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Abstract

Mobility path information of cellphone users play a crucial role in a wide range
of cellphone applications, including context-based search and advertising, early
warning systems, city-wide sensing applications such as air pollution exposure
estimation and traffic planning. However, there is a disconnect between the low
level location data logs available from the cellphones and the high level mobility
path information required to support these cellphone applications. In this paper,
we present formal definitions to capture the cellphone users’ mobility patterns and
profiles, and provide a complete framework, Mobility Profiler, for discovering
mobile user profiles starting from cell based location log data. We use real-world
cellphone log data (of over 350K hours of coverage) to demonstrate our framework
and perform experiments for discovering frequent mobility patterns and profiles.
Our analysis of mobility profiles of cellphone users expose a significant long tail
in a user’s location-time distribution: A total of 15% of a user’s time is spent on
average in locations that each appear with less than 1% of time.
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1 Introduction

Cellphones have been adopted faster than any other technology in human
history [14], and as of 2008, the number of cellphone subscribers exceeds 2.5
billion, which is twice as many as the number of PC users worldwide 1 . To
capture a slice of this lucrative market, Nokia, Google, Microsoft, and Apple
have introduced cellphone operating systems (Symbian, Android, Windows
Mobile, OS X) and open APIs for enabling application development on the
cellphones. Recently, cellphones have also attracted the attention of the net-
working and ubiquitous computing research community due to their poten-
tial as sensor nodes for city-wide sensing applications [18,17,12,39,28,24,29].

Mobility path information of cellphone users play a central role in a wide
range of cellphone applications, such as context-based search and adver-
tising, early warning systems [35,5], traffic planning [23], route predic-
tion [30,31], and air pollution exposure estimation [13]. Cellphones can
log location information using GPS, service-provider assisted faux GPS or
simply by recording the connected cellular tower information. However,
since all these location logs are low level data units, it is difficult for the
cellphone applications to access meaningful information about the mobility
patterns of the users directly. To make mobility data more readily accessible
to cellphone applications, higher level data abstractions are needed.

To address this problem, we focus on the problem of discovering spatiotem-
poral mobility patterns and mobility profiles from cellphone-based location
logs. In particular, the contributions of this paper are as follows:

(1) In order to capture the mobility behaviors of cellphone users at a level
of abstraction suitable for reasoning and analysis, we introduce formal
definitions for the concepts of mobility path (denoting a user’s travel
from one end-location to another), mobility pattern (denoting a popular
travel for the user supported by her mobility paths), and mobility pro-
file (providing a synopsis of a user’s mobility behavior by integrating
the frequent mobility patterns, contextual data, and time distribution
data for the user). Although human mobility has been studied in dif-
ferent contexts in previous work [25,21,34,26], this paper focuses on
robust and consistent characterization of mobility behaviors of cell-
phone users to be employed in very large-scale (city wide) sensing,
social networking, and commercial applications.

(2) We design and implement a complete framework, the Mobility Pro-
filer, for discovering mobility profiles from raw celltower connection
data. Our framework addresses a commonly encountered phenomenon

1 www.wirelessintelligence.com
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in real-world cellular networks, celltower oscillation, where even when
the user is static she may be assigned to a number of neigboring cell-
towers for load-balancing purposes or due to changes in the ambient
RF environment. Our framework removes oscillation side-effects by
determining oscillating celltower pairs from the cellphone logs and
grouping them in a single cluster. Furthermore our framework exploits
the geometric nature of the problem to improve the performance of the
discovery process: our framework first constructs a celltower topol-
ogy from the available mobility paths and then uses this topology to
expedite the pattern discovery process by eliminating a majority of
candidate path sequences as unrealizable (due to the topological con-
straints). In the same vein, our framework introduces new support
criterias based on string matching to increase the algorithm’s perfor-
mance during support checks for the mobility patterns.

(3) We validate and demonstrate our framework by using the “Reality
Mining” data set 2 containing 350K hours of celltower connection
data. Using this dataset, we perform comprehensive experiments to
determine the thresholds for when to consider a location as an end-
location versus an interim-location on a mobility path. We identify two
types of end-locations, observable and hidden, and show that both of
them are necessary for correct construction of mobility paths.

(4) Finally, our analysis of the cellphone users’ mobility behaviors yields
important lessons for networking researchers interested in testing large-
scale ad-hoc routing protocols. As also identified in a recent study [21],
we find that users spend approximately 85% of their time in 3 to 5
favorite locations, e.g., home, work, shopping. However, our analysis
has exposed a more interesting phenomena for the distribution of the
remaining 15% of the users’ time. We identify a significant long tail in
a user’s location-time distribution: Approximately a total of 15% of a
user’s time is spent in locations that each appear with less than 1% of
time. One implication of this finding is that, while simulating/testing
large-scale mobile ad-hoc protocols, it is not sufficient to simply take
the top-k popular locations. Doing so will discard about 15% of a user’s
visited locations. We illustrate the importance of this effect in the con-
text of the air pollution exposure estimation application described in
section 4.5.

Last but not least, the mobility profiles we generate for cellphone
users include temporal information for patterns (which days of the
week and which hours of the day) and time distribution data for all
locations. These mobility profiles are useful for early warning systems
and route prediction applications. By coupling the time-context with
the mobility paths, these mobility profiles may be useful for the pur-
poses of synthetic mobility scenario generation research.

2 http://reality.media.mit.edu
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Outline of the paper. The next section explains Reality Mining data set and
mobility profiler architecture. Section 3 defines the mobility path concept,
gives mobility path construction, mobility pattern discovery method, and
construction of mobility profiles. The experimental results on the data set are
presented in section 4. Related work is given in section 5, and conclusions
in section 6.

