036

1Here, any subset of R with cardinality at most k that is not a top-k candidate answer set under the
function s is conceptually regarded as a top-k candidate answer set with probability zero under the function
s.
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By U-kRanks, the top-2 answer set is tt1, t2u. By raising the score of t3, we actually

turn the winner t3 to a loser, which contradicts Stability.
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Appendix B

Proofs

B.1 Proof for Proposition 3.3.1

Proposition 3.3.1. Given a simple probabilistic relation Rp � xR, p, Cy and an injective

scoring function s over Rp, if R � tt1, t2, . . . , tnu and t1 ¡s t2 ¡s . . . ¡s tn, the following

recursion on Global-Topk queries holds.

qpk, iq �

$''''&
''''%

0 k � 0

pptiq 1 ¤ i ¤ k

pqpk, i� 1q
p̄pti�1q
ppti�1q

� qpk � 1, i� 1qqpptiq otherwise

where qpk, iq � Pk,sptiq and p̄pti�1q � 1� ppti�1q.

Proof. By induction on k and i.

• Base case.

– k � 0

For any W P pwdpRpq, top0,spW q � H. Therefore, for any ti P R, the Global-

Topk probability of ti is 0.

– k ¡ 0 and i � 1

t1 has the highest score among all tuples in R. As long as tuple t1 appears in a

possible world W , it will be in the topk,spW q. So the Global-Topk probability
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of ti is the probability that t1 appears in possible worlds, i.e., qpk, 1q � ppt1q.

• Inductive step.

Assume the theorem holds for 0 ¤ k ¤ k0 and 1 ¤ i ¤ i0. For any W P pwdpRpq,

ti0 P topk0,spW q iff ti0 P W and there are at most k0 � 1 tuples with a higher score

in W . Note that any tuple with score lower than the score of ti0 does not have any

influence on qpk0, i0q, because its presence/absence in a possible world will not affect

the presence of ti0 in the top-k answer set of that world.

Since all the tuples are independent,

qpk0, i0q � ppti0q
¸

WPpwdpRpq
|tt|tPW^t¡sti0u| k0

PrpW q.

(1) qpk0, i0 � 1q is the Global-Topk0 probability of tuple ti0�1.

qpk0, i0 � 1q �
¸

WPpwdpRpq
ti0�1Ptopk0,s

pW q
ti0Ptopk0,s

pW q

PrpW q

�
¸

WPpwdpRpq
ti0�1Ptopk0,s

pW q
ti0PW, ti0Rtopk0,s

pW q

PrpW q

�
¸

WPpwdpRpq
ti0�1Ptopk0,s

pW q
ti0RW

PrpW q.

For the first part of the left hand side,

¸
WPpwdpRpq
ti0�1Ptopk0,s

pW q
ti0Ptopk0�1,spW q

PrpW q � ppti0�1qqpk0 � 1, i0q.

The second part is zero. Since ti0 ¡s ti0�1, if ti0�1 P topk0,spW q and ti0 P W ,

then ti0 P topk0,spW q.

The third part is the sum of the probabilities of all possible worlds such that
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ti0�1 P W, ti0 R W and there are at most k0 � 1 tuples with score higher than

the score of ti0 in W . So it is equivalent to

ppti0�1qppti0q
¸

|tt|tPW^t¡sti0u| k0

PrpW q

� ppti0�1qppti0q
qpk0, i0q
ppti0q

.

Altogether, we have

qpk0, i0 � 1q

� ppti0�1qqpk0 � 1, i0q � ppti0�1qppti0q
qpk0, i0q
ppti0q

� pqpk0 � 1, i0q � qpk0, i0q
ppti0q
ppti0q

qppti0�1q.

(2) qpk0 � 1, i0q is the Global-Toppk0 � 1q probability of tuple ti0 . Use a similar

argument as above, it can be shown that this case is correctly computed by

Equation (3.3) as well.

B.2 Proof for Theorem 3.3.2

Theorem 3.3.2 (Correctness of Algorithm 1TA). Given a simple probabilistic relation

Rp � xR, p, Cy, a non-negative integer k and an injective scoring function s over Rp,

Algorithm 1TA correctly finds a Global-Topk top-k answer set.

