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Abstract. We study here fundamental issues involved in top-k query evalua-
tion in probabilistic databases. We consider simple probabilistic databases in
which probabilities are associated with individual tuples, and general probabilis-
tic databases in which, additionally, exclusivity relationships between tuples can
be represented. In contrast to other recent research in this area, we do not limit
ourselves to injective scoring functions. We formulate three intuitive postulates
that the semantics of top-k queries in probabilistic databases should satisfy, and
introduce a new semantics, Global-Topk, that satisfies those postulates to a large
degree. We also show how to evaluate queries under the Global-Topk semantics.
For simple databases we design dynamic-programming based algorithms, and for
general databases we show polynomial-time reductions to the simple cases. For
example, we demonstrate that for a fixed k the time complexity of top-k query
evaluation is as low as linear, under the assumption that probabilistic databases
are simple and scoring functions are injective.

1 Introduction

The study of incompleteness and uncertainty in databases has long been an interest
of the database community [2–8]. Recently, this interest has been rekindled by an in-
creasing demand for managing rich data, often incomplete and uncertain, emerging
from scientific data management, sensor data management, data cleaning, information
extraction etc. [9] focuses on query evaluation in traditional probabilistic databases;
ULDB [10] supports uncertain data and data lineage in Trio [11]; MayBMS [12] uses
the vertical World-Set representation of uncertain data [13]. The standard semantics
adopted in most works is the possible worlds semantics [2, 6, 7, 10, 9, 13].

On the other hand, since the seminal papers of Fagin [14, 15], the top-k problem has
been extensively studied in multimedia databases [16], middleware systems [17], data
cleaning [18], core technology in relational databases [19, 20] etc. In the top-k problem,
each tuple is given a score, and users are interested in k tuples with the highest scores.

More recently, the top-k problem has been studied in probabilistic databases [21,
22]. Those papers, however, are solving two essentially different top-k problems. Soli-
man et al. [21] assumes the existence of a scoring function to rank tuples. Probabilities
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provide information on how likely tuples will appear in the database. In contrast, in
[22], the ranking criterion for top-k is the probability associated with each query an-
swer. In many applications, it is necessary to deal with tuple probabilities and scores
at the same time. Thus, in this paper, we use the model of [21]. Even in this model,
different semantics for top-k queries are possible, so a part of the challenge is to define
a reasonable semantics.

As a motivating example, let us consider the following graduate admission example.

Example 1. A graduate admission committee need to select two winners of a fellow-
ship. They narrow the candidates down to the following short list:

Name Overall Score
Aidan 0.65
Bob 0.55
Chris 0.45

Prob. of Coming
0.3
0.9
0.4

where the overall score is the normalized score of each candidate based on their quali-
fications, and the probability of acceptance is derived from historical statistics on can-
didates with similar qualifications and background.

The committee want to make offers to the best two candidates who will take the
offer. This decision problem can be formulated as a top-k query over the above proba-
bilistic relation, where k = 2.

In Example 1, each tuple is associated with an event, which is that the candidate
will accept the offer. The probability of the event is shown next to each tuple. In this
example, all the events of tuples are independent, and tuples are therefore said to be
independent. Such a relation is said to be simple. In contrast, Example 2 illustrates a
more general case.

Example 2. In a sensor network deployed in a habitat, each sensor reading comes with
a confidence value Prob, which is the probability that the reading is valid. The following
table shows the temperature sensor readings at a given sampling time. These data are
from two sensors, Sensor 1 and Sensor 2, which correspond to two parts of the relation,
marked C1 and C2 respectively. Each sensor has only one true reading at a given time,
therefore tuples from the same part of the relation correspond to exclusive events.

Temp.◦F (Score)
22
10
25
15

Prob
0.6
0.4
0.1
0.6

C1

C2

Our question is:
“What’s the temperature of the warmest spot?”
The question can be formulated as a top-k query, where k = 1, over a probabilistic

relation containing the above data. The scoring function is the temperature. However,
we must take into consideration that the tuples in each part Ci, i = 1, 2, are exclusive.
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Our contributions in this paper are the following:

• We formulate three intuitive semantic postulates and use them to analyze and com-
pare different top-k semantics in probabilistic databases (Section 3.1);

• We propose a new semantics for top-k queries in probabilistic databases, called
Global-Topk, which satisfies the above postulates to a large degree (Section 3.2);

• We exhibit efficient algorithms for evaluating top-k queries under the Global-Topk
semantics in simple probabilistic databases (Section 4.1) and general probabilistic
databases, under injective scoring functions (Section 4.3).

• We generalize Global-Topk semantics to general scoring functions, where ties are
allowed, by introducing the notion of allocation policy. We propose dynamic pro-
gramming based algorithms for query evaluation under the Equal allocation policy
(Section 5).

2 Background

2.1 Probabilistic Relations

To simplify the discussion in this paper, we assume that a probabilistic database con-
tains a single probabilistic relation. We refer to a traditional database relation as a de-
terministic relation. A deterministic relation R is a set of tuples. A partition C of R is a
collection of non-empty subsets of R such that every tuple belongs to one and only one
of the subsets. That is, C = {C1, C2, . . . , Cm} such that C1 ∪ C2 ∪ . . . ∪ Cm = R and
Ci ∩ Cj = ∅, 1 ≤ i 6= j ≤ m. Each subset Ci, i = 1, 2, . . . ,m is a part of the partition
C. A probabilistic relation Rp has three components, a support (deterministic) relation
R, a probability function p and a partition C of the support relation R. The probability
function p maps every tuple in R to a probability value in (0, 1]. The partition C divides
R into subsets such that the tuples within each subset are exclusive and therefore their
probabilities sum up to at most 1. In the graphical presentation of R, we use horizontal
lines to separate tuples from different parts.

Definition 1 (Probabilistic Relation). A probabilistic relation Rp is a triplet 〈R, p, C〉,
where R is a support deterministic relation, p is a probability function p : R 7→ (0, 1]
and C is a partition of R such that ∀Ci ∈ C,

∑
t∈Ci

p(t) ≤ 1.

In addition, we make the assumption that tuples from different parts of of C are
independent, and tuples within the same part are exclusive. Definition 1 is equivalent
to the model used in Soliman et al. [21] with exclusive tuple generation rules. Ré et
al. [22] proposes a more general model, however only a restricted model equivalent to
Definition 1 is used in top-k query evaluation.

Example 2 shows an example of a probabilistic relation whose partition has two
parts. Generally, each part corresponds to a real world entity, in this case, a sensor.
Since there is only one true state of an entity, tuples from the same part are exclusive.
Moreover, the probabilities of all possible states of an entity sum up to at most 1. In
Example 2, the sum of probabilities of tuples from Sensor 1 is 1, while that from Sensor
2 is 0.7. This can happen for various reasons. In the above example, we might encounter
a physical difficulty in collecting the sensor data, and end up with partial data.
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Definition 2 (Simple Probabilistic Relation). A probabilistic relation Rp = 〈R, p, C〉
is simple iff the partition C contains only singleton sets.

The probabilistic relation in Example 1 is simple (individual parts not illustrated).
Note that in this case, |R| = |C|.

We adopt the well-known possible worlds semantics for probabilistic relations [2,
6, 7, 10, 9, 13].

Definition 3 (Possible World). Given a probabilistic relation Rp = 〈R, p, C〉, a deter-
ministic relation W is a possible world of Rp iff

1. W is a subset of the support relation, i.e. W ⊆ R;
2. For every part Ci in the partition C, at most one tuple from Ci is in W , i.e. ∀Ci ∈
C, |Ci ∩W | ≤ 1;

3. The probability of W (defined by Equation 1) is positive, i.e. Pr(W ) > 0.

Pr(W ) =
∏
t∈W

p(t)
∏

Ci∈C′
(1−

∑
t∈Ci

p(t)) (1)

where C′ = {Ci ∈ C|W ∩ Ci = ∅}.

Denote by pwd(Rp) the set of all possible worlds of Rp.

2.2 Total order v.s. Weak order

A binary relation � is

– irreflexive: ∀x. x 6� x,
– asymmetric:∀x, y. x � y ⇒ y 6� x,
– transitive: ∀x, y, z. (x � y ∧ y � z) ⇒ x � z,
– negatively transitive: ∀x, y, z. (x 6� y ∧ y 6� z) ⇒ x 6� z,
– connected: ∀x, y. x � y ∨ y � x ∨ x = y.

A strict partial order is an irreflexive, transitive ( and thus symmetric ) binary re-
lation. A weak order is a negatively transitive strict partial order. A total order is a
connected strict partial order.

2.3 Scoring function

A scoring function over a deterministic relation R is a function from R to real numbers,
i.e. s : R 7→ R. The function s induces a preference relation �s and an indifference
relation ∼s on R. For any two distinct tuples ti and tj from R,

ti �s tj iff s(ti) > s(tj);
ti ∼s tj iff s(ti) = s(tj).

A scoring function over a probabilistic relation Rp = 〈R, p, C〉 is a scoring function
s over its support relation R. In general, a scoring function establishes a weak order
over R, where tuples from R can tie in score. However, when the scoring function s is
injective, �s is a total order. In such a case, no two tuples tie in score.
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2.4 Top-k Queries

Definition 4 (Top-k Answer Set over Deterministic Relation). Given a deterministic
relation R, a non-negative integer k and a scoring function s over R, a top-k answer in
R under s is a set T of tuples such that

1. T ⊆ R;
s 2. If |R| < k, T = R, otherwise |T | = k;
3. ∀t ∈ T ∀t′ ∈ R− T. t �s t′ or t ∼s t′.

According to Definition 4, given k and s, there can be more than one top-k answer
set in a deterministic relation R. The evaluation of a top-k query over R returns one of
them nondeterministically, say S. However, if the scoring function s is injective, S is
unique, denoted by topk,s(R).

3 Semantics of Top-k Queries

In the following two sections, we restrict our discussion to injective scoring functions.
We will discuss the generalization to general scoring functions in Section 5.

3.1 Semantic Postulates for Top-k Answers

Probability opens the gate for various possible semantics for top-k queries. As the se-
mantics of a probabilistic relation involves a set of worlds, it is to be expected that there
may be more than one top-k answer, even under an injective scoring function. The an-
swer to a top-k query over a probabilistic relation Rp = 〈R, p, C〉 should clearly be a
set of tuples from its support relation R. We formulate below three desirable postulates,
which serve as a benchmark to compare different semantics.

In the following discussion, denote by Ansk,s(Rp) the collection of all top-k answer
sets of Rp under the function s.
Postulates

– Static Postulates
1. Exact k: When Rp is sufficiently large (|C| ≥ k), the cardinality of every top-k

set S is exactly k;

|C| ≥ k ⇒ [∀S ∈ Ansk,s(Rp). |S| = k].

2. Faithfulness: For every top-k set S and any two tuples t1, t2 ∈ R, if both the
score and the probability of t1 are higher than those of t2 and t2 ∈ S, then
t1 ∈ S;

∀S ∈ Ansk,s(Rp) ∀t1, t2 ∈ R. s(t1) > s(t2)∧p(t1) > p(t2)∧t2 ∈ S ⇒ t1 ∈ S.

– Dynamic Postulate
∪ Ansk,s(Rp) denotes the union of all top-k answer sets of Rp = 〈R, p, C〉
under the function s. For any t ∈ R,

t is a winner iff t ∈ ∪ Ansk,s(Rp)
t is a loser iff t ∈ R− ∪ Ansk,s(Rp)
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3. Stability:
• Raising the score/probability of a winner will not turn it into a loser;

(a) If a scoring function s′ is such that s′(t) > s(t) and for every t′ ∈
R− {t}, s′(t) = s(t), then

t ∈ ∪ Ansk,s(Rp) ⇒ t ∈ ∪ Ansk,s′(Rp).

(b) If a probability function p′ is such that p′(t) > p(t) and for every
t′ ∈ R− {t}, p′(t) = p(t), then

t ∈ ∪ Ansk,s(Rp) ⇒ t ∈ ∪ Ansk,s((Rp)′),

where (Rp)′ = 〈R, p′, C〉.
• Lowering the score/probability of a loser will not turn it into a winner.

(a) If a scoring function s′ is such that s′(t) < s(t) and for every t′ ∈
R− {t}, s′(t) = s(t), then

t ∈ R− ∪ Ansk,s(Rp) ⇒ t ∈ R− ∪ Ansk,s′(Rp).

(b) If a probability function p′ is such that p′(t) < p(t) and for every
t′ ∈ R− {t}, p′(t) = p(t), then

t ∈ R− ∪ Ansk,s(Rp) ⇒ t ∈ R− ∪ Ansk,s((Rp)′),

where (Rp)′ = 〈R, p′, C〉.

All of those postulates reflect basic intuitions about top-k answers.
Exact k expresses user expectations about the size of the result. Typically, a user

issues a top-k query in order to restrict the size of the result and get a subset of cardi-
nality k (cf. Example 1). Therefore, k is a crucial parameter specified by the user that
should be complied with.

Faithfulness reflects the significance of score and probability in a static environ-
ment. It plays an important role in designing efficient query evalution algorithms. The
satisfaction of Faithfulness allows the application of a set of pruning techniques based
on monotonicity.

Stability reflects the significance of score and probability in a dynamic environment.
In a dynamic world, it is common that user might update score/probability on-the-fly.
Stability requires that the consequences of such changes should not be counterintuitive.

3.2 Global-Topk Semantics

We propose here a new top-k answer semantics in probabilistic relations, namely Global-
Topk, which satisfies the postulates formulated in Section 3.1 to a large degree:

• Global-Topk: return k highest-ranked tuples according to their probability of being
in the top-k answers in possible worlds.
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Considering a probabilistic relation Rp = 〈R, p, C〉 under an injective scoring func-
tion s, any W ∈ pwd(Rp) has a unique top-k answer set topk,s(W ). Each tuple from
the support relation R can be in the top-k answer (in the sense of Definition 4) in zero,
one or more possible worlds of Rp. Therefore, the sum of the probabilities of those
possible worlds provides a global ranking criterion.