2 Preliminaries

2.1 Reality Mining Data Set

The dataset for our work is collected by the Reality Mining project group
from MIT Media Labs, that performed an experimental study involving 100
people for the duration of 9 months. Each person is given a Nokia 6600
cellphone with a software that continuously logs data about the location
of the cellphone. Due to the lack of GPS in the Nokia 6600, the location is
recorded NOT in terms of an exact longitude-latitude pair, but rather in
terms of the celltower currently connected. In order to render the celltower
ids meaningful, the cellphone software prompts the user to provide a tag
when it encounters a new celltower. This way, some celltower locations were
able to be tagged semantically with a specific meaning for that user.

The logged data from all the cellphones total around 350K hours of mon-
itoring time and fit into a database of 1GB size. The necessary data for
our mobility profiler framework are stored in four tables. Figure 1 shows
the database schema that presents the relation between these tables. The
Cellspan table stores the connectivity information of a person to a cell-
tower. The Cellname table stores user-specific semantic tags for celltowers.
Celltower and Person tables store all the celltower and cellphone user in-
formation. The name field in the Celltower table denotes the celltower’s
broadcasted real name (a numerical id).

2.2 Overview of the Mobility Profiler Framework

Figure 2 illustrates the general architecture of our framework. We start with
the “path construction” to construct ordered set of celltower ids that corre-
spond to a user’s travel from one end-location to another. Then, we apply
“cell clustering” to gather the oscillating celltowers in the same group and
replace the celltowers with their corresponding clusters so as to remove
the oscillation problems on the paths. After the cell clustering, we apply
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Fig. 1. Mobility Profiler Database

the “topology construction” using the paths of cell clusters as input. The
resultant topology information of clusters are employed for eliminating the
majority of the candidate path sequences to expedite the “pattern discov-
ery”.
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Fig. 2. Mobility Profiler Framework

In the pattern discovery phase, we discover the frequent mobility patterns
of each user separately. This task is executed efficiently by employing the
topology information and a string matching support criteria (which we
discuss later). In the “post processing” phase, we generate cellphone user
profiles from their personal mobility patterns by adding the time-context
information to the patterns and we generate time distribution data by using
paths of cell clusters.
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3 Mobility Profiler

In this section we present the five phases of the Mobility Profiler framework
in detail.

3.1 Path Construction Phase

Before we proceed to present the construction of the mobility paths for users,
we give some basic definitions.

The connectivity information (of a person to a celltower) stored in the
Cellspan table is gathered as follows. When a celltower switching occurs,
the end time for the previous celltower is captured and a new record is cre-
ated in the cellphone that contains the start and end time for that previous
celltower. Simultaneously, the start time for the new celltower is recorded
and is kept until the next celltower switching occurs. There may also be an
unaccounted time-gap between two celltower switchings due to disconnec-
tion from all base stations or turning off the cellphone. To account for these,
we define two time intervals:

Definition (Cell Duration Time): Cell duration time is the difference be-
tween end and start time for each cell span record L, that represents the con-
nectivity information to a particular celltower. The cell duration time for
each cell span record is calculated as:

Lk
dur = Lk

end − Lk
start (1)

Here Lk
dur

is the cell duration time for kth cell span record, Lk
end

is the connection

end time and Lk
start time is the connection start time for that entry.

Definition (Cell Transition Time): Cell transition time is the difference
between the end and start time of two contiguous cell span record belonging to
the same subject in the Reality Mining study (i-th user). The cell transition time
is calculated as:

Lk
(i)tra = Lk+1

(i)start − Lk
(i)end (2)

Here Lk
tra is the kth cell transition time of the user, Lk

end
is the connection end

time for the (k)th cell-span record for that user and Lk+1
start time is the connection

start time for (k + 1)th cell-span record for the same user.
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Definition (Observed End-Location): An observed end-location record cor-
responds to a celltower location Ck in the kth cell-span record the duration
time of which is greater than a predefined upper bound δduration:

Lk
dur > δduration (3)

To illustrate consider a user arriving to her work place where she stays
connected to a celltower for 5 hours. When the user later leaves for home, a
cell switching occurs. Since Ldur = 5 hours is larger than δduration time (of say
10 minutes) the cell location Ck is accepted as an end-location and the id of
the corresponding celltower is marked as an observed end location.

Definition (Hidden End-Location): A hidden end-location between two
contagious cell span record kth and (k + 1)th corresponds to a location Hk in
which the user stayed longer than a predefined upper bound δtransition:

Lk
(i)tra > δtransition (4)

This inequality states that a hidden location occurs when a significant
amount of time is elapsed during cell transition. To illustrate, consider a
user that switches her cellphone at a movie theater and then switches it
back on at home after 3 hours. Since the transition time (3 hours) exceeds
the threshold δtransition (say 10mins), we say that the user has been in an
unknown hidden end-location Hk for these time intervals. The same case
occurs when user is out of cellphone connectivity range for a significant
amount of time.