Proof. In every iteration of Step (2), say t � ti, for any unseen tuple t, s1 is an injective

scoring function over Rp, which only differs from s in the score of t. Under the function

s1, ti ¡s1 t ¡s1 ti�1. If we evaluate the top-k query in Rp under the function s1 instead of s,

Pk,s1ptq �
pptq
p
UP . On the other hand, for any W P pwdpRpq, the fact that W contributes
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to Pk,sptq implies that W contributes to Pk,s1ptq, while the reverse is not necessarily true.

So, we have Pk,s1ptq ¥ Pk,sptq. Recall that p ¥ pptq, therefore UP ¥ pptq
p
UP � Pk,s1ptq ¥

Pk,sptq. The conclusion follows from the correctness of the original TA algorithm and

Algorithm 1.

B.3 Proof for Proposition 3.3.2

Lemma B.3.1. Let Rp � xR, p, Cy be a probabilistic relation, s an injective scoring

function, t P R, and Ep � xE, pE, CEy the event relation induced by t. Define Qp �

xE � ttetu, p
E, CE � tttetuuy. Then, the Global-Topk probability of t satisfies the follow-

ing:

PRp

k,s ptq � pptq
¸

WePpwdpQpq
|We| k

PrpWeq.

Proof. Given t P R, k and s, let A be a subset of pwdpRpq such that W P A ô t P

topk,spW q. If we group all the possible worlds in A by the set of parts whose tuple in W

has a score higher than that of t, then we will have the following partition:

A � A1 Y A2 Y . . .Y Aq, Ai X Aj � H, i � j

and
@Ai, @W1,W2 P Ai, i � 1, 2, . . . , q,

tCj|Dt1 P W1 X Cj, t1 ¡s tu � tCj|Dt1 P W2 X Cj, t1 ¡s tu.

Moreover, denote CharPartspAiq to Ai’s characteristic set of parts.

Now, let B be a subset of pwdpQpq, such that We P B ô |We|   k. There is a bijection

g : tAi|Ai P Au Ñ B, mapping each part Ai in A to a possible world in B which contains

only tuples corresponding to the parts in Ai ’s characteristic set.

gpAiq � tteCj |Cj P CharPartspAiqu.

The following equation holds from the definition of an induced event relation (Defini-
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tion 3.3.1).

¸
WPAi

PrpW q � pptq
¹

CiPCharPartspAiq
ppteCi q

¹
CiPC�tCidptqu
CiRCharPartspAiq

p1� ppteCi qq

� pptqPrpgpAiqq.

Therefore,

PRp

k,s ptq �
¸
WPA

PrpW q �
q̧

i�1

p
¸
WPAi

PrpW qq

�
q̧

i�1

pptqPrpgpAiqq � pptq
q̧

i�1

PrpgpAiqq

� pptq
¸
WePB

PrpWeq pg is a bijectionq

� pptqp
¸

WePpwdpQpq
|We| k

PrpWeqq.

Proposition 3.3.2 (Correctness of Algorithm 4). Given a probabilistic relation Rp �

xR, p, Cy and an injective scoring function s, for any t P Rp, the Global-Topk probability

of t equals the Global-Topk probability of tet when evaluating top-k in the induced event

relation Ep � xE, pE, CEy under the injective scoring function sE : E Ñ R, sEptetq � 1
2

and sEpteCi q � i:

PRp

k,s ptq � PEp

k,sEptetq.

Proof. Since tet has the lowest score under the function sE , for any We P pwdpEpq, the

only chance tet P topk,sEpWeq is when there are at most k tuples in We, including tet .

@We P pwdpEpq, tet P topk,spWeq ô ptet P We ^ |We| ¤ kq.

Therefore,

PEp

k,sEptetq �
¸

tetPWe^|We|¤k
PrpWeq.
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In the proof of Lemma B.3.1, B contains all the possible worlds having at most k � 1

tuples from E � ttetu. By Definition 3.3.1,

¸
tetPWe^|We|¤k

PrpWeq � pptq
¸
W 1
ePB

PrpW 1
eq.