Definition 5 (Global-Topk Probability). Assume a probabilistic relation Rp = 〈R, p, C〉,
a non-negative integer k and an injective scoring function s over Rp. For any tuple t in
R, the Global-Topk probability of t, denoted by PRp

k,s (t), is the sum of the probabilities
of all possible worlds of Rp whose top-k answer contains t.

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W )

Pr(W ). (2)

For simplicity, we skip the superscript in PRp

k,s (t), i.e. Pk,s(t), when the context is
unambiguous.

Definition 6 (Global-Topk Answer Set over Probabilistic Relation). Given a prob-
abilistic relation Rp = 〈R, p, C〉, a non-negative integer k and an injective scoring
function s over Rp, a top-k answer in Rp under s is a set T of tuples such that

1. T ⊆ R;
2. If |R| < k, T = R, otherwise |T | = k;
3. ∀t ∈ T,∀t′ ∈ R− T, Pk,s(t) ≥ Pk,s(t′).

Notice the similarity between Definition 6 and Definition 4. In fact, the probabilis-
tic version only changes the last condition, which restates the preferred relationship
between two tuples by taking probability into account. This semantics preserves the
nondeterministic nature of Definition 4. For example, if two tuples are of the same
Global-Topk probability, and there are k − 1 tuples with higher Global-Topk probabil-
ity, Definition 4 allows one of the two tuples to be added to the top-k answer nondeter-
ministically. Example 3 gives an example of the Global-Topk semantics.

Example 3. Consider the top-2 query in Example 1. Clearly, the scoring function here
is the Overall Score function. The following table shows all the possible worlds and
their probabilities. For each world, the names of the people in the top-2 answer set of
that world are underlined.

Possible World Prob
W1 = ∅ 0.042
W2 = {Aidan} 0.018
W3 = {Bob} 0.378
W4 = {Chris} 0.028
W5 = {Aidan,Bob} 0.162
W6 = {Aidan,Chris} 0.012
W7 = {Bob,Chris} 0.252
W8 = {Aidan,Bob, Chris} 0.108
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Chris is in the top-2 answer of W4,W6,W7, so the top-2 probability of Chris is
0.028 + 0.012 + 0.252 = 0.292. Similarly, the top-2 probability of Aidan and Bob
are 0.9 and 0.3 respectively. 0.9 > 0.3 > 0.292, therefore Global-Topk will return
{Aidan,Bob}.

Note that top-k answer sets may be of cardinality less than k for some possible
worlds. We refer to such possible worlds as small worlds. In Example 3, W1...4 are all
small worlds.

3.3 Other Semantics

Soliman et al. [21] proposes two semantics for top-k queries in probabilistic relations.

• U-Topk: return the most probable top-k answer set that belongs to possible world(s);
• U-kRanks: for i = 1, 2, . . . , k, return the most probable ith-ranked tuples across all

possible worlds.

Hua et al. [23] independently proposes PT-k, a semantics based on Global-Topk
probability as well. PT-k takes an additional parameter: probability threshold pτ ∈
(0, 1].

• PT-k: return every tuple whose probability of being in the top-k answers in possible
worlds is at least pτ .

Example 4. Continuing Example 3, under U-Topk semantics, the probability of top-
2 answer set {Bob} is 0.378, and that of {Aidan,Bob} is 0.162 + 0.108 = 0.27.
Therefore, {Bob} is more probable than {Aidan,Bob} under U-Topk. In fact, {Bob}
is the most probable top-2 answer set in this case, and will be returned by U-Topk.

Under U-kRanks semantics, Aidan is in 1st place in the top-2 answer of W2, W5,
W6, W8, therefore the probability of Aidan being in 1st place in the top-2 answers in
possible worlds is 0.018 + 0.162 + 0.012 + 0.108 = 0.3. However, Aidan is not in
2nd place in the top-2 answer of any possible world, therefore the probability of Aidan
being in 2nd place is 0. In fact, we can construct the following table.

Aidan Bob Chris
Rank 1 0.3 0.63 0.028
Rank 2 0 0.27 0.264

U-kRanks selects the tuple with the highest probability at each rank (underlined)
and takes the union of them. In this example, Bob wins at both Rank 1 and Rank 2.
Thus, the top-2 answer returned by U-kRanks is {Bob}.

PT-k returns every tuple with Global-Topk probability above the user specified
threshold pτ , therefore the answer depends on pτ . Say pτ = 0.6, then PT-k return
{Aidan}, as it is the only tuple with Global-Topk probability at least 0.6.

The postulates introduced in Section 3.1 lay the ground for comparing different
semantics. In Table 1, a single “X” (resp. “×”) indicates that postulate is (resp. is not)
satisfied under that semantics. “X/×” indicates that, the postulate is satisfied by that
semantics in simple probabilistic relations, but not in the general case.
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Semantics Exact k Faithfulness Stability
Global-Topk X X/× X
PT-k × X/× X
U-Topk × X/× X
U-kRanks × × ×

Table 1. Postulate Satisfaction for Different
Semantics

For Exact k, Global-Topk is the only semantics that satisfies this postulate. Example
4 illustrates the case where U-Topk, U-kRanks and PT-k violate this postulate. It is not
satisfied by U-Topk because a small possible world with high probability could domi-
nate other worlds. In that case, the dominating possible world might not have enough
tuples. It is also violated by U-kRanks because a single tuple can win at multiple ranks
in U-kRanks. In PT-k, if the threshold parameter pτ is set too high, then less than k tu-
ples will be returned (as in Example 4). As pτ decreases, PT-k return more tuples. In the
extreme case when pτ approaches 0, any tuple with a positive Global-Topk probability
will be returned.

For Faithfulness, Global-Topk violates it when exclusion rules lead to a highly re-
stricted distribution of possible worlds, and are combined with an unfavorable scoring
function. PT-k violates Faithfulness for the same reason. U-Topk violates Faithfulness
since it requires all tuples in a top-k answer set to be compatible, this postulate can be
violated when a high-score/probability tuple could be dragged down arbitrarily by its
compatible tuples if they are not very likely to appear. U-kRanks violates both Faith-
fulness and Stability. Under U-kRanks, instead of a set, a top-k answer is an ordered
vector, where ranks are significant. A change in a tuple’s probability/score might have
unpredictable consequence on ranks, therefore those two postulates are not guaranteed
to hold.

Faithfulness is a postulate which can lead to significant pruning in practice. Even
though it is not fully satisfied by any of the four semantics, some degree of satisfaction
is still desirable, as it will help us find pruning rules. For example, our optimization in
Section 4.2 explores the Faithfulness of Global-Topk in simple probabilistic databases.
Another example is that one of the pruning techniques in [23] explores the Faithfulness
of exclusive tuples in general probabilistic databases as well.

Proofs of the results in Table 1 are in Appendix.

4 Query Evaluation under Global-Topk

4.1 Simple Probabilistic Relations

We first consider a simple probabilistic relation Rp = 〈R, p, C〉 under an injective scor-
ing function s.

Proposition 1. Given a simple probabilistic relation Rp = 〈R, p, C〉 and an injective
scoring function s over Rp, if R = {t1, t2, . . ., tn} and t1 �s t2 �s . . . �s tn, the
following recursion on Global-Topk queries holds:
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q(k, i) =


0 k = 0
p(ti) 1 ≤ i ≤ k

(q(k, i− 1)
p̄(ti−1)
p(ti−1)

+ q(k − 1, i− 1))p(ti) otherwise
(3)

where q(k, i) = Pk,s(ti) and p̄(ti−1) = 1− p(ti−1).

Proof. See Appendix.
Notice that Equation 3 involves probabilities only, while the scores are used to de-

termine the order of computation.

Example 5. Consider a simple probabilistic relation Rp = 〈R, p, C〉, where R = {t1,
t2, t3, t4}, p(ti) = pi, 1 ≤ i ≤ 4, C = {{t1}, {t2}, {t3}, {t4}} and an injective scoring
function s such that t1 �s t2 �s t3 �s t4. The following table shows the Global-Topk
probability of ti, where 0 ≤ k ≤ 2.

k t1 t2 t3 t4
0 0 0 0 0
1 p1 p̄1p2 p̄1p̄2p3 p̄1p̄2p̄3p4

2 p1 p2 (p̄2 + p̄1p2)p3 ((p̄2 + p̄1p2)p̄3

+p̄1p̄2p3)p4

Row 2 (bold) is each ti’s Global-Top2 probability. Now, if we are interested in top-2
answer in Rp, we only need to pick the two tuples with the highest value in Row 2.

Theorem 1 (Correctness of Algorithm 1). Given a simple probabilistic relation Rp =
〈R, p, C〉, a non-negative integer k and an injective scoring function s, Algorithm 1
correctly computes a Global-Topk answer set of Rp under the scoring function s.

Proof. Algorithm 1 maintains a priority queue to select the k tuples with the highest
Global-Topk value. Notice that the nondeterminism is reflected in Line 6 as the algo-
rithm for maintaining the priority queue in the presence of tying elements. As long as
Line 2 in Algorithm 1 correctly computes the Global-Topk probability of each tuple in
R, Algorithm 1 returns a valid Global-Topk answer set. By Proposition 1, Algorithm 2
correctly computes the Global-Topk probability of tuples in R.

Algorithm 1 is a one-pass computation on the probabilistic relation, which can be
easily implemented even if secondary storage is used. The overhead is the initial sort-
ing cost (not shown in Algorithm 1), which would be amortized by the workload of
consecutive top-k queries.

Algorithm 2 takes O(kn) to compute the DP table. In addition, Algorithm 1 uses
a priority queue to maintain the k highest values, which takes O(n log k). Altogether,
Algorithm 1 takes O(kn).

4.2 Threshold Algorithm Optimization

Fagin [15] proposes Threshold Algorithm (TA) for processing top-k queries in a middle-
ware scenario. In a middleware system, an object has m attributes. For each attribute,
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Algorithm 1 (Ind Topk) Evaluate Global-Topk Queries in a Simple Probabilistic Re-
lation under an Injective Scoring Function
Require: Rp = 〈R, p, C〉, k
Ensure: tuples in R are sorted in the decreasing order based on the scoring function s
1: Initialize a fixed cardinality (k + 1) priority queue Ans of 〈t, prob〉 pairs, which compares

pairs on prob, i.e. the Global-Topk probability of t;
2: Calculate Global-Topk probabilities using Algorithm 2, i.e.

q(0 . . . k, 1 . . . |R|) = Ind Topk Sub(Rp, k);

3: for i = 1 to |R| do
4: Add 〈ti, q(k, i)〉 to Ans;
5: if |Ans| > k then
6: remove the pair with the smallest prob value from Ans;
7: end if
8: end for
9: return {ti|〈ti, q(k, i)〉 ∈ Ans};

Algorithm 2 (Ind Topk Sub) Compute Global-Topk Probabilities in a Simple Proba-
bilistic Relation under an Injective Scoring Function
Require: Rp = 〈R, p, C〉, k
Ensure: tuples in R are sorted in the decreasing order based on s
1: q(0, 1) = 0;
2: for k′ = 1 to k do
3: q(k′, 1) = p(t1);
4: end for
5: for i = 2 to |R| do
6: for k′ = 0 to k do
7: if k′ = 0 then
8: q(k′, i) = 0;
9: else

10: q(k′, i) = p(ti)(q(k
′, i − 1)

p̄(ti−1)

p(ti−1)
+ q(k′ − 1, i − 1));

11: end if
12: end for
13: end for
14: return q(0 . . . k, 1 . . . |R|);
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there is a sorted list ranking objects in the decreasing order of its score on that attribute.
An aggregation function f combines the individual attribute scores xi, i=1, 2, . . . ,m
to obtain the overall object score f(x1, x2, . . . , xm). An aggregation function is mono-
tonic iff f(x1, x2, . . . , xm) ≤ f(x′1, x

′
2, . . . , x

′
m) whenever xi ≤ x′i for every i. Fagin

[15] shows that TA is cost-optimal in finding the top-k objects in such a system.
TA is guaranteed to work as long as the aggregation function is monotonic. For a

simple probabilistic relation, if we regard score and probability as two special attributes,
Global-Topk probability Pk,s is an aggregation function of score and probability. The
Faithfulness postulate in Section 3.1 implies the monotonicity of Global-Topk probabil-
ity. Consequently, assuming that we have an index on probability as well, we can guide
the dynamic programming (DP) in Algorithm 2 by TA. Now, instead of computing all
kn entries for DP, where n = |R|, the algorithm can be stopped as early as possible.
A subtlety is that Global-Topk probability Pk,s is only well-defined for t ∈ R, unlike
in [15], where an aggregation function is well-defined over the domain of all possible
attribute values. Therefore, compared to the original TA, we need to achieve the same
behavior without referring to virtual tuples which are not in R.

U-Topk satisfies Faithfulness in simple probabilistic relations. An adaption of the
TA algorithm in this case is available in [21]. TA is not applicable to U-kRanks. Even
though we can define an aggregation function per rank, rank = 1, 2, . . . , k, for tuples
under U-kRanks, the violation of Faithfulness in Table 1 suggests a violation of mono-
tonicity of those k aggregation functions. PT-k computes Global-Topk probability as
well, and is therefore a natural candidate for TA in simple probabilistic relations.

Denote T and P for the list of tuples in the decreasing order of score and probability
respectively. Following the convention in [15], t and p are the last value seen in T and
P respectively.