Note that the Cellspan table does not store “related” cell-span records to-
gether. The main idea of the mobility path is to group cell span records
together to correspond to users’ travel from one end-location to another. We
define mobility path formally as follows:

Definition (Mobility path): A mobility path C = [C1,C2,C3, . . . ,Cn] is an
ordered sequence of celltower ids corresponding to the cells that a user
visited during her travel from one end-location to another. The mobility
path must satisfy the following two rules:

End Location Rule:

• ∀Ck ∈ C,Lk
dur
> δduration ⇒ k = 1 or k = |C|

Transition Time Rule:
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Table 1
An example cell span data set

oid p oid Tstart Tend Tdur Ttra cell id

1 1 0 4 4 −1 C1

2 1 6 9 3 2 C2

3 1 9 13 4 0 C3

4 1 15 22 7 2 C5

5 1 23 27 4 1 C3

6 1 27 30 3 0 C1

7 1 43 47 4 13 C2

8 1 49 52 3 2 C3

9 1 56 58 2 4 C1

10 1 58 61 3 0 C3

11 1 62 66 4 1 C4

• ∀Ck,Ck+1 ∈ C⇒ Lk+1
start − Lk

end
< δtransition

The first rule states that the observed end-locations can only be the first or
last locations of the mobility path. Since the paths can also be terminated
due to a hidden end-location, the dual of this rule is not true. This rule also
implies that for any location that is neither the first nor the last location,
the duration time should be smaller than or equal to the predefined max-
imum cell duration threshold δduration. The intuition behind this rule is that
if a cellphone user stays for a significant amount of time in a cell area Ck,
then Ck should be taken as an end-location and the current path should be
terminated.

The second rule states that the elapsed time for each celltower transition
within the path should not be greater than a predefined threshold δtransition.
Thus, a cellphone user can not visit a hidden end-location within the path,
otherwise the current path is terminated. The intuition behind the second
rule is that if a user stays a significant amount of time outside cellphone
connectivity, she may travel to locations that are not captured. In that case,
merging hidden locations with previous locations increases the error and
leads to noisy data in the paths.

One may argue that there is no need to use transition time threshold and
hidden end location concept, instead duration threshold between the start-
ing times of contagious cell span records is sufficient to detect end locations.
However, there will be boundary cases in which the sum of contagious du-
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Algorithm 1 Mobility Path Construction

1: Input: (L, δduration, δtransition )

2: L: // The set of input records sorted with respect to time

3: δdur: // upper bound for maximum cell duration time

4: δtra: // upper bound for maximum cell transition time

5: global variables: fSet, tSet // final and temp Path Set

6: procedure CreateNewPath (p oid, cell, start, end)

7: cellSeq := (cell, start, end)

8: tSet := tSet U (p oid, cellSeq)

9: end procedure

10: procedure PathConstruction (L, δdur, δtra)

11: f Set := {}

12: tSet := {}

13: for each Li of L

14: duri := endi − starti

15: If duri ≤ δdur then

16: If ∃pathk ∈ tSet and p oidk = p oidi then

17: If (starti − endTime(pathk)) ≤ δtra then

18: pathk := (p oidk, cellSeqk U (Ci, starti, endi))

19: Else

20: f Set := f Set U pathk

21: tSet := tSet − pathk

22: CreateNewPath(p oidi,Ci, starti, endi)

23: End If

24: Else

25: CreateNewPath(p oidi,Ci, starti, endi)

26: End If

27: Else

28: If ∃ pathk ∈ f Set and p oidk = p oidi then

29: If (starti − endTime(pathk)) ≤ δtra then

30: pathk := (p oidk, cellSeqk U (Ci, starti, endi))

31: f Set := f Set U pathk

32: tSet := tSet − pathk

33: CreateNewPath(p oidi,Ci, starti, endi)

34: Else

35: f Set := f Set U pathk

36: tSet := tSet − pathk

37: CreateNewPath(p oidi,Ci, starti, endi)

38: End If

39: Else

40: CreateNewPath(p oidi,Ci, starti, endi)

41: End If

42: End If

43: end for each

44: end procedure
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ration and transition time exceed end time threshold, although none of them
can not exceed threshold alone. To illustrate; let the time information of two
contagious cell span record belonging to same user is given in Table 1.

Assume that δduration = 7 is used. if we define the cell duration time as the
time difference between starting times of contagious cell span records, since
Lk+1

start − Lk
start > δduration, current is path is ended after Lk. However, if we use

both of the time constraints and take δduration = δtransition = 7 , we do not need
to end current path after Lk since the following conditions are satisfied:

• Lk
end
− Lk

start > δduration

• Lk+1
start − Lk

end
> δtransition

• Lk+1
end
− Lk+1

start > δduration

Algorithm 1 presents our path construction. To illustrate, we provide an
example execution of the algorithm on the cell-span records given in Ta-
ble 1. Tstart and Tend correspond to start and end of connection times to the
corresponding celltower in each cell-span record. Tduration and Ttransition times
are calculated according to the definitions of cell duration and cell transition
times. The transition time of the first record is -1 since we do not have any
cellspan record before that record. Let δduration = 7 and δtransition = 5.

After processing the first record, the algorithm creates an initial path con-
taining only the first celltower, [C1]. The algorithm terminates the current
path with the cellspan record oid = 4, since there Tduration > δduration . Thus, the
current path [C1,C2, C3,C5] is written to the database.

Since the end-location [C5] is an observed end-location, the new path is ini-
tialized as [C5]. The algorithm continues until cellspan record oid = 7, where
Ttransition > δtransition. The algorithm terminates the current path [C5,C3,C1]
before appending the current celltower C2. Since the user enters a hidden
location after cell C1,C2 is not appended to the previous path and a new
path [C2] is initialized. The algorithm then continues to process cell-span
records until all records are exhausted. When the algorithm stops, the the
mobility paths in Table 2 are generated:

Table 2
Reconstructed Paths Database

PathId Path

1 [C1,C2,C3,C5]

2 [C5,C3,C1]

3 [C2,C3]

4 [C1,C3,C4]
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3.2 Cell Clustering

A major problem with the cellular network connectivity data is that a cell-
phone may dither between multiple cells even when the user is not mobile.
A similar problem is also addressed in the Wi-Fi networks referred as the
ping-pong effect [32] which is attemped to remove by detecting two types of
oscillating patterns by considering general geometry of cell range without
using real locations.