By Lemma B.3.1,

pptq
¸
W 1
ePB

PrpW 1
eq � PRp

k,s ptq.

Consequently,

PRp

k,s ptq � PEp

k,sEptetq.

B.4 Proof for Proposition 4.2.1

Proposition 4.2.1 (Correctness of Algorithm 5). Let Rp � xR, p, Cy be a simple proba-

bilistic relation where R � tt1, . . . , tnu, t1 ©s t2 ©s . . . ©s tn, k a non-negative integer

and s a scoring function. For every tl P R, the Global-Topk probability of tl can be com-

puted by the following equation:

PRp

k,s ptlq �
k�1̧

k1�0

Tk1,rils � P
Rpsptlq
k�k1,sptlq

where Rp
sptlq is Rp restricted to tt P R|t �s tlu.

Proof. Given a tuple tl P R, let Rθ be the support relation R restricted to tt P R|t θ tlu,

and Rp
θ be Rp restricted to Rθ, where θ P t¡,�, ,¨u (subscript s omitted). Similarly, for

each possible world W P pwdpRpq, Wθ � W XRθ.

Each possible worldW P pwdpRpq such that tl P allk,spW q contributes minp1, k�a
b
qPrpW q

probability to PRp

k,s ptlq, where a � |W¡| and b � |W�|.
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PRp

k,s ptlq �
¸

WPpwdpRpq,tlPW
|W¡|�a,0¤a¤k�1
|W�|�b,1¤b¤m

minp1,
k � a
b
qPrpW q

�
k�1̧

a�0

m̧

b�1

minp1,
k � a
b
qp

¸
WPpwdpRpq,tlPW
|W¡|�a,|W�|�b

PrpW qq

�
k�1̧

a�0

m̧

b�1

minp1,
k � a
b
qp

¸
W¡PpwdpRp¡q
|W¡|�a

PrpW¡q
¸

W¨PpwdpRp¨q,tlPW¨
|W�|�b

PrpW¨qq

�
k�1̧

a�0

p
¸

W¡PpwdpRp¡q
|W¡|�a

PrpW¡q
m̧

b�1

minp1,
k � a
b
qp

¸
W¨PpwdpRp¨q,tlPW¨
|W�|�b

PrpW¨qqq

�
k�1̧

a�0

pTa,rils
m̧

b�1

minp1,
k � a
b
qp

¸
W�PpwdpRp�q,tlPW�

|W�|�b

PrpW�q
¸

W PpwdpRp q
PrpW qqq

�
k�1̧

a�0

pTa,rils
m̧

b�1

minp1,
k � a
b
qp

¸
W�PpwdpRp�q,tlPW�

|W�|�b

PrpW�qqq

�
k�1̧

a�0

Ta,rils � P
Rpsptlq
k�a,s ptlq

where m is the number of tuples tying with tl (inclusive), i.e., m � |Rp
sptlq|.

B.5 Proof for Proposition 4.3.1

Proposition 4.3.1. Given a probabilistic relation Rp � xR, p, Cy and a scoring function s,

for any t P Rp, the Global-Topk probability of t equals the Global-Topk probability of tet,�

when evaluating top-k in the induced event relation Ep � xE, pE, CEy under the scoring

function sE : E Ñ R, sEptet,¡q �
1
2
, sEptet,�q �

1
2
, sEpteCi ,�q �

1
2

and sEpteCi,¡q � i:

PRp

k,s ptq � PEp

k,sEptet,�q.
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Proof. Similar to what we did in the proof for Lemma B.3.1, we are trying to create a

bijection.

Given t P R, k and s, let A be a subset of pwdpRpq such that W P Aô t P allk,spW q.

If we group all the possible worlds in A by the set of parts whose tuple in W has a score

higher than or equal to that of t, then we will have the following partition:

A � A1 Y A2 Y . . .Y Aq, Ai X Aj � H, i � j

and
@Ai, @W1,W2 P Ai, i � 1, 2, . . . , q,

tCj,¡|Dt1 P W1 X Cj, t1 ¡s tu � tCj,¡|Dt1 P W2 X Cj, t1 ¡s tu

and

tCj,�|Dt1 P W1 X Cj, t1 �s tu � tCj,�|Dt1 P W2 X Cj, t1 �s tu.