Algorithm 1’ (TA Ind Topk)

(1) Go down T list, and fill in entries in the DP table. Specifically, for t = tj ,
compute the entries in the jth column up to the kth row. Add tj to the
top-k answer set Ans, if any of the following conditions holds:
(a) Ans has less than k tuples, i.e. |Ans| < k;
(b) The Global-Topk probability of tj , i.e. q(k, j), is greater than

the lower bound of Ans, i.e. LBAns, where LBAns =
minti∈Ans q(k, i).

In the second case, we also need to drop the tuple with the lowest Global-
Topk probability in order to preserve the cardinality of Ans.

(2) After we have seen at least k tuples in T , we go down P list to find
the first p whose tuple t has not been seen. Let p = p, and we can use
p to estimate the threshold, i.e. upper bound (UP ) of the Global-Topk
probability of any unseen tuple. Assume t = ti,

UP = (q(k, i)
p̄(ti)
p(ti)

+ q(k − 1, i))p.

(3) If UP > LBAns, we can expect Ans will be updated in the future, so
go back to (1). Otherwise, we can safely stop and report Ans.
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Theorem 2 (Correctness of Algorithm 1’). Given a simple probabilistic relation Rp =
〈R, p, C〉, a non-negative integer k and an injective scoring function s over Rp, the
above TA-based algorithm correctly find a top-k answer under Global-Topk semantics.

Proof. See Appendix.
The optimization above aims at an early stop. Bruno et al. [24] carries out an exten-

sive experimental study on the effectiveness of applying TA in RDMBS. They consider
various aspects of query processing. One of their conclusions is that if at least one of the
indices available for the attributes1 is a covering index, that is, it is defined over all other
attributes and we can get the values of all other attributes directly without performing
a primary index lookup, then the improvement by TA can be up to two orders of mag-
nitude. The cost of building a useful set of indices once would be amortized by a large
number of top-k queries that subsequently benefit form such indices. Even in the lack
of covering indices, if the data is highly correlated, in our case, that means high-score
tuples having high probabilities, TA would still be effective.

4.3 Arbitrary Probabilistic Relations

Induced Event Relation In the general case of probabilistic relation, each part of the
partition C can contain more than one tuple. The crucial independence assumption in
Algorithm 1 no longer holds. However, even though tuples in one part of the partition C
are not independent, tuples in different parts are. In the following definition, we assume
an identifier function id. For any tuple t, id(t) identifies the part where t belongs.

Definition 7 (Induced Event Relation). Given a probabilistic relation Rp = 〈R, p, C〉,
an injective scoring function s over Rp and a tuple t ∈ Cid(t) ∈ C, the event relation
induced by t, denoted by Ep = 〈E, pE , CE〉, is a probabilistic relation whose support
relation E has only one attribute, Event. The relation E and the probability function
pE are defined by the following two generation rules:

– Rule 1: tet
∈ E and pE(tet

) = p(t);
– Rule 2: ∀Ci ∈ C ∧ Ci 6= Cid(t).

(∃t′ ∈ Ci ∧ t′ �s t) ⇒ (teCi
∈ E) and pE(teCi

) =
∑

t′∈Ci

t′�st

p(t′).

No other tuples belong to E. The partition CE is defined as the collection of single-
ton subsets of E.

Except for one special tuple generated by Rule 1, each tuple in the induced event
relation (generated by Rule 2) represents an event eCi associated with a part Ci ∈ C.
Given the tuple t, the event eCi is defined as “some tuple from the part Ci has the score
higher than the score of t”. The probability of this event, denoted by p(teCi

), is the
probability that eCi occurs.

The role of the special tuple tet and its probability p(t) will become clear in Propo-
sition 3. Let us first look at an example of an induced event relation.

1 Probability is typically supported as a special attribute in DBMS.
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Example 6. Given Rp as in Example 2, we would like to construct the induced event
relation Ep = 〈E, pE , CE〉 for tuple t=(Temp: 15) from C2. By Rule 1, we have tet

∈
E, pE(tet) = 0.6. By Rule 2, since t ∈ C2, we have teC1

∈ E and pE(teC1
) =∑

t′∈C1
t′�st

p(t′) = p((Temp: 22)) = 0.6. Therefore,

E: pE :
Event
tet

teC1

Prob
0.6
0.6

Proposition 2. An induced event relation in Definition 7 is a simple probabilistic rela-
tion.

Evaluating Global-Topk Queries With the help of induced event relation, we can
reduce Global-Topk in the general case to Global-Topk in simple probabilistic relations.

Lemma 1. Let Rp = 〈R, p, C〉 be a probabilistic relation, s an injective scoring func-
tion, t ∈ R, and Ep = 〈E, pE , CE〉 the event relation induced by t. Define Qp =
〈E − {tet}, pE , CE − {{tet}}〉. Then, the Global-Topk probability of t satisfies the
following:

PRp

k,s (t) = p(t)
∑

We∈pwd(Qp)
|We|<k

Pr(We).

Proposition 3. Given a probabilistic relation Rp = 〈R, p, C〉 and an injective scor-
ing function s, for any t ∈ Rp, the Global-Topk probability of t equals the Global-
Topk probability of tet

when evaluating top-k in the induced event relation Ep =
〈E, pE , CE〉 under the injective scoring function sE : E → R, sE(tet) = 1

2 and
sE(teCi

) = i:
PRp

k,s (t) = PEp

k,sE (tet
).

Proof. See Appendix.
In Proposition 3, the choice of the function sE is rather arbitrary. In fact, any injec-

tive functioin giving tet the lowest score will do. Every tuple other than t in the induced
event relation corresponds to the event that a tuple with a score higher than that of t oc-
curs. We want to track the case that at most k−1 such events happen. Since any induced
event relation is simple (Proposition 2), Proposition 3 illustrates how we can reduce the
computation of PRp

k,s (t) in the original probabilistic relation to a top-k computation in a
simple probabilistic relation, where we can apply the DP technique described in Section
4.1. The complete algorithms are shown as Algorithm 3 and Algorithm 4.

In Algorithm 4, we first find the part Cid(t) where t belongs. In Line 2, we initialize
the support relation E of the induced event relation by the tuple generated by Rule 1
in Definition 7. For any part Ci other than Cid(t), we compute the probability of the
event eCi according to Definition 7 (Line 4), and add it to E if its probability is non-
zero (Line 5-7). Since all the tuples from the same part are exclusive, this probability is
the sum of the probabilities of all tuples that qualify in that part. Note that if no tuple
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Algorithm 3 (IndEx Topk) Evaluate Global-Topk Queries in a General Probabilistic
Relation under an Injective Scoring Function
Require: Rp = 〈R, p, C〉, k, s
1: Initialize a fixed cardinality k + 1 priority queue Ans of 〈t, prob〉 pairs, which compares

pairs on prob, i.e. the Global-Topk probability of t;
2: for t ∈ R do
3: Calculate P Rp

k,s (t) using Algorithm 4, i.e.

P Rp

k,s (t) = IndEx Topk Sub(Rp, k, s, t);

4: Add 〈t, P Rp

k,s (t)〉 to Ans;
5: if |Ans| > k then
6: remove the pair with the smallest prob value from Ans;
7: end if
8: end for
9: return {t|〈t, P Rp

k,s (t)〉 ∈ Ans};

Algorithm 4 (IndEx Topk Sub) Calculate PRp

k,s (t) using an induced event relation

Require: Rp = 〈R, p, C〉, k, s, t ∈ R
1: Find the part Cid(t) ∈ C such that t ∈ Cid(t);
2: E = {tet}, where pE(tet) = p(t);
3: for Ci ∈ C and Ci 6= Cid(t) do
4: p(eCi) =

P
t′∈Ci
t′�st

p(t′);

5: if p(eCi) > 0 then
6: E = E ∪ {teCi

}, where pE(teCi
) = p(eCi);

7: end if
8: end for
9: Use Algorithm 2 to compute Global-Topk probabilities in Ep = 〈E, pE , CE〉, i.e.

q(0 . . . k, 1 . . . |E|) = Ind Topk Sub(Ep, k)

10: P Rp

k,s (t) = P Ep

k,sE (tet) = q(k, |E|);
11: return P Rp

k,s (t);
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from Ci qualifies, this probability is zero. In this case, we do not care whether any tuple
from Ci will be in the possible world or not, since it does not have any influence on
whether t will be in top-k or not. The corresponding event tuple is therefore excluded
from E. By default, any probabilistic database assumes that any tuple not in the support
relation is with probability zero. Line 9 uses Algorithm 2 to compute PEp

k,s (tet
). Note

that Algorithm 2 requires all tuples be sorted on score, but this is not a problem for
us. Since we already know the scoring function sE , we simply need to organize tuples
based on sE when generating E. No extra sorting is necessary.

Theorem 3 (Correctness of Algorithm 3). Given a probabilistic relation Rp = 〈R, p,
C〉, a non-negative integer k and an injective scoring function s, Algorithm 3 correctly
computes a Global-Topk answer set of Rp under the scoring function s.

Proof. The top-level structure with the priority queue in Algorithm 3 resemble those
in Algorithm 1. Therefore, as long as Line 3 in Algorithm 3 correctly computes the
Global-Topk probability of each tuple in R, Algorithm 3 returns a valid Global-Topk
answer set. Line 1-8 in Algorithm 4 computes the event relation induced by tuple t. By
Proposition 3, Line 9-10 in Algorithm 4 correctly computes the Global-Topk probability
of tuple t.

In Algorithm 4, Line 3-8 takes O(n) to build E (we need to scan all tuples within
each part). The call to Algorithm 2 in Line 9 takes O(k|E|), where |E| is no more than
the number of parts in partition C, which is in turn no more than n. So Algorithm 4
takes O(kn). Algorithm 3 make n calls to Algorithm 4 to compute PRp

k,s (t) for every
tuple t ∈ R. Again, Algorithm 3 uses a priority queue to select the final answer set,
which takes O(n log k). The entire algorithm takes O(kn2 + n log k) = O(kn2).

5 Global-Topk under General Scoring Functions

5.1 Semantics and Postulates

Global-Topk Semantics with Allocation Policy Under a general scoring function,
the Global-Topk semantics remains the same. However, the definition of Global-Topk
probability in Definition 5 needs to be generalized to handle ties.

Recall that under an injective scoring function s, there is a unique top-k answer set
S in every possible world W . When the scoring function s is non-injective, there may be
multiple top-k answer sets S1, . . . , Sd, each of which is returned nondeterministically.
Therefore, for any tuple t ∈ ∩Si, i = 1, . . . , d, the world W contributes Pr(W ) to the
Global-Topk probability of t. One the other hand, for any tuple t ∈ (∪Si − ∩Si), i =
1 . . . , d, the world W contributes only a fraction of Pr(W ) to the Global-Topk proba-
bility of t. The allocation policy determines the value of this fraction, i.e. the allocation
coefficient. Denote by α(t, W ) the allocation coefficient of a tuple t in a world W . Let
allk,s(W ) = ∪Si, i = 1, . . . , d.

Definition 8 (Global-Topk Probability under a General Scoring Function). Assume
a probabilistic relation Rp = 〈R, p, C〉, a non-negative integer k and a scoring function
s over Rp. For any tuple t in R, the Global-Topk probability of t, denoted by PRp

k,s (t), is
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the sum of the (partial) probabilities of all possible worlds of Rp whose top-k answer
may contain t.

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈allk,s(W )

α(t, W )Pr(W ). (4)

With no prior bias towards any tuple, it is natural to assume that each of S1, . . . , Sd

is returned nondeterministically with equal probability. Notice that this probability has
nothing to do with tuple probabilities. Rather, it is the determined by the number of
equally qualified top-k answer sets. Hence, we have the following Equal allocation
policy.

Definition 9 (Equal Allocation Policy). Assume a probabilistic relation Rp = 〈R, p, C〉,
a non-negative integer k and a scoring function s over Rp. For a possible world W ∈
pwd(Rp) and a tuple t ∈ W , let a = |{t′ ∈ W |t′ �s t}| and b = |{t′ ∈ W |t′ ∼s t}|

α(t, W ) =

{
1 if a < k and a + b ≤ k
k − a

b
if a < k and a + b > k

Satisfaction of Postulates The semantic postulates in Section 3.1 are directly appli-
cable to Global-Topk with allocation policy. In the Appendix, we show that the Equal
allocation policy preserves the semantic postulates of Global-Topk.

5.2 Query Evaluation in Simple Probabilistic Relations

Definition 10. Let Rp = 〈R, p, C〉 be a probabilistic relation, k a non-negative integer
and s a general scoring function over Rp. Assume that R = {t1, t2, . . . , tn}, t1 �s

t2 �s . . . �s tn. Let TRp

k,[i], k ≤ i, be the sum of the probabilities of all possible worlds
of exactly k tuples from {t1, . . . , ti}:

TRp

k,[i] =
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|=k

Pr(W )

As usual, we omit the superscript in TRp

k,[i], i.e. Tk,[i], when the context is unam-
biguous. Remark 1 shows that in a simple probabilistic relation Tk,[i] can be computed
efficiently.

Remark 1. Let Rp = 〈R, p, C〉 be a simple probabilistic relation, k a non-negative in-
teger and s a general scoring function over Rp. Assume that R = {t1, t2, . . . , tn},
t1 �s t2 �s . . . �s tn. For any i, 1 ≤ i ≤ n − 1, TRp

k,[i] can be computed using the
DP table for computing the Global-Topk probabilities in Rp under an order-preserving
injective scoring function s′ such that t1 �s′ t2 �s′ . . . �s′ tn.