Since we have the location information of cell towers partially, we have a
two phased approach to solve this problem. In the first phase, we have clus-
tered the cell towers which has already location tags generated by users.
Each cluster is formed with respect to location information of celltowers
on the map. In the second level, we handle the the remaining untagged
celltowers by identifying oscillating celltower pairs. After that, each un-
tagged celltower is assigned to a cluster by considering its oscillating pair
information.

We define an oscillating cell pair as the ones that have k mutual switches
with each other in mobility paths. For example, given a mobility path P =
[x, y, x, y,w, v,w] and minimum switching count k = 3, < x, y > becomes
the only oscillating pair. The first switch occurs from x at index = 1 to y at
index = 2, the second switch from y at index = 2 to x at index = 3, and finally,
the third switch occurs from x at index = 3 to y at index = 4. Due to the
space limitations we relegate the details of our algorithm for identifying the
oscillating pairs in a given mobility path to our technical report.

After identifying the oscillating pairs in the mobility paths, we assign un-
tagged cell towers to the current clusters generated by using tagged cell
towers. Each new celltower is assigned to cluster which contains the max-
imum number of oscillating pairs. The idea comes from the fact that each
celltower oscillates with the ones that is geographically close to itself. If
every cluster has no oscillating pair for the current tower, an untagged new
cluster is created with the current celltower only. After assigning all all cell
towers to clusters, each cell tower in the mobility paths is replaced by its
corresponding cluster. By this way, we obtain mobility paths of clusters
instead of cells.

3.3 Topology Construction

Topology construction is used for eliminating majority of candidate path
sequences during the pattern discovery phase. In general, pattern discov-
ery problem is solved by an exponential time algorithm, which may take a
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significant amount of time to execute. By employing the cell cluster neigh-
borhood topology during pattern discovery, the candidate sequences which
can not possibly correspond to a path on the cell cluster topology graph can
be eliminated without calculating their supports.

The topology construction method is given in Algorithm 2. Since we have
user mobility paths as input, the cell cluster topology construction is an
easy process by one scan through these paths. Algorithm 2 creates an edge
between the cell cluster pairs Ck and Ck+1 if both of them exist in any path
in contagious positions.

Algorithm 2 Topology Construction

1: Input: S: The Set of all paths in terms of clusters

2: procedure createTopology (S)

3: TopologyMatrice[][] := null

4: For Each Si of S // S is whole set

5: for each (Ck and Ck+1) ∈ Si

6: If TopologyMatrice[Ck][Ck+1] = null then

7: TopologyMatrice[Ck][Ck+1] = true

8: end If

9: end For Each

10: end For Each

11: end procedure

3.4 Pattern Discovery

In this phase, frequent mobility patterns are discovered from mobility paths.
Although not the most recent or the most efficient one in the literature,
we use a modified version of the AprioriAll[2] technique. This technique is
suitable for our problem since we can make it very efficient by pruning most
of the candidate sequences generated at each iteration step of the algorithm
using the topological constraint mentioned above: for every subsequent pair
of cell-clusters in a sequence, the former one must be neighbour to the latter
one in the cell-cluster topology graph. We call this new version of AprioriAll
as Sequential Apriori Algorithm. An important criteria in our domain is that
a string matching constraint should be satisfied between two sequences in
order to have support relation. For example, the sequence < 1, 2, 3 > does
not support < 1, 3 > although 3 comes after 1 in both of them. However,
sequence < 1, 3, 2 > supports < 1, 3 >. A path S supports a pattern P if and
only if P is a subsequence of S not violating the string matching constraint.
We call all the paths supporting a pattern as its support set.

Sequential Apriori Algorithm (Algorithm 3): In the beginning, each cell
cluster with sufficient support forms a length-1 supported pattern. Then, in
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the main step, for each k value greater than 1 and up to the maximum recon-
structed path length, candidate patterns with length k+1 are constructed by
using the supported patterns (frequency of which is greater than the thresh-
old) with length k and length 1 as follows:

• If the last cell cluster of the length-(k) pattern is incident to the cell cluster
of the length-1 pattern, then by appending length-(1) cell cluster, length-
(k+1) candidate pattern is generated.

• If the support of the length-(k+1) pattern is greater than the required
support, it becomes a supported pattern. In addition, the new length-
(k+1) pattern becomes maximal, and the extended length-(k) pattern and
the appended length-(1) pattern become non-maximal.

• If the length-(k) pattern obtained from the new length-(k+1) pattern by
dropping its first element was marked as maximal in the previous itera-
tion, it also becomes non-maximal.

• At some k value, if no new supported pattern is constructed the iteration
halts.

Note that in the sequential Apriori algorithm, the patterns with length-
k are joined with the patterns with length-1 by considering the topology
rule. This step significantly eliminates many unnecessary candidate patterns
before even calculating their supports, and thus increases the performance
drastically.

An auxiliary function Support(I:Pattern,S) determines whether a given pat-
tern has sufficient support from the given set of reconstructed user paths.
Support of a pattern I is defined as a ratio between the numbers of recon-
structed paths supporting the pattern I, the number of all paths.

Support(I,S) =
|{Si|∀i I is substring o f Si}|

|S|
(5)

In order to make the Sequential Apriori algorithm more understandable,
we give an example execution over the constructed paths in the example
in Table 2. Let δ=0.25 be taken as minimum support for the Sequential
Apriori algorithm. Then, the execution of the sequential apriori technique
will generate patterns with their frequencies in four iterations as it is shown
in Table 3.