Moreover, denote CharPartspAiq to Ai’s characteristic set of parts. Note that every W P

Ai has the same allocation coefficient αpt,W q, denoted by αi.

Now, let B be a subset of pwdpEpq, such that We P B ô tet,� P allk,spWeq. There is

a bijection g : tAi|Ai P Au Ñ B, mapping each part Ai in A to the a possible world in B

which contains only tuples corresponding to parts in Ai ’s characteristic set.

gpAiq � tteCj ,¡|Cj,¡ P CharPartspAiqu Y tteCj ,�|Cj,� P CharPartspAiqu

Furthermore, the allocation coefficient αi of Ai equals to the allocation coefficient

αptet,�, gpAiqq under the function sE .

The following equation holds from the definition of an induced event relation under

general scoring functions (Definition 4.3.1).

¸
WPAi

PrpW q �
¹

Ci,¡PCharPartspAiq
ppteCi ,¡q

¹
Ci,�PCharPartspAiq

ppteCi ,�q

¹
CiPC
Ci,�RCharPartspAiq
Ci,¡RCharPartspAiq

p1� ppteCi ,¡q � ppteCi ,�qq

� PrpgpAiqq.
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Therefore,

PRp

k,s ptq �
¸
WPA

αpt,W qPrpW q �
q̧

i�1

pαi
¸
WPAi

PrpW qq

�
q̧

i�1

αiPrpgpAiqq �
q̧

i�1

αptet,�, gpAiqqPrpgpAiqq

�
¸
WePB

αptet,�,WeqPrpWeq pg is a bijectionq

� PEp

k,sEptet,�q.

B.6 Proof for Theorem 4.3.1

Theorem 4.3.1. Given a probabilistic relationRp � xR, p, Cy, a scoring function s, t P Rp,

and its induced event relation Ep � xE, pE, CEy, where |E| � 2m, the recursion in Table

4.1 on u¡pk1, i, bq and u�pk1, i, bq holds, where bmax is the number of tuples with a positive

probability in Ep
�. The Global-Topk probability of tet,� in Ep under the scoring function

sE can be computed by the following equation:

PEp

k,sEptet,�q � PEp

k,sEptm,�q

�
bmax̧

b�1

p
ķ

k1�1

u�pk1,m, bq �
k�b�1¸
k1�k�1

k � pk1 � bq
b

u�pk1,m, bqqp4.8q

Proof. Equation (4.8) follows from Equation (4.6) and Equation (4.7) as it is a simple

enumeration based on Definition 4.1.1. We are going to prove Equation (4.6) and Equation

(4.7) by an induction on i.

• Base case: i � 1, 0 ¤ k1 ¤ m and 0 ¤ b ¤ bmax

When i � 1, based on the definition of u, the only non-zero entries are u¡p1, 1, 0q

and u�p1, 1, 1q. By definition, u¡p1, 1, 0q is the probability sum of all possible
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worlds which contain t1,¡ and do not contain t1,�. The second requirement is re-

dundant since those two tuples are exclusive. Therefore, it is simply the probability

of t1,¡. Similarly, by definition, u�p1, 1, 1q is the probability sum of all possible

worlds which contain t1,� and do not contain t1,¡. Again, it is simply the probability

of t1,�. It is easy to check that no possible worlds satisfy other combinations of k1

and b when i � 1, therefore their probabilities are 0.

• Inductive step.

Assume the theorem holds for i ¤ i0, 0 ¤ k1 ¤ m and 0 ¤ b ¤ bmax, where

1 ¤ i0 ¤ m� 1.

Denote by E¡,ris and E�,ris the set of the first i tuples in E¡ and E�, respectively.

For any W P pwdpEpq, by definition, W contributes to u¡{�pk1, i0, bq iff ti0,¡{� P W

^ |W X pE¡,ri0s Y E�,ri0sq| � k1 ^ |W X E�,ri0s| � b. Since E¡,ri0s X E�,ri0s � H,

we have:

W contributes to u¡{�pk1, i0, bq ô ti0,¡{� P W ^ |W X E¡,ri0s| � k1 � b ^ |W X

E�,ri0s| � b.