Proof. We show by case study.
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– Case 1: If k = 0, 1 ≤ i ≤ n− 1, then

TRp

k,[i] =
∏

1≤j≤i

p(tj) =
P

(Rp)
1,s′ (ti+1)
p(ti+1)

– Case 2: For every 1 ≤ k ≤ i ≤ n− 1, by the definition of TRp

k,[i], we have

TRp

k,[i] =
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|≤k

Pr(W )−
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|≤k−1

Pr(W )

In the DP table computing the Global-Topk probabilities in Rp under function s′,
we have

PRp

k+1,s′(ti+1) =
∑

W∈pwd(Rp)
ti+1∈topk+1,s′ (W )

Pr(W ) (s′ is injective)

=
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|≤k
ti+1∈W

Pr(W )

= p(ti+1)
∑

W∈pwd(Rp)
|W∩{t1,...,ti}|≤k

Pr(W ) (tuples are independent)

Therefore,

TRp

k,[i] =
PRp

k+1,s′(ti+1)
p(ti+1)

−
PRp

k,s′(ti+1)
p(ti+1)

Since 1 ≤ k ≤ i ≤ n − 1, both PRp

k+1,s′(ti+1) and PRp

k,s′(ti+1) can be computed
using the DP table used to compute the Global-Topk probabilities of tuples in Rp

under the injective scoring function s′.

Remark 2 shows that we can compute Global-Topk probability under a general
scoring function in polynomial time for an extreme case, where the probabilistic relation
is simple and all tuples tie in scores. As we will see shortly, this special case plays an
important role in our major result Proposition 4.

Remark 2. Let Rp = 〈R, p, C〉 be a simple probabilistic relation, k a non-negative in-
teger and s a general scoring function over Rp. Assume that R = {t1, . . . , tm} and
t1 ∼s t2 ∼s . . . ∼s tm. For any tuple ti, 1 ≤ i ≤ m, the Global-Topk probability of ti,
i.e. PRp

k,s (ti), can be computed using Remark 1.

Proof. If k > m, it is trivial that PRp

k,s (ti) = p(ti). Therefore, we only prove the case
when k ≤ m. According to Equation 4, for any i, 1 ≤ i ≤ m,
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PRp

k,s (ti) =
m∑

j=1

∑
W∈pwd(Rp)
ti∈allk,s(W ),|W |=j

α(ti,W )Pr(W )

=
m∑

j=1

∑
W∈pwd(Rp)
ti∈W,|W |=j

α(ti,W )Pr(W ) (Since all tuple tie , allk,s(W ) = W )

=
k∑

j=1

∑
W∈pwd(Rp)
ti∈W,|W |=j

α(ti,W )Pr(W ) +
m∑

j=k+1

∑
W∈pwd(Rp)
ti∈W,|W |=j

α(ti,W )Pr(W )

=
k∑

j=1

∑
W∈pwd(Rp)
ti∈W,|W |=j

Pr(W ) +
m∑

j=k+1

k

j

∑
W∈pwd(Rp)
ti∈W,|W |=j

Pr(W )

With out loss of generality, assume i = m, then the above equation becomes

PRp

k,s (tm) =
k∑

j=1

∑
W∈pwd(Rp)
tm∈W,|W |=j

Pr(W ) +
m∑

j=k+1

k

j

∑
W∈pwd(Rp)
tm∈W,|W |=j

Pr(W )

= p(ti)(
k∑

j=1

TRp

j−1,[m−1] +
m∑

j=k+1

k

j
TRp

j−1,[m−1]) (5)

By Remark 1, every TRp

j−1,[m−1] can be computed using the DP table computing
Global-Topk probabilities in Rp under an order preserving injective scoring function
s′. Therefore, Equation 5 can be computed using Remark 1.

Based on Remark 1 and Remark 2, we design Algorithm 5 and prove its correctness
in Theorem 4 using Proposition 4.

Assume Rp = 〈R, p, C〉 where R = {t1, t2, . . . , tn} and t1 �s t2 �s . . . �s tn.
For any tl ∈ R, il is the largest index such that til

�s tl, and jl is the largest index such
that tjl

�s tl.
Intuitively, Algorithm 5 and Proposition 4 convey the idea that, in a simple proba-

bilistic relation, the computation of Global-Topk under the Equal allocation policy can
be simulated by the following procedure:

(S1) Independently flip a biased coin with probability p(tj) for each tuple tj ∈ R =
{t1, t2, . . . , tn}, which gives us a possible world W ∈ pwd(Rp);

(S2) Return a top-k answer set S of W nondeterministically (with equal probability
in the presence of multiple top-k sets). The Global-Topk probability of tl is the
probability that tl ∈ S.

The above Step (S1) can be further refined into:
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(S1.1) Independently flip a biased coin with probability p(tj) for each tuple tj ∈ RA =
{t1, t2 . . . , til

}, which gives us a collection of tuples WA;

(S1.2) Independently flip a biased coin with probability p(tj) for each tuple tj ∈ RB =
{til+1, . . . , tn}, which gives us a collection of tuples WB . W = WA ∪ WB is a
possible world from pwd(Rp);

In order for tl to be in S, WA can have at most k − 1 tuples. Let |WA| = k′, then
k′ < k. Every top-k answer set S of W contains all k′ tuples from WA, plus the top-
(k − k′) tuples from WB . For tl to be in S, it has to be in the top-(k − k′) set of WB .
Consequently, the probability of tl ∈ S, i.e. the Global-Topk probability of tl, is the
joint probability that |WA| = k′ < k and tl belongs to the top-(k − k′) set of WB . The
former is Tk′,[il] and the latter is P

Rp
B

k−k′,s(tl) , where Rp
B is Rp restricted to RB . Again,

due to the independence among tuples, Step (S1.1) and Step (S1.2) are independent,
and their joint probability is simply the product of the two.

Further notice that since tl has the highest score in RB and all tuples are inde-
pendent in RB , any tuple with score lower than that of tl does not have influence on
P

Rp
B

k−k′,s(tl). In other words, PRp
B

k−k′,s(tl) = P
Rp

s(tl)
k−k′,s(tl), where Rp

s(tl) is Rp restricted to

all tuples tying with tl in R. Notice that the computation of P
Rp

s(tl)
k−k′,s(tl) is the extreme

case addressed in Remark 2.

Algorithm 5 elaborates the algorithm based on the idea above, where m = jl− il is
the number of tuples tying with tl (including tl).

Furthermore, Algorithm 5 exploits the overlapping among DP tables and makes the
following two optimizations:

1. Use a single DP table to collect the information needed to compute all Tk′,[il],
k′ = 0, . . . , k − 1, l = 1, . . . , n and k′ ≤ il (Line 2).

Notice that for 1 ≤ l ≤ n, 1 ≤ il ≤ n − 1. It is easy to see that the DP table
computing Tk−1,[n−1] subsumes all other DP tables.

2. Use a single DP table to compute all P
Rp

s(tl)
k−k′,s(tl), k′ = 0, . . . , k − 1, for a tuple tl

(Line 8-18).

For different k′, the computation of P
Rp

s(tl)
k−k′,s(tl) requires the computation of the

same set of T
Rp

s(tl)

j,[m−1]. In Line 8-18, P
Rp

s(tl)
k−k′,s(tl) is abbreviated as Pl(k − k′) to

emphasize the changing parameter k′.

Each DP table computation uses a call to Algorithm 2 (Line 2 in Algorithm 5, Line
3 in Algorithm 6).
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Algorithm 5 (Ind Topk Gen) Evaluate Global-Topk Queries in a Simple Probabilistic
Relation under a General Scoring Function
Require: Rp = 〈R, p, C〉, k
Ensure: tuples in R are sorted in the non-increasing order based on s
1: Initialize a fixed cardinality (k + 1) priority queue Ans of 〈t, prob〉 pairs, which compares

pairs on prob, i.e. the Global-Topk probability of t;
2: Get the DP table for computing Tk′,[i], k

′ = 0, . . . k − 1, i = 1, . . . , n − 1, k′ ≤ i using
Algorithm 2, i.e.

q(0 . . . k, 1 . . . |R|) = Ind Topk Sub(Rp, k);

3: for l = 1 to |R| do
4: m = jl − il;
5: if m == 1 then
6: Add 〈tl, q(k, l)〉 to Ans;
7: else
8: Get the DP table for computing P

Rp
s (tl)

k−k′,s(tl), i.e. Pl(k − k′), k′ = 0, . . . , k − 1

qtie(0 . . . m, 1 . . . m) = Ind Topk Gen Sub(Rp
s(tl), tl, m);

9: Pl(0 . . . max(m, k)) = 0;
10: for k′′ = 1 to min(k, m) do
11: Pl(k

′′) = Pl(k
′′ − 1) + qtie(k

′′, m);
12: end for
13: for k′′ = k + 1 to m do
14: Pl(k

′′) = Pl(k
′′ − 1) +

k

k′′
qtie(k

′′, m);
15: end for
16: for k′′ = m + 1 to k do
17: Pl(k

′′) = p(tl);
18: end for
19: P Rp

k,s (tl) = 0;
20: for k′ = 0 to k − 1 do
21:

Tk′,[il] =
q(k′ + 1, il + 1) − q(k′, il + 1)

p(til+1)
;

22:
P Rp

k,s (tl) = P Rp

k,s (tl) + Tk′,[il] · Pl(k − k′);

23: end for
24: Add 〈tl, P

Rp

k,s (tl)〉 to Ans;
25: end if
26: if |Ans| > k then
27: remove the pair with the smallest prob value from Ans;
28: end if
29: end for
30: return {ti|〈ti, prob〉 ∈ Ans};
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Algorithm 6 (Ind Topk Gen Sub) Compute the DP table for Global-Topk probabili-
ties in a Simple Probabilistic Relation under an All-Tie Scoring Function
Require: Rp

s(ttarget) = 〈R, p, C〉, ttarget, m
Ensure: |R| = m, ttarget ∈ R
1: Rearrange tuples in R such that R = {t1, . . . , tm−1, tm} and tm = ttarget;
2: Assume the injective scoring function s′ is such that t1 �s′ . . . �s′ tm−1 �s′ ttarget;
3: Get the DP table

qtie(0 . . . m, 1 . . . m) = Ind Topk Sub(Rp
s(ttarget), m);

4: return qtie(0 . . . m, 1 . . . m);

Proposition 4. Let Rp = 〈R, p, C〉 be a simple probabilistic relation where R =
{t1, . . . , tn}, t1 �s t2 �s . . . �s tn, k a non-negative integer and s a scoring function.
For every tl ∈ R, the Global-Topk probability of tl can be computed by the following
equation:

PRp

k,s (tl) =
k−1∑
k′=0

Tk′,[il] · P
Rp

s(tl)
k−k′,s(tl) (6)

where Rp
s(tl) is Rp restricted to {t ∈ R|t ∼s tl}.

Proof. See Appendix.

Theorem 4 (Correctness of Algorithm 5). Given a probabilistic relation Rp = 〈R, p,
C〉, a non-negative integer k and a general scoring function s, Algorithm 5 correctly
computes a Global-Topk answer set of Rp under the scoring function s.

Proof. In Algorithm 5, by Remark 1, Line 2 and Line 9 correctly computes Tk′,[i] for
0 ≤ k′ ≤ k − 1, 1 ≤ i ≤ n − 1, k′ ≤ i. In Line 8, each entry qtie(k′′,m) =
p(tl)T

Rp
s(tl)

k′′−1,[m−1], 1 ≤ k′′ ≤ m. By Remark 2, Line 8 collects the information for

computing P
Rp

s(tl)
k−k′,s(tl), 1 ≤ k−k′ ≤ m. Line 9-15 correctly compute those cases based

on the definition. If m < k− k′ ≤ k, then it is trivial that P
Rp

s(tl)
k−k′,s(tl) = p(tl) (Line 16-

18). By Proposition 4, Line 19-23 correctly computes the Global-Topk probability of tl.
Also notice that in Line 6, the Global-Topk probability of a tuple without tying tuples is
retrieved directly. It is an optimization as the code handling the general case (i.e. m >
1, Line 7-24) works for this special case as well. Again, the top-level structure with
the priority queue in Algorithm 5 ensures that a Global-Topk answer set is correctly
computed.

In Algorithm 5, Line 2 takes O(kn), and for each tuple, there is one call to Algo-
rithm 6 in Line 8, which takes O(m2

max), where mmax is the maximal number of tying
tuples. Therefore, Algorithm 5 takes O(n max(k, m2

max)) altogether.
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5.3 Query Evaluation in General Probabilistic Relations

Recall that under an injective scoring function, every tuple t in a general probabilistic
relation Rp = 〈R, p, C〉 induces a simple event relation Ep, and we reduce the com-
putation of t’s Global-Topk probability in Rp to the computation of tet’s Global-Topk
probability in Ep.

In the case of general scoring functions, we use the same reduction idea. However,
now for each part Ci ∈ C, Ci 6= Cid(t), tuple t induces in Ep two exclusive tuples
teCi,� and teCi,∼ , corresponding to the event eCi,� that “some tuple from the part Ci

has the score higher than that of t” and the event eCi,∼ that “some tuple from the part
Ci has the score equal to that of t”, respectively. In addition, in Definition 11, we allow
the existence of tuples with probability 0, in order to simplify the description of query
evaluation algorithms. This is an artifact whose purpose will become clear in Theorem
5.

Definition 11 (Induced Event Relation under General Scoring Functions). Given
a probabilistic relation Rp = 〈R, p, C〉, a scoring function s over Rp and a tuple
t ∈ Cid(t) ∈ C, the event relation induced by t, denoted by Ep = 〈E, pE , CE〉, is a
probabilistic relation whose support relation E has only one attribute, Event. The re-
lation E and the probability function pE are defined by the following four generation
rules and the postprocess step:

– Rule 1.1: tet,∼ ∈ E and pE(tet,∼) = p(t);
– Rule 1.2: tet,� ∈ E and pE(tet,�) = 0;
– Rule 2.1:

∀Ci ∈ C ∧ Ci 6= Cid(t).(teCi,� ∈ E) and pE(teCi
,�) =

∑
t′∈Ci

t′�st

p(t′);

– Rule 2.2:

∀Ci ∈ C ∧ Ci 6= Cid(t).(teCi,∼ ∈ E) and pE(teCi
,∼) =

∑
t′∈Ci

t′∼st

p(t′).