In this table, the patterns in the lower row of each iteration are eliminated
due to their insufficient support. The maximal frequent patterns are shown
in bold in Table 3. Since at iteration 5, there are no remaining frequent
patterns, the algorithm stops.
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Algorithm 3 Sequential Apriori

1: input: Minimum support frequency: δ, Paths of clusters: S

2: Topology Matrix: Link, The Set of all Cell Clusters: C

3: output: Set of maximal frequent patterns: Max

4: procedure sequentialApriori (δ, S, Link, C)

5: L1 := {} // Set of frequent length-1 patterns

6: for i:=1 to |C| do

7: L1 := L1 U [Ci] | if Support([Ci],S) > δ

8: for k = 1 to N − 1 do

9: if Lk = {} then

10: Halt

11: else

12: Lk+1 := {}

13: for each Ii ∈ Lk

14: for each C j ∈ C

15: if Link[LastCluster(Ii), C j] = true

16: T := Ii • C j // Append C j to Ii

17: if Support(T, S) > δ then

18: T.maximal := TRUE

19: Ii.maximal := FALSE // since extended

20: V := [T2, T3,. . . , T|T|] // drop first element

21: if V ∈ Lk then

22: V.maximal := FALSE

23: Lk+1 := Lk+1 U {T}

24: end if

25: end if

26: end if

27: end for each

28: end for each

29: end if

30: end for

31: Max := {}

32: for k := 1 to N − 1 do

33: Max :=Max U {S | S ∈ Lk and S.maximal = true }

34: end for

35: end procedure

3.5 Representing Mobility Profiles

Frequent mobility patterns containing only location information and lack-
ing any time-context information are inadequate for several applications, in-
cluding route prediction, early warning systems, and user clustering. There-
fore, we add time-context information to the frequent patterns in order to
represent mobile user profiles.
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Table 3
Patterns Generated at each Iteration

Step Patterns Frequencies

1
{< C1 >,< C2 >,< C3 >, {0.75, 0.50, 1.00, 0.25,

< C4 >,< C5 >} 0.25} ≥ 0.25

2

{< C1,C2 >,< C1,C3 >, {0.25, 0.25, 0.25, 0.25,

< C2,C3 >,< C3,C1 >, 0.25, 0.25, 0.25

< C3,C4 >,< C3,C5 >, 0.25} ≥ 0.25

< C5,C3 >}

{< C2,C1 >,< C3,C2 >, {0.0, 0.0, 0.0, 0.0}

< C4,C3 >} < 0.25

3

{< C1,C2,C3 >,< C1, C3, C4 >, {0.25, 0.25, 0.25, 0.25}

< C2,C3,C5 >,< C5, C3, C1 >} ≥ 0.25

{< C1,C3,C2 >,< C1,C3,C5 >,

< C2,C3,C1 >,< C2,C3,C4 >, {0.0, 0.0, 0.0, 0.0, 0.0

< C3,C1,C2 >,< C5,C3,C2 >, 0.0, 0.0, 0.0} < 0.25

< C5,C3,C4 >}

4

{< C1, C2, C3, C5 >} {0.25} ≥ 0.25

{< C1,C2,C3,C4 >, {0.0, 0.0} < 0.25

< C5,C3,C1,C2 >}

Definition (Mobility Profile): A mobility profile for a cellphone user in-
cludes personal mobility patterns with contextual time data and distribu-
tion of spatiotemporal locations for that user. The time contextual data for
mobility patterns are specified in two dimensions:

• Days of Week: Each frequent pattern stores its distribution over days of
week. That means, the frequent pattern is tagged with the number of its
instances observed on each day of the week.

• Time Slices: Each frequent pattern stores its distribution over each time
slices given in the set {[12:00 a.m., 6:00 a.m.], [6:00 a.m., 12:00 p.m.], [12:00
p.m., 6:00 p.m.], [6:00 p.m., 12:00 a.m.]}. That means, the frequent pattern
is tagged with the number of its instances started on each of these time
slices.

Apart from the spatiotemporal mobility patterns, mobility profile of each
user contains time distribution data of all locations visited by current user.
The time distribution data is very important since it identifies the importance
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of each location that is proportional to the time spend on them.

4 Experimental Results

In this section, we will present our experimental results on MIT reality
mining data set containing 350K hours of cellspan data. For analyzing MIT
Reality Mining data, we have implemented Mobility Profiler Framework
on Java Environment. The size of the source code for the whole framework
is around 4KLOC. Our implementation contains separate module for each
of the phases discussed above.

The rest of this section is given as follows: First, we give our results for de-
termining duration and transition threshold, that are used for constructing
mobility paths. For cell-clustering, we give our analysis for finding mini-
mum switch count. For the pattern discovery phase, we present examples
of interesting patterns discovered from Reality Mining data and give a case
study for representing mobile user profile. We have also provide an inter-
esting results related to the average time distribution of the locations for all
users. Finally, we present an application of mobility profiles discovered by
our framework in the context of air pollution exposure risk estimation.

4.1 Determining End Location Thresholds

As it is mentioned in section 3, path reconstruction process needs three
input items which are L, δduration, δtransition. Therefore, we need to determine
δduration and δtransition before executing Path construction process on cell span
data L. These two threshold values are determined by analyzing the ratio
of cell span record or cell span transitions that is smaller than predefined
time values in experiment space. For determining δduration time, we have
defined our experimental duration time space as a set {1, 5, 10, 15, 20, 25, 30}
which contains 7 different time values from 1 minute to 30 minutes. After
that, we evaluate the ratio of cellspan records the duration time of which
is smaller than these 7 discrete values in our experiment set. The result of
this first experiment is given in Figure 3. In this graph, the point with the
duration threshold 30min and ratio = 0.97 means the duration time of 97%
of all cell span logs is smaller than 30 minutes. As it is easily seen from
the graph that the value for all of duration threshold between [30, in f inity)
lies between [0.97, 1.00). It is obvious that there is no significant difference
between any arbitrarily large threshold value >> 30 min (where user is
static obviously) and 30 minutes in terms of log ratio. In fact, the line has
very small tangent after duration time=10 min which has ratio value of 0.94.
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However, if we analyze the left part of duration threshold=10 min. There is
significantly sharp switch between two points having duration time=10 min
and duration=5 min. In fact, the first sharp decrease occurs when we switch
from 10min to 5min. There exists approximately 10% difference between
these points. Therefore, we decided to accept the static time threshold as
δduration=10 min.