(1) u¡pk1, i0 � 1, bq is the probability sum of all possible worlds W such that
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ti0�1,¡ P W ^ |W X E¡,ri0�1s| � k1 � b ^ |W X E�,ri0�1s| � b.

u¡pk
1, i0 � 1, bq �

¸
WPpwdpEpq,ti0�1,¡PW
|WXE¡,ri0�1s|�k1�b
|WXE�,ri0�1s|�b

PrpW q

�
¸

WPpwdpEpq,ti0�1,¡PW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q
(Since ti0�1,¡ P W,

ti0�1,� R W q

�
¸

WPpwdpEpq
ti0�1,¡PW,ti0,¡PW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q

�
¸

WPpwdpEpq
ti0�1,¡PW,ti0,�PW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q

�
¸

WPpwdpEpq
ti0�1,¡PW,ti0,¡RW,ti0,�RW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q

For the first part of the left hand side,

¸
WPpwdpEpq
ti0�1,¡PW,ti0,¡PW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q � ppti0�1q
¸

WPpwdpEpq,ti0,¡PW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q

� ppti0�1qu¡pk
1 � 1, i0, bq.

For the second part of the left hand side,

¸
WPpwdpEpq
ti0�1,¡PW,ti0,�PW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q � ppti0�1q
¸

WPpwdpEpq,ti0,�PW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q

� ppti0�1qu�pk1 � 1, i0, bq.
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For the third part of the left hand side, if ppti0,¡q � ppti0,�q � 1, then there is

no possible world satisfying this condition, therefore it is zero. Otherwise,

¸
WPpwdpEpq
ti0�1,¡PW
ti0,¡RW,ti0,�RW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q � ppti0�1q
¸

WPpwdpEpq
ti0,¡RW,ti0,�RW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q (B.1)

Equation (B.1) can be computed either by Equation (B.2) when ppti0 ,¡q ¡ 0

or by Equation (B.3) when ppti0 ,�q ¡ 0 and b   bmax. Notice that at least one

of ppti0 ,¡q and ppti0 ,�q is positive, otherwise neither tuple is in the induced

event relation Ep according to Definition 4.3.1.

¸
WPpwdpEpq
ti0,¡RW,ti0,�RW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q

�
1� ppti0,¡q � ppti0,�q

ppti0,¡q

¸
WPpwdpEpq,ti0,¡PW
|WXE¡,ri0s|�k1�b
|WXE�,ri0s

|�b

PrpW q

�
1� ppti0,¡q � ppti0,�q

ppti0,¡q
u¡pk

1, i0, bq. (B.2)

¸
WPpwdpEpq
ti0,¡RW,ti0,�RW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b

PrpW q

�
1� ppti0,¡q � ppti0,�q

ppti0,�q

¸
WPpwdpEpq,ti0,�PW
|WXE¡,ri0s|�k1�1�b
|WXE�,ri0s

|�b�1

PrpW q

�
1� ppti0,¡q � ppti0,�q

ppti0,�q
u�pk1, i0, b� 1q. (B.3)
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A subtlety is that when ppti0 ,¡q � 0 and b � bmax, neither Equation (B.2) nor

Equation (B.3) applies. However, in this case, one of the conditions in Equation

(B.1) is that |W X E�,ri0s| � b � bmax, which implies i0 � m. Otherwise, the

world W does not have enough tuples from E�. On the other hand, we know

that i0 ¤ m � 1. Therefore, there are simply no possible worlds satisfying the

condition in Equation (B.1), and Equation (B.1) equals 0.

Altogether, we show that this case can be correctly computed by Equation (4.6).

(2) u�pk1, i0 � 1, bq is the probability sum of all possible worlds W such that

ti0�1,� P W ^ |W X E¡,ri0�1s| � k1 � b ^ |W X E�,ri0�1s| � b. Using a

similar argument as above, it can be shown that this case is correctly computed

by Equation (4.7) as well.
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Appendix C

Postulates Satisfaction of Global-Topkβ

Semantics Exact k Faithfulness Stability Sens. to Prob. Sens. to Score

Global-Topkβ X(1) X/� (2) X(3) X(4) X(5)

Table C.1: Postulate Satisfaction for Global-Topkβ (β ¡ 0) in Table 5.1

Proof. The following proofs correspond to the numbers next to each entry in the above

table.