Postprocess step: only when pE(teCi
,�) and pE(teCi

,∼) are both 0, delete both
tuple teCi

,� and teCi
,∼.

Proposition 5. Given a probabilistic relation Rp = 〈R, p, C〉 and a scoring function s,
for any t ∈ Rp, the Global-Topk probability of t equals the Global-Topk probability of
tet,∼ when evaluating top-k in the induced event relation Ep = 〈E, pE , CE〉 under the
scoring function sE : E → R, sE(tet) = 1

2 , sE(tet,∼) = 1
2 and sE(teCi,�) = i:

PRp

k,s (t) = PEp

k,sE (tet,∼).

Proof. See Appendix.
Notice that the induced event relation Ep in Definition 11, unlike its counterpart

under an injective scoring function, is not simple. Therefore, we cannot utilize the al-
gorithm in Proposition 4. Rather, the induced relation Ep is a special general prob-
abilistic relation, where each part of the partition contains exactly two tuples. For this
special general probabilistic relation, the recursion in Theorem 5 (Equation 7,8) collects
enough information to compute the Global-Topk probability of tet,∼ in Ep (Equation
9).
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Definition 12 (Secondary Induced Event Relations). Let Ep = 〈E, pE , CE〉 be the
event relation induced by tuple t under a general scoring function s. Without loss of
generality, assume

E = {teC1,� , teC1,∼ , . . . , teCm−1,� , teCm−1,∼ , tet,� , tet,∼}

we can split E into two non-overlapping subsets E� and E∼ such that

E� = {teC1,� , . . . , teCm−1,� , tet,�}
E∼ = {teC1,∼ , . . . , teCm−1,∼ , tet,∼}

The two secondary induced event relation Ep
� and Ep

∼ are Ep restricted to Ep
� and

Ep
∼ respectively. They are both mutually related and simple probabilistic relations. For

every 1 ≤ i ≤ m − 1, tuple ti,� (ti,∼ resp.) refers to teCi,� (teCi,∼ resp.). The tuple
tm,� (tm,∼ resp.) refers to tet,� (tet,∼ resp.).

In spirit, the recursion in Theorem 5 is close to the recursion in Proposition 1, even
though they are not computing the same measure. The following table does a compari-
son between the measure q in Proposition 1 and the measure u in Theorem 5:

Measure =
∑

Pr(W )
|{tj |tj ∈ W,
j ≤ i, tj ∼s t}|

q(k, i)
(1) W contains ti
(2) W has no more than k tuples from {t1, t2, . . . , ti}

-

u�/∼(k, i, b)
(1) W contains ti
(2) W has exactly k tuples from {t1, t2, . . . , ti}

b

Under the general scoring function sE , a possible world of an induced relation Ep

may partially contribute to tuple tm,∼’s Global-Topk probability. The allocation coeffi-
cient depends on the combination of two factors: the number of tuples that are strictly
better than tm,∼ and the number of tuples tying with tm,∼. Therefore, in the new mea-
sure u, first, we add one more dimension to keep track of b, i.e. the number of tying
tuples of a subscript no more than i in a world. Second, we keep track of distinct (k, b)
pairs. Furthermore, the recursion on measure u differentiates between two cases: a non-
tying tuple (handled by u�) and a tying tuple (handled by u∼), since those two types of
tuples have different influence on the values of k and b.

Formally, let u�(k′, i, b) (u∼(k′, i, b) resp.) be the sum of the probabilities of all the
possible worlds W of Ep such that

1. ti,� ∈ W (ti,∼ ∈ W resp.)
2. i is the k′th smallest tuple subscript in world W
3. the world W contains b tuples from Ep

∼ with subscript less than or equal to i.

Equation 7,8 resemble Equation 3, except that now, since we introduce tuples with
probability 0 to ensure that each part of CE has exactly two tuples, we need to address
the special cases when divisor can be zero. Notice that, for any i, 1 ≤ i ≤ m, at least
one of pE(ti,�) and pE(ti,∼) is non-zero, otherwise, they are not in Ep by definition.
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Theorem 5. Given a probabilistic relation Rp = 〈R, p, C〉, a scoring function s, t ∈
Rp, and its induced event relation Ep = 〈E, pE , CE〉, where |E| = 2m, the following
recursion on u�(k′, i, b) and u∼(k′, i, b) holds, where bmax is the number of tuples with
positive probability in Ep

∼.
When i = 1, 0 ≤ k′ ≤ m and 0 ≤ b ≤ bmax,

u�(k′, 1, b) =
{

pE(t1,�) k′ = 1, b = 0
0 otherwise

u∼(k′, 1, b) =
{

pE(t1,∼) k′ = 1, b = 1
0 otherwise

For every i, 2 ≤ i < m, 0 ≤ k′ ≤ m and 0 ≤ b ≤ bmax,

u�(k′, i, b) =



0 k′ = 0

(u�(k′, i− 1, b)
1− pE(ti−1,�)− pE(ti−1,∼)

pE(ti−1,�)
1 ≤ k′ ≤ m

+ u�(k′ − 1, i− 1, b) and pE(ti−1,�) > 0
+ u∼(k′ − 1, i− 1, b))pE(ti,�)

(u∼(k′, i− 1, b + 1)
1− pE(ti−1,�)− pE(ti−1,∼)

pE(ti−1,∼)
b < bmax

+ u�(k′ − 1, i− 1, b) and 1 ≤ k′ ≤ m
+ u∼(k′ − 1, i− 1, b))pE(ti,�) and pE(ti−1,�) = 0

(u�(k′ − 1, i− 1, b) otherwise
+ u∼(k′ − 1, i− 1, b))pE(ti,�)

(7)

u∼(k′, i, b) =



0 k′ = 0 or b = 0

(u∼(k′, i− 1, b)
1− pE(ti−1,�)− pE(ti−1,∼)

pE(ti−1,∼)
b > 0

+ u�(k′ − 1, i− 1, b− 1) and 1 ≤ k′ ≤ m
+ u∼(k′ − 1, i− 1, b− 1))pE(ti,∼) and pE(ti−1,∼) > 0

(u�(k′, i− 1, b− 1)
1− pE(ti−1,�)− pE(ti−1,∼)

pE(ti−1,�)
otherwise

+ u�(k′ − 1, i− 1, b− 1)
+ u∼(k′ − 1, i− 1, b− 1))pE(ti,∼)

(8)
The Global-Topk probability of tet,∼ in Ep under the scoring function sE can be

computed by the following equation:

PEp

k,sE (tet,∼) = PEp

k,sE (tm,∼)

=
bmax∑
b=1

(
k∑

k′=1

u∼(k′,m, b) +
k+b−1∑
k′=k+1

k − (k′ − b)
b

u∼(k′,m, b)) (9)



26

Proof. See Appendix.
Recall that we design Algorithm 1 based on the recursion in Proposition 1. Simi-

larly, a DP algorithm based on the mutual recursion in Theorem 5 is available. We are
going skip the details. Instead, we show how the algorithm works using the following
example.

The complexity of the recursion in Theorem 5 determines the complexity of the al-
gorithm. It takes O(bmaxn

2) for one tuple, and O(mmaxn
3) for computing all n tuples.

Recall that mmax is the maximal number of tying tuples in R. Again, the priority queue
takes O(n log k). Altogether, the algorithm takes O(mmaxn

3) time.

Example 7. When evaluating a top-2 query in Rp = 〈R, p, C〉, consider a tuple t ∈ R
and its induced event relation Ep = 〈E, pE , CE〉

E� teC1,� teC2,� teC3,� tet,�

(t1) (t3) (t5) (t7)
pE 0.6 0.5 0.2 0

E∼ teC1,∼ teC2,∼ teC3,∼ tet,∼

(t2) (t4) (t6) (t8)
pE 0 0.25 0.6 0.4

In order to compute the Global-Topk probability of t8 (i.e. tet,∼) in Ep, Theorem 5
leads to the following DP tables, each for a distinct combination of a b value and a
secondary induced relation, where bmax = 3.

(b = 0, Ep
�)

k\t t1 t3 t5 t7
0 0 0 0 0
1 0.6 0.2 0.02 0
2 0 0.3 0.07 0
3 0 0 0.06 0
4 0 0 0 0

(b = 0, Ep
∼)

k\t t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(b = 1, Ep
�)

k\t t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0.02 0
3 0 0 0.03 0
4 0 0 0 0

(b = 1, Ep
∼)

k\t t2 t4 t6 t8
0 0 0 0 0
1 0 0.1 0.06 0.008
2 0 0.15 0.21 0.036
3 0 0 0.18 0.052
4 0 0 0 0.024

(b = 2, Ep
�)

k\t t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(b = 2, Ep
∼)

k\t t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0.06 0.032
3 0 0 0.09 0.104
4 0 0 0 0.084
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(b = 3, Ep
�)

k\t t1 t3 t5 t7
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

(b = 3, Ep
∼)

k\t t2 t4 t6 t8
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0.024
4 0 0 0 0.036

The computation of each entry follows the mutual recursion in Theorem 5, for example,

u�(2, 5, 0) = (u�(1, 3, 0) + u∼(1, 4, 0) + u�(2, 3, 0)
1− pE(t3)− pE(t4)

pE(t3)
)pE(t5)

= (0.2 + 0 + 0.3
1− 0.5− 0.25

0.5
)0.2

= 0.07

u∼(2, 6, 1) = (u�(1, 3, 0) + u∼(1, 4, 0) + u∼(2, 4, 1)
1− pE(t3)− pE(t4)

pE(t3)
)pE(t6)

= (0.2 + 0 + 0.15
1− 0.5− 0.25

0.25
)0.6

= 0.21

Finally, under the scoring function sE defined in Proposition 5

PEp

k,sE (tet,∼) = PEp

2,sE (t8)

=
3∑

b=1

(
2∑

k′=1

u∼(k′, 8, b) +
2+b−1∑
k′=2+1

2− (k′ − b)
b

u∼(k′, 8, b))

= u∼(1, 8, 1) + u∼(2, 8, 1)

+u∼(1, 8, 2) + u∼(2, 8, 2) +
1
2
u∼(3, 8, 2)

+u∼(2, 8, 3) + u∼(2, 8, 3) +
2
3
u∼(3, 8, 3) +

1
3
u∼(3, 8, 4)

= 0.156

6 Conclusion

We study the semantic and computational problems for top-k queries in probabilistic
databases. We propose three desired postulates for a top-k semantics and discuss their
satisfaction by all the semantics in the literature. Those postulates are our first step to
benchmark different semantics. From the postulates, it is inconclusive that a single se-
mantics is overwhelmingly better. We deem that the choice of the semantics should be
guided by the application, which in turn, supports our efforts to explore postulates in
order to create a profile of each semantics. Our Global-Topk semantics satisfies those
postulates to a large degree. We study the computational problem of query evaluation
under Global-Topk semantics for simple and general probabilistic relations when the
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scoring function is injective. For the former, we propose a dynamic programming al-
gorithm and effectively optimize it with Threshold Algorithm. For the latter, we show
a polynomial reduction to the simple case. Furthermore, we extend our Global-Topk
semantics to general scoring functions and introduce the concept of allocation policy to
handle ties in score. To the best of our knowledge, this is the first attempt to address the
tie problem rigorously. Previous work either does not consider ties or uses an arbitrary
tie-breaking mechanism. Advanced dynamic programming algorithms are proposed for
query evaluation under general scoring functions for both simple and general proba-
bilistic relations.

For completeness, we list in Table 2 the complexity of the best known algorithm for
each semantics in the literature. Since no other work address general scoring functions
in a systematical way, those results are restricted to injective scoring functions.

Semantics Simple Probabilistic DB General Probabilistic DB
Global-Topk O(kn) O(kn2)
PT-k O(kn) O(kn2)
U-Topk O(n log k) O(n log k)
U-kRanks O(kn) O(kn2)

Table 2. Time Complexity of Different Semantics

7 Future Work

So far, almost unanimously, only independent and exclusive relationship among tuples
are considered in the literature [21, 23, 25]. It will be interesting to investigate other
complex relationships between tuples. Other possible directions include top-k evalua-
tion in other uncertain database models proposed in the literature [13] and more general
preference queries in probabilistic databases.
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9 Appendix

9.1 Proofs of Semantic Postulates

Semantics Exact k Faithfulness Stability
†Global-Topk X(1) X/× (5) X(9)
PT-k × (2) X/× (6) X(10)
U-Topk × (3) X/× (7) X(11)
U-kRanks × (4) × (8) × (12)
† Postulates of Global-Topk semantics are

proved under general scoring functions with
Equal allocation policy.

Table 3. Postulate Satisfaction for Different
Semantics in Table 1

Proof. The following proofs correspond to the numbers next to each entry in the above
table.

Assume that we are given a probabilistic relation Rp = 〈R, p, C〉, a non-negative
integer k and an injective scoring function s.

(1) Global-Topk satisfies Exact k.
We compute the Global-Topk probability for each tuple in R. If there is at least k
tuples in R, we are always able to pick the k tuples with the highest Global-Topk
probability. In case when there are more than k−r+1 tuple(s) with the rth highest
Global-Topk probability, where r = 1, 2 . . . , k, only k − r + 1 of them will be
picked nondeterministically.

(2) PT-k violates Exact k
Example 4 illustrates a counterexample in a simple probabilistic relation.

(3) U-Topk violates Exact k.
Example 4 illustrates a counterexample in a simple probabilistic relation.

(4) U-kRanks violates Exact k.
Example 4 illustrates a counterexample in a simple probabilistic relation.