One can argue that there may be non-static locations in which cellphone
user stays more than 10 minutes. To illustrate; a user may wait 15 minute
in bus stop which can be intermediate location during trip from school to
home. However, as it is shown from our graph, this type of behavior shows
rarely since all of the locations the duration time of which is greater than
10 min [10, in f inity) lies between [0.94, 1.00) in terms of log ratio. Therefore,
we accepted that 10 minutes is a reasonable threshold for δduration time. Since
our data size is very huge (2.5M of cellspan records), we believe that our
graphs gives significant information cellphone users behavior in general.
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For determining δtransition time, we define our experimental space as a set
with 13 different time values from 1 minute to 60 minutes. We do not take
higher values than 60 minutes since it is reasonable to accept the existence
of hidden end locations if transition time is more than 60 minutes. In order
to find acceptable value for δtransition time, we use the ratio metric that is
mentioned above for analyzing δduration time. Unlike the analysis of δduration

time, there is still some visibility problem if we analyze this data without
filtering the regular handoffs that take 0 seconds. In reality mining data set,
nearly, 99.2% of contiguous cellspan records has regular handoff value that
is 0 second that means the cellphone handles 99.2% of celltower switches
immediately. It is obvious that the user can not be in hidden end location
in this time range. Therefore, we filter regular handoff times for analyzing
δtransition. The result of the second experiment is given in Figure 4. In this
graph, we notice that the tangent of line after threshold time 10 minutes is
greater than one in the Figure 3 for δduration time. However, we notice that
the tangent of the line is constant after 10 minutes threshold time until 60
minutes. In each neighbor point after 10 minutes, the increase in the log
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coverage ratio is around 2-3%. When we analyze the left part of transition
threshold=10 min, we see a significantly sharp drop of about 10%. Thus, we
accept 10 minutes as a reasonable threshold for δtransition time. This is also
a good choice as it relates to the duration time threshold for determining
end-locations.

4.2 Cell Clustering

After determining δduration and δtransition values as 10 minutes, we executed the
path construction phase over 2.5M cell-span records resulting in approxi-
mately 120K mobility paths. However, these paths included a significant
amount of noisy data due to celltower oscillations not correlated with hu-
man mobility.
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For solving the oscillation problem mentioned above, we cluster the cell-
towers by using their location tags. Each cluster is named by using majority
voting over the locations names of its celltowers. For assigning untagged
celltowers to the clusters, oscillating pairs of untagged celltowers are discov-
ered. As it is mentioned in clustering section we need minimum swithcing
count to find the oscillating pairs. Therefore, we have performed an exper-
iment on determining minimum switching count k. In this experiment, we
count the number of oscillations with respect to different switching counts
from k = 2 to k = 10. The results of this experiment is provided in Figure 5.
As seen from Figure 5, the tangent of the plot-line decreases as k becomes
larger. In fact, when moving on the x axis from infinity to zero. The biggest
jump occurs when switching from point k = 3 to k = 2. We belive that the
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number of oscillations due to natural user mobility (which should be dis-
tinguished from celltower oscillations) significantly contributes for k = 2.
Thus, in order to better distinguish between oscillations due to user mobility
and celltower oscillations, we take the minimum switching threshold k = 3.

After determining oscillating cell cluster by using k = 3 as the switching
threshold, we find the oscillating pairs of untagged celltowers. Each cell-
tower is assigned to cluster having maximum number of oscillating pairs
containing corresponding celltower. If every cluster has no oscillating pair,
an untagged new cluster is created with the current celltower only. We
found that the average coverage value for the generated clusters is fairly
good which is approximately 0.80 and the standard deviation is around
0.08, which means that the majority of coverage values lies in the interval
[0.72, 0.88].

4.3 Finding Maximal Mobility Patterns

We executed the pattern discovery phase for generating both global and
personal frequent patterns. For the global pattern discovery, we have used
frequency support δ = 0.001 which means that each pattern should exist in
at least 120 path over 120K total paths to be considered. Since we deal with
multiple users for global pattern case, a same celltower with in a cluster can
be named differently by each person. In addition, there may be different
celltowers having different names in the same cluster. In this case, the name
for each cell cluster is determined by using majority voting over celltower
names within the cluster.

Table 4
Global Mobility Patterns

Pattern Name Frequency Length

<Home, Media Lab> 0.0267 2

<Media Lab, Home> 0.0267 2

<Home, MIT, Student center> 0.0096 3

<Student Center, MIT, Home> 0.0071 3

<Anils Sofa, Tang> 0.0061 2

An interesting subset of most frequent global patterns are provided in Fig-
ure 4. Since the frequency of mobility paths is inversely correlated with the
path-length, the size of most frequent paths are usually one or two hops
like in the Figure 4. However, the overall distribution of path length is more
distributed which is given in Figure 6. As it is easily seen from the figure,
more than 80% of the patterns has hop count between 1 and 6. Apart from
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pattern length, we have also measured the effect of frequeny threshold on
the average size of mobility patterns. Figure 7 shows our results in exponen-
tial scale. It is easily seen form the results that, the average size of mobility
patterns increases when frequency threshold decreases exponentially. For
our global pattern discovery experiment with δ = 0.001, the average pattern
size is around 4.8 which means that average hop count for mobility patterns
is around 3.8.
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Unlike the global case, personal pattern discovery is more consistent since
each celltower is tagged homogeneously by same person. For presenting
personal patterns, we choose the paths of single cellphone user as a case
study. The number of paths for selected cellphone users is around 2K. There-
fore, we choose the frequency threshold as δ = 0.005 which means that each
pattern should exist in at least 10 mobility paths. The top 5 five mobility
patterns for our case study are given in Figure 5.