Assume that we are given a probabilistic relationRp � xR, p, Cy, a non-negative integer

k, an injective scoring function s and β ¡ 0.

(1) Global-Topkβ satisfies Exact k

This is obvious. The proof is similar to that of Global-Topk. The only difference here

is that in Global-Topkβ , the measure for each tuple is Global-Topkβ value instead of

Global-Topk probability.

(2) Global-Topkβ satisfies Faithfulness in simple probabilistic relations while it violates

Faithfulness in general probabilistic relations.

Simple Probabilistic Relations

For every β P p0, 1s, by the assumption, t1 ¡s t2 and ppt1q ¡ ppt2q, so we need to

show that vβk,spt1q ¡ vβk,spt2q, i.e. Pk,spt1qspt1qβ ¡ Pk,spt2qspt2qβ . By the Faithful-

ness of Global-Topk in simple probability relations, we know that Pk,spt1q ¡ Pk,spt2q
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in this case. Since 1 ¥ spt1q ¡ spt2q ¥ 0, and the function fpxq � xβ is increasing

on p0, 1s when β ¡ 0, the conclusion follows.

General Probabilistic Relations

We show that for every β ¡ 0, there is always an instance, i.e. a probabilistic rela-

tion and a non-negative integer k, where the Faithfulness postulate is violated. The

construction is as follows.

For a given β, choose three positive number smax, sa and sb such that smax ¡ sa ¡ sb.

Then, choose pa and pb such that 0   pb   pa   1
1�p sa

sb
qβ . It is easy to verify that

such pa and pb always exist. Let a positive integer m � 2� r 1�pa
papbp sa

smax�1
qβ s.

Say k � 1, R � tt1, . . . , tm�2, tm�1, tmu, t1 ¡s . . . ¡s tm, spt1q � smax, sptm�1q �

sa, sptmq � sb, and tt1, . . . , tm�2, tmu are exclusive. pptiq � 1�pa
m�2

, i � 1 . . .m � 2,

pptm�1q � pa, pptmq � pb.

By Global-Topkβ , the top-1 answer is ttmu because

(i) for tm�1, since 0   pb   pa   1
1�p sa

sb
qβ , we have vβk,sptm�1q � Pk,sptm�1qsptm�1qβ �

papbs
β
a   p1� paqpbs

β
b � vβk,sptmq;

(ii) for every 1 ¤ i ¤ m� 2, vβk,sptiq � Pk,sptiqsptiqβ � 1
m�2

p1� paqsptiqβ . Since

m ¥ 2 � 1�pa
papbp sa

smax�1
qβ , pptiq � 1�pa

m�2
  papbp sa

smax�1
qβ . Therefore, vβk,sptiq �

pptiqsptiqβ   pptiqpsmax � 1qβ ¤ papbpsaqβ � vβk,sptm�1q.

However, tm�1 ¡s tm and pptm�1q ¡ pptmq, which violates Faithfulness.

(3) Global-Topkβ satisfies Stability.

Part I: Probability.

Case 1: Winners.

For any winner t P A, if we only raise the probability of t, we have a new probabilistic

relation pRpq1 � xR, p1, Cy, where the new probability function p1 is such that p1ptq ¡

pptq and for any t1 P R, t1 � t, p1pt1q � ppt1q. Similar to the proof of Faithfulness

of Global-Topk, we have P pRpq1
k,s ptq � p1ptq

pptq P
Rp

k,s ptq. For any tuple t1 P R other than
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t, we have P pRpq1
k,s pt1q ¤ p1pt1q

ppt1q P
Rp

k,s pt
1q. Since scoring function s remains the same, if

vβ,R
p

k,s ptq is among the k highest Global-Topkβ values under Rp, so is vβ,R
p

k,s ptq under

pRpq1.

Case 2: Losers. s This case is similar to Case 1.

Part II: Score.