(5) Global-Topk satisfies Faithfulness in simple probabilistic relations while it violates
Faithfulness in general probabilistic relations.
Simple Probabilistic Relations
Proof. By the assumption, t1 �s t2 and p(t1) > p(t2), so we need to show that
Pk,s(t1) > Pk,s(t2).
For every W ∈ pwd(Rp) such that t2 ∈ allk,s(W ) and t1 6∈ allk,s(W ), obviously
t1 6∈ W . Otherwise, since t1 �s t2, t1 would be in allk,s(W ). Since all tuples
are independent, there is always a world W ′ ∈ pwd(Rp), W ′ = (W\{t2}) ∪
{t1} and Pr(W ′) = Pr(W )p(t1)p̄(t2)

p̄(t1)p(t2)
. Since p(t1) > p(t2), Pr(W ′) > Pr(W ).

Moreover, t1 will substitute for t2 in the top-k answer to W ′. It is easy to see that
α(t1,W ′) = 1 in W ′ and also in any world W such that both t1 and t2 are in
allk,s(W ), α(t1,W ) = 1.
Therefore, for the Global-Topk probability of t1 and t2, we have
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Pk,s(t2) =
∑

W∈pwd(Rp)
t1∈allk,s(W )
t2∈allk,s(W )

α(t2,W )Pr(W ) +
∑

W∈pwd(Rp)
t1 6∈allk,s(W )
t2∈allk,s(W )

α(t2,W )Pr(W )

<
∑

W∈pwd(Rp)
t1∈allk,s(W )
t2∈allk,s(W )

Pr(W ) +
∑

W ′∈pwd(Rp)
t1∈allk,s(W ′)

t2 6∈W ′

Pr(W ′)

=
∑

W∈pwd(Rp)
t1∈allk,s(W )
t2∈allk,s(W )

α(t1,W )Pr(W ) +
∑

W ′∈pwd(Rp)
t1∈allk,s(W ′)

t2 6∈W ′

α(t1,W ′)Pr(W ′)

≤
∑

W∈pwd(Rp)
t1∈allk,s(W )
t2∈allk,s(W )

α(t1,W )Pr(W ) +
∑

W ′∈pwd(Rp)
t1∈allk,s(W ′)

t2 6∈W ′

α(t1,W ′)Pr(W ′)

+
∑

W ′′∈pwd(Rp)
t1∈allk,s(W ′′)

t2∈W ′′

t2 6∈allk,s(W ′′)

α(t1,W ′′)Pr(W ′′)

= Pk,s(t1).

The equality in ≤ holds when s(t2) is among the k highest scores and there are at
most k tuples (including t2) with higher or equal scores. Since there is at least one
inequality in the above equation, we have

Pk,s(t1) > Pk,s(t2).

General Probabilistic Relations
The following is a counterexample.
Say k = 1, R = {t1, . . . , t9}, t1 �s . . . �s t9, {t1, . . . , t7, t9} are exclusive.
p(ti) = 0.1, i = 1 . . . 7, p(t8) = 0.4, p(t9) = 0.3.
By Global-Topk, the top-1 answer is {t9}, while t8 �s t9 and p(t8) > p(t9), which
violates Faithfulness.

(6) PT-k satisfies Faithfulness in simple probabilistic relations while it violates Faith-
fulness in general probabilistic relations.
For simple probabilistic relations, we can use the same proof in (5) to show that PT-
k satisfies Faithfulness. The only change would be that we need to show Pk,s(t1) >
pτ as well. Since Pk,s(t2) > pτ and Pk,s(t1) > Pk,s(t2), this is obviously true.
For general probabilistic relations, we can use the same counterexample in (5) and
set threshold pτ = 0.15.

(7) U-Topk satisfies Faithfulness in simple probabilistic relations while it violates Faith-
fulness in general probabilistic relations.
Simple Probabilistic Relations
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Proof. By contradiction. If U-Topk violates Faithfulness in a simple probabilistic
relation, there exists Rp = 〈R, p, C〉 and exists ti, tj ∈ R, ti �s tj , p(ti) > p(tj),
and by U-Topk, tj is in the top-k answer to Rp under the scoring function s while
ti is not.
S is a top-k answer to Rp under the function s by the U-Topk semantics, tj ∈ S
and ti 6∈ S. Denote by Qk,s(S) the probability of S under the U-Topk semantics.
That is,

Qk,s(S) =
∑

W∈pwd(Rp)
S=topk,s(W )

Pr(W ).

For any world W contributing to Qk,s(S), ti 6∈ W . Otherwise, since ti �s tj ,
ti would be in topk,s(W ), which is S. Define a world W ′ = (W\{tj}) ∪ {ti}.
Since ti is independent of any other tuple in R, W ′ ∈ pwd(Rp) and Pr(W ′) =
Pr(W )p(ti)p̄(tj)

p̄(ti)p(tj)
. Moreover, topk,s(W ′) = (S\{tj}) ∪ {ti}. Let S′ = (S\{tj}) ∪

{ti}, then W ′ contributes to Qk,s(S′).

Qk,s(S′) =
∑

W∈pwd(Rp)
S′=topk,s(W )

Pr(W )

≥
∑

W∈pwd(Rp)
S=topk,s(W )

Pr((W\{tj}) ∪ {ti})

=
∑

W∈pwd(Rp)
S=topk,s(W )

Pr(W )
p(ti)p̄(tj)
p̄(ti)p(tj)

=
p(ti)p̄(tj)
p̄(ti)p(tj)

∑
W∈pwd(Rp)
S=topk,s(W )

Pr(W )

=
p(ti)p̄(tj)
p̄(ti)p(tj)

Qk,s(S)

> Qk,s(S),

which is a contradiction.
General Probabilistic Relations
The following is a counterexample.
Say k = 2, R = {t1, t2, t3, t4}, t1 �s t2 �s t3 �s t4, t1 and t2 are exclusive, t3
and t4 are exclusive. p(t1) = 0.5, p(t2) = 0.45, p(t3) = 0.4, p(t4) = 0.3.
By U-Topk, the top-2 answer is {t1, t3}, while t2 �s t3 and p(t2) > p(t3), which
violates Faithfulness.

(8) U-kRanks violates Faithfulness.
The following is a counterexample.
Say k = 2, Rp is simple. R = {t1, t2, t3}, t1 �s t2 �s t3, p(t1) = 0.48, p(t2) =
0.8, p(t3) = 0.78.
The probabilities of each tuple at each rank are as follows:
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t1 t2 t3
rank 1 0.48 0.416 0.08112
rank 2 0 0.384 0.39936
rank 3 0 0 0.29952

By U-kRanks, the top-2 answer set is {t1, t3} while t2 � t3 and p(t2) > p(t3),
which contradicts Faithfulness.

(9) Global-Topk satisfies Stability.

Proof. In the rest of this proof, let A be the set of all winners under the Global-
Topk semantics.

Part I: Probability.

Case 1: Winners.

For any winner t ∈ A, if we only raise the probability of t, we have a new
probabilistic relation (Rp)′ = 〈R, p′, C〉, where the new probability function p′

is such that p′(t) > p(t) and for any t′ ∈ R, t′ 6= t, p′(t′) = p(t′). Note that
pwd(Rp) = pwd((Rp)′). In addition, assume t ∈ Ct, where Ct ∈ C. By Global-
Topk,

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈allk,s(W )

α(t, W )Pr(W )

and

P
(Rp)′

k,s (t) =
∑

W∈pwd(Rp)
t∈allk,s(W )

α(t, W )Pr(W )
p′(t)
p(t)

=
p′(t)
p(t)

PRp

k,s (t).

For any other tuple t′ ∈ R, t′ 6= t, we have the following equation:
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P
(Rp)′

k,s (t′) =
∑

W∈pwd(Rp)
t′∈allk,s(W ),t∈W

α(t′,W )Pr(W )
p′(t)
p(t)

+
∑

W∈pwd(Rp)
t′∈allk,s(W ), t6∈W
(Ct\{t})∩W=∅

α(t′,W )Pr(W )
c− p′(t)
c− p(t)

+
∑

W∈pwd(Rp)
t′∈allk,s(W ), t6∈W
(Ct\{t})∩W 6=∅

α(t′,W )Pr(W )

≤ p′(t)
p(t)

(
∑

W∈pwd(Rp)
t′∈allk,s(W )
t∈W

α(t′,W )Pr(W )

+
∑

W∈pwd(Rp)
t′∈allk,s(W ), t6∈W
(Ct\{t})∩W=∅

α(t′,W )Pr(W )

+
∑

W∈pwd(Rp)
t′∈allk,s(W ), t6∈W
(Ct\{t})∩W 6=∅

α(t′,W )Pr(W ))

=
p′(t)
p(t)

PRp

k,s (t′),

where c = 1−
∑

t′′∈Ct\{t} p(t′′).
Now we can see that, t’s Global-Topk probability in (Rp)′ will be raised to exactly
p′(t)
p(t) times of that in Rp under the same weak order scoring function s, and for any

tuple other than t, its Global-Topk probability in (Rp)′ can be raised to as much as
p′(t)
p(t) times of that in Rp under the same scoring function s. As a result, P

(Rp)′

k,s (t)
is still among the highest k Global-Topk probabilities in (Rp)′ under the function
s, and therefore still a winner.
Case 2: Losers.
This case is similar to Case 1.
Part II: Score.
Case 1: Winners.
For any winner t ∈ A, we evaluate Rp under a new general scoring function s′.
Comparing to s, s′ only raises the score of t. That is, s′(t) > s(t) and for any
t′ ∈ R, t′ 6= t, s′(t′) = s(t′). Then, in addition to all the worlds already totally
(i.e. α(t, W ) = 1) or partially (i.e. α(t, W ) < 1) contributing to t’s Global-Topk
probability when evaluating Rp under s, some other worlds may now totally or
partially contribute to t’s Global-Topk probability. Because, under the function s′,



34

t might climb high enough to be in the top-k answer set of those worlds. Moreover,
if a possible world W contributes paritally under scoring function s, it is easy to
see that it contributes totally under scoring function s′.
For any tuple t′′ other than t in R,
(i) If s(t′′) 6= s(t), then its Global-Topk probability under the function s′ either

stays the same (if the “climbing” of t does not knock that tuple out of the top-k
answer in some possible world) or decreases (otherwise);

(ii) If s(t′′) = s(t), then for any possible world W contributing to t′′’s Global-
Topk under scoring function s, α(t′′,W ) = k−a

b , and now under scoring func-
tion s′, α′(t′′,W ) = k−a−1

b−1 < k−a
b = α(t′′,W ). Therefore the Global-Topk

of t′′ under scoring function s′ is less than that under scoring function s.
Consequently, t is still a winner when evaluating Rp under the function s′.
Case 2: Losers.
This case is similar to Case 1.

(10) PT-k satisfies Stability.
Proof. In the rest of this proof, let A be the set of all winners under the PT-k
semantics.
Part I: Probability.
Case 1: Winners.
For any winner t ∈ A, if we only raise the probability of t, we have a new
probabilistic relation (Rp)′ = 〈R, p′, C〉, where the new probability function p′

is such that p′(t) > p(t) and for any t′ ∈ R, t′ 6= t, p′(t′) = p(t′). Note that
pwd(Rp) = pwd((Rp)′). In addition, assume t ∈ Ct, where Ct ∈ C. The Global-
Topk probability of t is such that

PRp

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W )

Pr(W ) ≥ pτ

and

P
(Rp)′

k,s (t) =
∑

W∈pwd(Rp)
t∈topk,s(W )

Pr(W )
p′(t)
p(t)

=
p′(t)
p(t)

PRp

k,s (t) > PRp

k,s (t) ≥ pτ .

Therefore, P
(Rp)′

k,s (t) is still above the threshold pτ , and t still belongs to the top-k
answer of (Rp)′ under the function s.
Case 2: Losers.
This case is similar to Case 1.
Part II: Score.
Case 1: Winners.
For any winner t ∈ A, we evaluate Rp under a new scoring function s′. Comparing
to s, s′ only raises the score of t. Use a similar argument as that in (9) Part II
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Case 1 but under injective scoring functions, we can show that the Global-Topk
probability of t is non-decreasing and is still above the threshold pτ . Therefore,
tuple t still belongs to the top-k answer under the function s′.
Case 2: Losers.
This case is similar to Case 1.

(11) U-Topk satisfies Stability.
Proof. In the rest of this proof, let A be the set of all winners under U-Topk
semantics.
Part I: Probability.
Case 1: Winners.
For any winner t ∈ A, if we only raise the probability of t, we have a new proba-
bilistic relation (Rp)′ = 〈R, p′, C〉, where the new probabilistic function p′ is such
that p′(t) > p(t) and for any t′ ∈ R, t′ 6= t, p′(t′) = p(t′). In the following dis-
cussion, we use superscript to indicate the probability in the context of (Rp)′. Note
that pwd(Rp) = pwd((Rp)′).
Recall that Qk,s(At) is the probability of a top-k answer set At ⊆ A under U-Topk

semantics, where t ∈ At. Since t ∈ At, Q′
k,s(At) = Qk,s(At)

p′(t)
p(t) .

For any candidate top-k set B other than At, i.e. ∃W ∈ pwd(Rp), topk,s(W ) = B
and B 6= At. By definition,

Qk,s(B) ≤ Qk,s(At).

For any world W contributing to Qk,s(B), its probability either increase p′(t)
p(t) times

(if t ∈ W ), or stays the same (if t 6∈ W and ∃t′ ∈ W, t′ and t are exclusive), or
decreases (otherwise). Therefore,

Q′
k,s(B) ≤ Qk,s(B)

p′(t)
p(t)

.

Altogether,

Q′
k,s(B) ≤ Qk,s(B)

p′(t)
p(t)

≤ Qk,s(At)
p′(t)
p(t)

= Q′
k,s(At).