4.4 Representing Cellphone User Profiles

Here we present our experimental results for mobility profiling on user
X. The top five mobility patterns are plotted in Figure 8 and 9 on two
different time domains (day of weeks and time slices). We also analyzed
spatiotemporal distribution of visited locations for user X in Figure 10.

Table 5
Top-5 Mobility Patterns of user X

Id Pattern Name Frequency

1 <Home, Media Lab> 0.279

2 <Media Lab, Home> 0.265

3 <XXX CommonWealth, Media Lab> 0.133

4 <Home, Charles Hotel, Media Lab> 0.060

5 <Media Lab, Charles Hotel, Home> 0.053
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Figure 8 shows the distribution of all five patterns over weekdays and
weekends. All of the top-5 patterns are active on weekdays with a balanced
distribution over the 5 work days. The peak time for the first, second, and
fourth patterns are afternoons whereas the peak time for the third and fifth
patterns are evenings (Figure 9).
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As mentioned in section IV, the user profiles give significant information
about cellphone user behaviors. For example, on a Tuesday afternoon if user
X is at cell area tagged as ”XXX CommonWealth,”, with high probability
she will go to cell area tagged ”Media Lab” next. It is very clear that our mo-
bility profiles have potential of producing more correct results for location
prediction problem with their additional time dimension.

We have also analyzed the spatiotemporal distribution of locations for user
X in Figure 10. Although it may first appear that there is no need to con-
struct mobility paths and perform clustering to extract these spatiotemporal
locations, mobility path construction is a very important step for generat-
ing an accurate and noise-free time distribution chart, and we have used
the mobility paths for user X for constructing the time distribution chart.
Mobility paths gather related cell span connectivity records together, and
makes it possible to determine and analyze the oscillations and clustering
among the celltowers. Replacing cell towers with corresponding clusters
within these paths enables us to calculate the time elapsed on each cluster
location accurately for the time distribution char.

Figure 10 shows that user X spends 67% of her overall time at home or
work. In fact, 79% of overall time elapsed at 8 different locations for user
X. An even more interesting phenomenon is found when we consider the
distribution of the remaining 6% (others) for user X in Figure 10. These
remaining 6% of user X’s time is spent in locations that each appear less
than 1% of time: there are 69 different locations for user X in that portion.
In other words the spatiotemporal distribution for user X shows a very
heavy/long tail. We corroborated this finding in all users’ spatio temporal
distributions: approximately 15% of the users time is spent in a large
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variety of locations that each appear less than 1% of total time. We present
a graph of the number of locations with respect to coverage ratios in Figure
11. In this figure a point (1%, 15%) means that on average 15% of total time
elapsed on the locations in which the user spend less than 1% of total time.
Since this graph is in logarithmic scale, it is possible to see clearly that
there is a 15% heavy tail after 1% minimum distribution ratio. Indeed, the
coverage ratio approaches zero only after two more logarithmic scales from
that point. The average number of locations that remain in the 15% heavy
tail area is more than 800, whereas it is around 12 for the remaining 85%
portion.

One implication of this find is that, while simulating/testing large-scale
mobile ad-hoc protocols, it is not sufficient to simply take the top-k popular
locations. Doing so will discard about 15% of a user’s visited locations.

 

Fig. 12. Time distribution for end locations on map for user X
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4.5 Air Pollution Exposure Estimation

We are currently using the Reality Mining data for an air pollution expo-
sure estimation application [13]. Estimating air pollutant exposure is not an
easy task since air pollution is usually highest in wide urban areas. Many
air pollutant concentrations, particularly those related to vehicular traffic,
vary as much within cities as they do between cities. The previous mod-
eling approaches for estimating air pollutant exposures of the individual
use the residential address [1]. Investigators have attempted to incorporate
time-activity data into air pollutant estimation procedures by interviewing
study participants regarding their travel schedules [27], filming children to
estimate their exposures to indoor sources of pollution (cooking fires)[6],
and modeling time-activity patterns in GIS using self-reported travel char-
acteristics [22]. These methods are too costly and time-consuming to apply
to large populations. Moreover as we show in Figure 10, since human mo-
bility has a heavy tail, it is infeasible to reach 100% coverage with these
approaches, as these approaches capture only the top-k locations, which
make up only about 85% of total time.

As an alternative to these methods, we use the spatiotemporal distribution
of locations of a person we obtain from the mobility paths. We will integrate
these time distribution data with the data obtained from PM2.5 air pollution
sensors from the Boston area. These sensor data are publicly available at no
cost from governmental web sites, such as Department of Environmental
Conservation website, U.S. Environmental Protection Agency and U.S. Cen-
sus Bureau Geography Division website. Since we know the location of each
PM2.5 sensor, it is feasible to estimate average PM2.5 exposures of individ-
uals by calculating weighted average of their spatiotemporal distribution
of locations with respect to locations of PM2.5 sensors. As an example case
study, we graph the location distribution of user X over the Boston area map
Figure 12. (For the sake of simplicity the graph shows only the top locations
for user X.) The weight of each edge in the graph is proportional to the fre-
quency of the current mobility paths between two locations. The mobility
path information allows us to determine the time and routes for when the
user is driving/travelling between end-locations. Although the user spends
85% of total time in top locations such as home and work locations, the air
pollution exposure risk is higher when she is traveling. This emphasizes
the importance of capturing the remainning 15% locations and discovering
users’ mobility path.
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4.6 Other Application Areas

A potential application of our framework is for enriching the content of the
social networks web sites, such as facebook and myspace, with the mobility
information of users. These social networking sites may present the user
with meeting opportunities to other users that have similar mobility profiles
to theirs, or suggest places to visit based on the locations recently visited by
their mobility-profile-proximity peers.