Case 1: Winners.

For any winner t P A, we evaluate Rp under a new general scoring function s1.

Comparing to s, s1 only raises the score of t. That is, s1ptq ¡ sptq and for any

t1 P R, t1 � t, s1pt1q � spt1q. The proof of the Faithfulness for Global-Topk shows

that the Global-Topk probability of t is non-decreasing while that of t1 P R, t1 � t,

is non-increasing. As the Global-Topkβ value is positively correlated to both the

Global-Topk probability and the score, vβ,R
p

k,s ptq is still among the k highest under

function s1.

Case 2: Losers.

This case is similar to Case 1.

(4) Global-Topkβ satisfies Sensitivity to Probability.

We are going to show that if Rp is sufficiently large, for every t P R�Y Ansk,spRpq,

there is a p1, such that t P Y Ansk,sppRpq1q, where pRpq1 � xR, p1, Cy. Pick any

t P R � Y Ansk,spRpq. Since Rp is sufficiently large, such t always exists. Let

the world ttu have probability p0 such that 1
1�psptqqβ   p0   1 under pRpq1. We

can always achieve this by setting p1ptq close to 1, and for each part Ci P C not

containing t, setting
°
t1PCipp

1pt1qq close to 0. Since t is the top-1 tuple in the world

ttu and spt2q P p0, 1s, for every t2 P R, t2 � t, we have vβ,pR
pq1

k,s ptq ¥ p0psptqqβ ¡

1 � p0 ¥ p1 � p0qpspt2qqβ ¥ v
β,pRpq1
k,s pt2q. Therefore, t has the highest Global-Topkβ

value under pRpq1 and is in Y Ansk,sppRpq1q.

(5) Global-Topkβ satisfies Sensitivity to Score.

We are going to show that if Rp is sufficiently large, for every t P R�Y Ansk,spRpq

under function s, there is a function s1, such that t P Y Ansk,spRpq under function
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s1. Pick any t P R � Y Ansk,spRpq. Since Rp is sufficiently large, such t always

exists. Let s1ptq � 2
3
, and for every t1 P R, t1 � t, s1pt1q � 1

3
pptq

1
β . Notice that s1pt1q

is well-defined as β ¡ 0. Since s1ptq � 2
3
¡ 1

3
¥ 1

3
pptq

1
β � s1pt1q, t is in the topk set

of every possible world containing it. Therefore, vβk,s1ptq � pptqs1ptqβ . Furthermore,

vβk,s1ptq � pptqs1ptqβ ¡ pptqp1
3
qβ � s1pt1qβ ¥ ppt1qs1pt1qβ � vβk,s1pt

1q. Therefore, t has

the highest Global-Topkβ value under function s1 and is in Y Ansk,s1pRpq.
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[51] Christopher Ré, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query evaluation on

probabilistic data. In ICDE, 2007.

[52] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. Top-k query

processing in uncertain databases. In ICDE, 2007.

164



[53] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. Probabilistic

top- and ranking-aggregate queries. ACM Trans. Database Syst., 33(3), 2008.

[54] Jean-Claude Vansnick. Strength of preference theorectial and practical aspects. Op-

erational Research, pages 449–463, 1984.

[55] Jennifer Widom. Trio: A system for integrated management of data, accuracy, and

lineage. In CIDR, 2005.

[56] Ke Yi, Feifei Li, George Kollios, and Divesh Srivastava. Efficient processing of top-k

queries in uncertain databases. In ICDE, pages 1406–1408, 2008.

[57] Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang 0011, and Jeffrey Xu Yu. Prob-

abilistic skyline operator over sliding windows. In ICDE, pages 1060–1071, 2009.

[58] Xi Zhang and Jan Chomicki. On the semantics and evaluation of top-k queries in

probabilistic databases. In ICDE Workshops, pages 556–563, 2008.

[59] Xi Zhang and Jan Chomicki. Profiling sets for preference querying. In SEBD, pages

34–44, 2008.

[60] Xi Zhang and Jan Chomicki. Semantics and evaluation of top- queries in probabilistic

databases. Distributed and Parallel Databases, 26(1):67–126, 2009.
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