Therefore, At is still a top-k answer to (Rp)′ under the function s and t ∈ At is
still a winner.
Case 2: Losers.
It is more complicated in the case of losers. We need to show that for any loser
t, if we decrease its probability, no top-k candidate set Bt containing t will be a
new top-k answer set under the U-Topk semantics. The procedure is similar to that
in Case 1, except that when we analyze the new probability of any original top-k
answer set Ai, we need to differentiate between two cases:
(a) t is exclusive with some tuple in Ai;
(b) t is independent of all the tuples in Ai.
It is easier with (a), where all the worlds contributing to the probability of Ai do
not contain t. In (b), some worlds contributing to the probability of Ai contain t,
while others do not. And we calculate the new probability for those two kinds of
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worlds differently. As we will see shortly, the probability of Ai stays unchanged in
either (a) or (b).
For any loser t ∈ R, t 6∈ A, by applying the technique used in Case 1, we have a
new probabilistic relation (Rp)′ = 〈R, p′, C〉, where the new probabilistic function
p′ is such that p′(t) < p(t) and for any t′ ∈ R, t′ 6= t, p′(t′) = p(t′). Again,
pwd(Rp) = pwd((Rp)′).
For any top-k answer set Ai to Rp under the function s, Ai ⊆ A. Denote by SAi

all
the possible worlds contributing to Qk,s(Ai). Based on the membership of t, SAi

can be partitioned into two subsets St
Ai

and S t̄
Ai

.

SAi
= {W |W ∈ pwd(Rp), topk,s(W ) = Ai};

SAi
= St

Ai
∪ S t̄

Ai
, St

Ai
∩ S t̄

Ai
= ∅,

∀W ∈ St
Ai

, t ∈ W and ∀W ∈ S t̄
Ai

, t 6∈ W.

If t is exclusive with some tuple in Ai, St
Ai

= ∅. In this case, any world W ∈ S t̄
Ai

contains one of t’s exclusive tuples, therefore W ’s probability will not be affected
by the change in t’s probability. In this case,

Q′
k,s(Ai) =

∑
W∈pwd(Rp)

W∈St̄
Ai

Pr′(W ) =
∑

W∈pwd(Rp)

W∈St̄
Ai

Pr(W )

= Qk,s(Ai).

Otherwise, t is independent of all the tuples in Ai. In this case,∑
W∈pwd(Rp)

W∈St
Ai

Pr(W )∑
W∈pwd(Rp)

W∈St̄
Ai

Pr(W )
=

p(t)
1− p(t)

and

Q′
k,s(Ai) =

∑
W∈pwd(Rp)

W∈St
Ai

Pr(W )
p′(t)
p(t)

+
∑

W∈pwd(Rp)

W∈St̄
Ai

Pr(W )
1− p′(t)
1− p(t)

=
∑

W∈pwd(Rp)
W∈SAi

Pr(W )

= Qk,s(Ai).

We can see that in both cases, Q′
k,s(Ai) = Qk,s(Ai).



37

Now for any top-k candidate set containing t, say Bt such that Bt 6⊆ A, by defini-
tion, Qk,s(Bt) < Qk,s(Ai). Moreover,

Q′
k,s(Bt) = Qk,s(Bt)

p′(t)
p(t)

< Qk,s(Bt).

Therefore,
Q′

k,s(Bt) < Qk,s(Bt) < Qk,s(Ai) = Q′
k,s(Ai).

Consequently, Bt is still not a top-k answer to (Rp)′ under the function s. Since
no top-k candidate set containing t can be a top-k answer set to (Rp)′ under the
function s, t is still a loser.
Part II: Score.
Again, Ai ⊆ A is a top-k answer set to Rp under the function s by U-Topk seman-
tics.
Case 1: Winners.
For any winner t ∈ Ai, we evaluate Rp under a new scoring function s′. Comparing
to s, s′ only raises the score of t. That is, s′(t) > s(t) and for any t′ ∈ R, t′ 6=
t, s′(t′) = s(t′). In some possible world such that W ∈ pwd(Rp) and topk,s(W ) 6=
Ai, t might climb high enough to be in topk,s′(W ). Define T to the set of such top-k
candidate sets.

T = {topk,s′(W )|W ∈ pwd(Rp), t 6∈ topk,s(W ) ∧ t ∈ topk,s′(W )}.

Only a top-k candidate set Bj ∈ T can possibly end up with a probability higher
than that of Ai across all possible worlds, and thus substitute for Ai as a new top-k
answer set to Rp under the function s′. In that case, t ∈ Bj , so t is still a winner.
Case 2: Losers.
For any loser t ∈ R, t 6∈ A. Using a similar technique to Case 1, the new scor-
ing function s′ is such that s′(t) < s(t) and for any t′ ∈ R, t′ 6= t, s′(t′) =
s(t′). When evaluating Rp under the function s′, for any world W ∈ pwd(Rp)
such that t 6∈ topk,s(W ), the score decrease of t will not effect its top-k an-
swer, i.e. topk,s′(W ) = topk,s(W ). For any world W ∈ pwd(Rp) such that
t ∈ topk,s(W ), t might go down enough to drop out of topk,s′(W ). In this case,
W will contribute its probability to a top-k candidate set without t, instead of
the original one with t. In other words, under the function s′, comparing to the
evaluation under the function s, the probability of a top-k candidate set with t is
non-increasing, while the probability of a top-k candidate set without t is non-
decreasing2.
Since any top-k answer set to Rp under the function s does not contain t, it follows
from the above analysis that any top-k candidate set containing t will not be a top-k
answer set to Rp under the new function s′, and thus t is still a loser.

2 Here, any subset of R with cardinality at most k that is not a top-k candidate set under the
function s is conceptually regarded as a top-k candidate set with probability zero under the
function s.
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(12) U-kRanks violates Stability.
The following is a counterexample.
Say k = 2, Rp is simple. R = {t1, t2, t3}, t1 �s t2 �s t3. p(t1) = 0.3, p(t2) =
0.4, p(t3) = 0.3.

t1 t2 t3
rank 1 0.3 0.28 0.126
rank 2 0 0.12 0.138
rank 3 0 0 0.036

By U-kRanks, the top-2 answer set is {t1, t3}.
Now raise the score of t3 such that t1 �s′ t3 �s′ t2.

t1 t3 t2
rank 1 0.3 0.21 0.196
rank 2 0 0.09 0.168
rank 3 0 0 0.036

By U-kRanks, the top-2 answer set is {t1, t2}. By raising the score of t3, we actu-
ally turn the winner t3 to a loser, which contradicts Stability.

9.2 Proof for Proposition 1

Proposition 1. Given a simple probabilistic relation Rp = 〈R, p, C〉 and an injective
scoring function s over Rp, if R = {t1, t2, . . . , tn} and t1 �s t2 �s . . . �s tn, the
following recursion on Global-Topk queries holds.

q(k, i) =


0 k = 0
p(ti) 1 ≤ i ≤ k

(q(k, i− 1)
p̄(ti−1)
p(ti−1)

+ q(k − 1, i− 1))p(ti) otherwise

where q(k, i) = Pk,s(ti) and p̄(ti−1) = 1− p(ti−1).

Proof. By induction on k and i.

– Base case.
• k = 0

For any W ∈ pwd(Rp), top0,s(W ) = ∅. Therefore, for any ti ∈ R, the Global-
Topk probability of ti is 0.

• k > 0 and i = 1
t1 has the highest score among all tuples in R. As long as tuple t1 appears in a
possible world W , it will be in the topk,s(W ). So the Global-Topk probability
of ti is the probability that t1 appears in possible worlds, i.e. q(k, 1) = p(t1).

– Inductive step.
Assume the theorem holds for 0 ≤ k ≤ k0 and 1 ≤ i ≤ i0. For any W ∈ pwd(Rp),
ti0 ∈ topk0,s(W ) iff ti0 ∈ W and there are at most k0 − 1 tuples with higher score
in W . Note that any tuple with score lower than the score of ti0 does not have any
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influence on q(k0, i0), because its presence/absence in a possible world will not
affect the presence of ti0 in the top-k answer of that world.
Since all the tuples are independent,

q(k0, i0) = p(ti0)
∑

W∈pwd(Rp)
|{t|t∈W∧t�sti0}|<k0

Pr(W ).

(1) q(k0, i0 + 1) is the Global-Topk0 probability of tuple ti0+1.

q(k0, i0 + 1) =
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W )

ti0∈topk0,s(W )

Pr(W )

+
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W )

ti0∈W, ti0 6∈topk0,s(W )

Pr(W )

+
∑

W∈pwd(Rp)
ti0+1∈topk0,s(W )
ti0 6∈W

Pr(W ).

For the first part of the left hand side,∑
W∈pwd(Rp)
ti0+1∈topk0,s(W )

ti0∈topk0−1,s(W )

Pr(W ) = p(ti0+1)q(k0 − 1, i0).

The second part is zero. Since ti0 �s ti0+1, if ti0+1 ∈ topk0,s(W ) and ti0 ∈
W , then ti0 ∈ topk0,s(W ).
The third part is the sum of the probabilities of all possible worlds such that
ti0+1 ∈ W, ti0 6∈ W and there are at most k0 − 1 tuples with score higher than
the score of ti0 in W . So it is equivalent to

p(ti0+1)p(ti0)
∑

|{t|t∈W∧t�sti0}|<k0

Pr(W )

= p(ti0+1)p(ti0)
q(k0, i0)
p(ti0)

.

Altogehter, we have

q(k0, i0 + 1)

= p(ti0+1)q(k0 − 1, i0) + p(ti0+1)p(ti0)
q(k0, i0)
p(ti0)

= (q(k0 − 1, i0) + q(k0, i0)
p(ti0)
p(ti0)

)p(ti0+1).
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(2) q(k0 + 1, i0) is the Global-Top(k0 + 1) probability of tuple ti0 . Use a similar
argument as above, it can be shown that this case is correctly computed by
Equation (3) as well.

9.3 Proof for Theorem 2

Theorem 2 (Correctness of Algorithm 1’). Given a simple probabilistic relation Rp =
〈R, p, C〉, a non-negative integer k and an injective scoring function s over Rp, the
above TA-based algorithm correctly finds a top-k answer under Global-Topk semantics.

Proof. In every iteration of Step (2), say t = ti, for any unseen tuple t, s′ is an injective
scoring function over Rp, which only differs from s in the score of t. Under the function
s′, ti �s′ t �s′ ti+1. If we evaluate the top-k query in Rp under s′ instead of s,
Pk,s′(t) = p(t)

p UP . On the other hand, for any W ∈ pwd(Rp), W contributing to
Pk,s(t) implies that W contributes to Pk,s′(t), while the reverse is not necessarily true.
So, we have Pk,s′(t) ≥ Pk,s(t). Recall that p ≥ p(t), therefore UP ≥ p(t)

p UP =
Pk,s′(t) ≥ Pk,s(t). The conclusion follows from the correctness of the original TA
algorithm and Algorithm 1.

9.4 Proof for Lemma 1

Lemma 1. Let Rp = 〈R, p, C〉 be a probabilistic relation, s an injective scoring func-
tion, t ∈ R, and Ep = 〈E, pE , CE〉 the event relation induced by t. Define Qp =
〈E − {tet}, pE , CE − {{tet}}〉. Then, the Global-Topk probability of t satisfies the
following:

PRp

k,s (t) = p(t)
∑

We∈pwd(Qp)
|We|<k

Pr(We).

Proof. Given t ∈ R, k and s, let A be a subset of pwd(Rp) such that W ∈ A ⇔ t ∈
topk,s(W ). If we group all the possible worlds in A by the set of parts whose tuple in
W has higher score than the score of t, then we will have the following partition:

A = A1 ∪A2 ∪ . . . ∪Aq, Ai ∩Aj = ∅, i 6= j

and
∀Ai,∀W1,W2 ∈ Ai, i = 1, 2, . . . , q,
{Cj |∃t′ ∈ W1 ∩ Cj , t

′ �s t} = {Cj |∃t′ ∈ W2 ∩ Cj , t
′ �s t}.

Moreover, denote CharParts(Ai) to Ai’s characteristic set of parts.

Now, let B be a subset of pwd(Qp), such that We ∈ B ⇔ |We| < k. There is a
bijection g : {Ai|Ai ∈ A} → B, mapping each part Ai in A to a possible world in B
which contains only tuples corresponding to the parts in Ai ’s characteristic set.

g(Ai) = {teCj
|Cj ∈ CharParts(Ai)}.
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The following equation holds from the definition of induced event relation and
Proposition 2.∑

W∈Ai

Pr(W ) = p(t)
∏

Ci∈CharParts(Ai)

p(teCi
)

∏
Ci∈C−{Cid(t)}
Ci 6∈CharParts(Ai)

(1− p(teCi
))

= p(t)Pr(g(Ai)).

Therefore,

PRp

k,s (t) =
∑

W∈A

Pr(W ) =
q∑

i=1

(
∑

W∈Ai

Pr(W ))

=
q∑

i=1

p(t)Pr(g(Ai)) = p(t)
q∑

i=1

Pr(g(Ai))

= p(t)
∑

We∈B

Pr(We)

= p(t)(
∑

We∈pwd(Qp)
|We|<k

Pr(We)).

9.5 Proof for Proposition 3

Proposition 3 (Correctness of Algorithm 4). Given a probabilistic relation Rp =
〈R, p, C〉 and an injective scoring function s, for any t ∈ Rp, the Global-Topk prob-
ability of t equals the Global-Topk probability of tet

when evaluating top-k in the in-
duced event relation Ep = 〈E, pE , CE〉 under the injective scoring function sE : E →
R, sE(tet) = 1

2 and sE(teCi
) = i:

PRp

k,s (t) = PEp

k,sE (tet
).

Proof. Since tet has the lowest score under sE , for any We ∈ pwd(Ep), the only
chance tet ∈ topk,sE (We) is when there are at most k tuples in We, including tet .

∀We ∈ pwd(Ep),
tet ∈ topk,s(We) ⇔ (tet ∈ We ∧ |We| ≤ k).