Another useful application is for estimating better quotes by the car in-
surance companies. The current cost estimation models for car insurance
only takes residential information into consideration. However, cost of the
insurance may significantly vary if the users mobility information and time
distribution data is known before hand.

Finally, enhancing the performance of peer to peer sharing programs on
cellphones with the aid of mobility information is an interesting problem to
consider. One can design a peer to peer server which indexes only the names
of shared files over users with respect to their location and the mobility
information.

5 Related Work

There are several recent works on the benefits of using cellphones as sen-
sor nodes for city-wide sensing applications [18,17,12,39,28]. Researchers
also started to investigate models and architecuture for collecting data from
privately hold mobile sensors. Karause et al. [29] propose a model for com-
munity sensing that enables to share data from personal sensors like cameras
or cellphones. They have showed feasibility of their approaches on a traffic
monitoring case study. Hull et al. [24] designed CarTel systems that has a
GPS sensors and cameras on cars to monitor their movements and send this
via opportunistic message forwarding.

In the recent works, cellphone based location data was used for mining hu-
man behaviors and social networks analysis [15,40,36]. These works include
finding social patterns in user’s daily activity, extracting relationship among
individuals and identifying socially important locations. Another interest-
ing application of cell based location data is the opportunistic message for-
warding [16,11,41,10]. The opportunistic message forwarding is performed
by analyzing similarity of individual’s mobility behaviors with respect to
locations they have visited frequently.
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Mobile Landscape project [8] is one of the most comprehensive city wide
application in which the celltower location data is analyzed for visualization
of population migration and traffic density. Another work similar to ours is
carried by Context group from University of Helsinki. They have provided
the solution for clustering and route prediction problem for mobile users by
using cell based location data [30,31,3]. These works include the definition
of user routes from cellular data; however, they do not investigate modeling
of mobility.

Human mobility is also used for optimizing load balancing, resource con-
sumption, paging overhead and network planning in cellular networks.
MarkouDiakis et al. [34] proposes a hierarchical mobility model for opti-
mizing network planning and handover rate in celluar environments. Their
hierarchical model analyzes human mobility in three levels which are City
Area, Area level and Street Unit levels. Zanoozi et al. [42] analyzes hu-
man mobility inside the single cell for optimizing cell residence time. Liu et
al. [33] propose a mobility prediction model for optimizing cell handover
residence time. Their method employs Markov Model and Kalman Filter to
predict when a mobile node crosses cell boundaries. Bhattacharya et al. [7]
utilized prediction model to reduce paging overhead in celluar networks by
limiting the number of possible cells that user may enter. Akyildiz et al. [4]
proposes a method for predicting future location of mobile node by using
moving direction, velocity, current position and historical records. Their re-
sults showed that proposed model increase the performance of network in
terms of location tracking cost, delays, and call dropping/blocking probabil-
ities. Cayirci et al. [9] showed how mobility pattern of mobile can be used
to optimize location update in celluar networks.

Human mobility has been a focus of interest by recent work in wireless net-
works and ubiqitious computing research community. Musolesi et al. [37]
present an extensive survey on mobility models. They divide general mobil-
ity models into two categories called traces and synthetic models, the latter
being more common due to the difficulty in gathering publicly available
traces. Garetto et al. [19], Hsu et al. [26] and Lee et al. [32] propose models
for human mobility in Wi-Fi environments. Rhee et al. [25] analyzed human
mobility by using GPS data and they proposed that human mobility shows
levy walk behaviour. Ghosh et al. [20] examines the human mobility based
on semantically related locations forming orbits at different hierarchies by
using location data obtained from GPS. Nurmi et al. [38] proposed clus-
tering methods for finding important locations of cell phone users. Their
approach uses cell based location data and models the cell tower network
as graph based on cell transitions.

In the very recent work, Gonzalez et al. [21] analyzed the mobility patterns
of 100K mobile phone users by using cell based location data. Unlike the
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Levy walk nature of human mobility [25], that study proves that human
trajectories show a high degree of temporal and spatial regularity. They
showed that each cell phone user tends to move between most important
locations (namely top-k locations). Their findings are also supported by our
work since we show that an average 85% of total time are observed in the
top locations of the users and the most frequent mobility patterns are the
ones between these top locations.

6 Conclusion and Future Work

In this paper, we have proposed a complete framework for discovering
mobile user profiles. We have defined the mobility path concept for cellular
environments and introduced a novel path construction method. We have
also proposed a cell clustering method that provides robustness against
noises, such as celltower oscillations and improper handoffs containing
time delays. From the experimental results over 350K hours real data, we
have shown that our framework is capable of producing user profiles that
can be used for city wide sensing applications like air pollutant exposure
estimation. Our analysis also discovered a long tail for human mobility
behavior: approximately 15% of a person’s time is spent in a large variety
of locations each of that takes less than 1% time.

As future work, we are going to work on a similar framework that uses
GPS data to discover mobile user behaviors. We will also investigate the
opportunities for using our mobility profiles in new applications, such as
social networking, car insurance estimation and peer to peer file applications
over smartphones.
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