Therefore,
PEp

k,sE (tet
) =

∑
tet∈We∧|We|≤k

Pr(We).

In the proof of Lemma 1, B contains all the possible worlds having at most k − 1
tuples from E − {tet}. By Proposition 2,∑

tet∈We∧|We|≤k

Pr(We) = p(t)
∑

W ′
e∈B

Pr(W ′
e).
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By Lemma 1,

p(t)
∑

W ′
e∈B

Pr(W ′
e) = PRp

k,s (t).

Consequently,

PRp

k,s (t) = PEp

k,sE (tet
).

9.6 Proof for Proposition 4

Proposition 4 (Correctness of Algorithm 5). Let Rp = 〈R, p, C〉 be a simple prob-
abilistic relation where R = {t1, . . . , tn}, t1 �s t2 �s . . . �s tn, k a non-negative
integer and s a scoring function. For every tl ∈ R, the Global-Topk probability of tl
can be computed by the following equation:

PRp

k,s (tl) =
k−1∑
k′=0

Tk′,[il] · P
Rp

s(tl)
k−k′,s(tl)

where Rp
s(tl) is Rp restricted to {t ∈ R|t ∼s tl}.

Proof. Given a tuple tl ∈ R, let Rθ be the support relation R restricted to {t ∈ R|t θ tl},
and Rp

θ be Rp restricted to Rθ. Similarly, for each possible world W ∈ pwd(Rp),
Wθ = W ∩Rθ.

Each possible world W ∈ pwd(Rp) such that tl ∈ allk,s(W ) contributes
min(1, k−a

b )Pr(W ) to PRp

k,s (tl), where a = |W�| and b = |W∼|.
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PRp

k,s (tl) =
∑

W∈pwd(Rp),tl∈W
|W�|=a,0≤a≤k−1
|W∼|=b,1≤b≤m

min(1,
k − a

b
)Pr(W )

=
k−1∑
a=0

m∑
b=1

min(1,
k − a

b
)(

∑
W∈pwd(Rp),tl∈W
|W�|=a∧|W∼|=b

Pr(W ))

=
k−1∑
a=0

m∑
b=1

min(1,
k − a

b
)(

∑
W�∈pwd(Rp

�)
|W�|=a

Pr(W�)
∑

W�∈pwd(Rp
�),tl∈W�

|W∼|=b

Pr(W�))

=
k−1∑
a=0

(
∑

W�∈pwd(Rp
�)

|W�|=a

Pr(W�)
m∑

b=1

min(1,
k − a

b
)(

∑
W�∈pwd(Rp

�),tl∈W�

|W∼|=b

Pr(W�)))

=
k−1∑
a=0

(Ta,[il]

m∑
b=1

min(1,
k − a

b
)(

∑
W∼∈pwd(Rp

∼),tl∈W∼
|W∼|=b

Pr(W∼)
∑

W≺∈pwd(Rp
≺)

Pr(W≺)))

=
k−1∑
a=0

(Ta,[il]

m∑
b=1

min(1,
k − a

b
)(

∑
W∼∈pwd(Rp

∼),tl∈W∼
|W∼|=b

Pr(W∼)))

=
k−1∑
a=0

Ta,[il] · P
Rp

s(tl)
k−a,s (tl)

where m is the number of tying tuples with tl(including), i.e. m = |Rp
s(tl)|.

9.7 Proof for Proposition 5

Proposition 5. Given a probabilistic relation Rp = 〈R, p, C〉 and a scoring function s,
for any t ∈ Rp, the Global-Topk probability of t equals the Global-Topk probability of
tet,∼ when evaluating top-k in the induced event relation Ep = 〈E, pE , CE〉 under the
scoring function sE : E → R, sE(tet) = 1

2 , sE(tet,∼) = 1
2 and sE(teCi,�) = i:

PRp

k,s (t) = PEp

k,sE (tet,∼).

Proof. Similar to what we did in the Proof for Lemma 1. We are trying to create a
bijection.

Given t ∈ R, k and s, let A be a subset of pwd(Rp) such that W ∈ A ⇔ t ∈
allk,s(W ). If we group all the possible worlds in A by the set of parts whose tuple in
W has score higher than or equal to that of t, then we will have the following partition:

A = A1 ∪A2 ∪ . . . ∪Aq, Ai ∩Aj = ∅, i 6= j
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and
∀Ai,∀W1,W2 ∈ Ai, i = 1, 2, . . . , q,
{Cj,�|∃t′ ∈ W1 ∩ Cj , t

′ �s t} = {Cj,�|∃t′ ∈ W2 ∩ Cj , t
′ �s t}

and
{Cj,∼|∃t′ ∈ W1 ∩ Cj , t

′ ∼s t} = {Cj,∼|∃t′ ∈ W2 ∩ Cj , t
′ ∼s t}.

Moreover, denote CharParts(Ai) to Ai’s characteristic set of parts. Note that all W ∈
Ai have the same allocation coefficient α(t, W ), denoted by αi.

Now, let B be a subset of pwd(Ep), such that We ∈ B ⇔ tet,∼ ∈ allk,s(We).
There is a bijection g : {Ai|Ai ∈ A} → B, mapping each part Ai in A to the a possible
world in B which contains only tuples corresponding to parts in Ai ’s characteristic set.

g(Ai) = {teCj
,�|Cj,� ∈ CharParts(Ai)} ∪ {teCj

,∼|Cj,∼ ∈ CharParts(Ai)}

Furthermore, the allocation coefficient αi of Ai equals to the allocation coefficient
α(tet,∼, g(Ai)) under the function sE .

The following equation holds from the definition of induced event relation under
general scoring functions.∑

W∈Ai

Pr(W ) =
∏

Ci,�∈CharParts(Ai)

p(teCi
,�)

∏
Ci,∼∈CharParts(Ai)

p(teCi
,∼)

∏
Ci∈C
Ci,∼ 6∈CharParts(Ai)
Ci,� 6∈CharParts(Ai)

(1− p(teCi
,�)− p(teCi

,∼))

= Pr(g(Ai)).

Therefore,

PRp

k,s (t) =
∑

W∈A

α(t, W )Pr(W ) =
q∑

i=1

(αi

∑
W∈Ai

Pr(W ))

=
q∑

i=1

αiPr(g(Ai)) =
q∑

i=1

α(tet,∼, g(Ai))Pr(g(Ai))

=
∑

We∈B

α(tet,∼,We)Pr(We) (g is a bijection)

= PEp

k,sE (tet,∼).

9.8 Proof for Theorem 5

Theorem 5. Given a probabilistic relation Rp = 〈R, p, C〉, a scoring function s, t ∈ Rp,
and its induced event relation Ep = 〈E, pE , CE〉, where |E| = 2m, the following
recursion on u�(k′, i, b) and u∼(k′, i, b) holds, where bmax is the number of tuples
with positive probability in Ep

∼.
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When i = 1, 0 ≤ k′ ≤ m and 0 ≤ b ≤ bmax,

u�(k′, i, b) =



0 k′ = 0

(u�(k′, i− 1, b)
1− pE(ti−1,�)− pE(ti−1,∼)

pE(ti−1,�)
1 ≤ k′ ≤ m

+ u�(k′ − 1, i− 1, b) and pE(ti−1,�) > 0
+ u∼(k′ − 1, i− 1, b))pE(ti,�)

(u∼(k′, i− 1, b + 1)
1− pE(ti−1,�)− pE(ti−1,∼)

pE(ti−1,∼)
b < bmax

+ u�(k′ − 1, i− 1, b) and 1 ≤ k′ ≤ m
+ u∼(k′ − 1, i− 1, b))pE(ti,�) and pE(ti−1,�) = 0

(u�(k′ − 1, i− 1, b) otherwise
+ u∼(k′ − 1, i− 1, b))pE(ti,�)

u∼(k′, i, b) =



0 k′ = 0 or b = 0

(u∼(k′, i− 1, b)
1− pE(ti−1,�)− pE(ti−1,∼)

pE(ti−1,∼)
b > 0

+ u�(k′ − 1, i− 1, b− 1) and 1 ≤ k′ ≤ m
+ u∼(k′ − 1, i− 1, b− 1))pE(ti,∼) and pE(ti−1,∼) > 0

(u�(k′, i− 1, b− 1)
1− pE(ti−1,�)− pE(ti−1,∼)

pE(ti−1,�)
otherwise

+ u�(k′ − 1, i− 1, b− 1)
+ u∼(k′ − 1, i− 1, b− 1))pE(ti,∼)

The Global-Topk probability of tet,∼ in Ep under the scoring function sE can be com-
puted by the following equation:

PEp

k,sE (tet,∼) = PEp

k,sE (tm,∼)

=
bmax∑
b=1

(
k∑

k′=1

u∼(k′,m, b) +
k+b−1∑
k′=k+1

k − (k′ − b)
b

u∼(k′,m, b))

Proof. Equation 9 follows Equation 7 and Equation 8 as it is a simple enumeration
based on Definition 8. We are going to prove Equation 7 and Equation 8 by an induction
on i.

– Base case: i = 1, 0 ≤ k′ ≤ m and 0 ≤ b ≤ bmax

When i = 1, based on the definition of u, the only non-zero entries are u�(1, 1, 0)
and u∼(1, 1, 1). The former is the probability sum of all possible worlds which con-
tain t1,� and do not contain t1,∼. The second requirement is redundant since those
two tuples are exclusive. Therefore, it is simply the probability of t1,�. Similarly,
the latter is the probability sum of all possible worlds which contain t1,∼ and do
not contain t1,�. Again, it is simply the probability of t1,∼. It is easy to check that
no possible worlds satisfy other combinations of k′ and b when i = 1, therefore
their probabilities are 0.
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– Inductive step.
Assume the theorem holds for i ≤ i0, 0 ≤ k′ ≤ m and 0 ≤ b ≤ bmax.
Denote E�,[i] and E∼,[i] to the set of the first i tuples in E� and E∼ respectively.
For any W ∈ pwd(Ep), by definition, W contributes to u�/∼(k′, i0, b) iff ti0,�/∼ ∈
W and |W ∩ (E�,[i0] ∪ E∼,[i0])| = k′ and |W ∩ E∼,[i0]| = b. Since E�,[i0] ∩
E∼,[i0] = ∅, we have:
W contributes to u�/∼(k′, i0, b)⇔ ti0,�/∼ ∈ W and |W∩E�,[i0]| = k′−b and |W∩
E∼,[i0]| = b.
(1) u�(k′, i0 + 1, b) is the probability sum of all possible world W such that

ti0+1,� ∈ W , |W ∩ E�,[i0+1]| = k′ − b and |W ∩ E∼,[i0+1]| = b.

u�(k′, i0 + 1, b) =
∑

W∈pwd(Ep),ti0+1,�∈W

|W∩E�,[i0+1]|=k′−b

|W∩E∼,[i0+1]|=b

Pr(W )

=
∑

W∈pwd(Ep),ti0+1,�∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W )
(Since ti0+1,� ∈ W,
ti0+1,∼ 6∈ W )

=
∑

W∈pwd(Ep)
ti0+1,�∈W,ti0,�∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W )

+
∑

W∈pwd(Ep)
ti0+1,�∈W,ti0,∼∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W )

+
∑

W∈pwd(Ep)
ti0+1,�∈W,ti0,� 6∈W,ti0,∼ 6∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W )

For the first part of the left hand side,∑
W∈pwd(Ep)
ti0+1,�∈W,ti0,�∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)
∑

W∈pwd(Ep),ti0,�∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)u�(k′−1, i0, b).

For the second part of the left hand side,∑
W∈pwd(Ep)
ti0+1,�∈W,ti0,∼∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)
∑

W∈pwd(Ep),ti0,∼∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)u∼(k′−1, i0, b).
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For the third part of the left hand side, if p(ti0,�) + p(ti0,∼) = 1, then there is
no possible world satisfying this condition, therefore it is zero. Otherwise,∑

W∈pwd(Ep)
ti0+1,�∈W
ti0,� 6∈W,ti0,∼ 6∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) = p(ti0+1)
∑

W∈pwd(Ep)
ti0,� 6∈W,ti0,∼ 6∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) (10)

Equation 10 can be computed either by Equation 11 when p(ti0 ,�) > 0 or
by Equation 12 when p(ti0 ,∼) > 0. Notice that at least one of p(ti0 ,�) and
p(ti0 ,∼) is positive, otherwise neither tuple is in the induced event relation Ep

according to Definition 11.

∑
W∈pwd(Ep)
ti0,� 6∈W,ti0,∼ 6∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) =
1− p(ti0,�)− p(ti0,∼)

p(ti0,�)

∑
W∈pwd(Ep),ti0,�∈W

|W∩E�,[i0]|=k′−b

|W∩E∼,[i0]|=b

Pr(W )

=
1− p(ti0,�)− p(ti0,∼)

p(ti0,�)
u�(k′, i0, b). (11)

∑
W∈pwd(Ep)
ti0,� 6∈W,ti0,∼ 6∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b

Pr(W ) =
1− p(ti0,�)− p(ti0,∼)

p(ti0,∼)

∑
W∈pwd(Ep),ti0,∼∈W

|W∩E�,[i0]|=k′−1−b

|W∩E∼,[i0]|=b+1

Pr(W )

=
1− p(ti0,�)− p(ti0,∼)

p(ti0,∼)
u∼(k′, i0, b + 1). (12)

A subtlety is that when p(ti0 ,�) = 0 and b = bmax, simply no possible world
satisfies the condition in Equation 10, and Equation 10 equals 0.
Altogether, we show that this case can be correctly computed by Equation 7

(2) u∼(k′, i0 + 1, b) is the probability sum of all possible world W such that
ti0+1,∼ ∈ W , |W ∩ E�,[i0+1]| = k′ − b and |W ∩ E∼,[i0+1]| = b. Use a
similar argument as above, it can be shown that this case is correctly computed
by Equation 8 as well.
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