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Abstract

The importance and the difficulty of the folding problem haveled scientists to
develop several computational methods for protein structure prediction. Despite
the abundance of protein structure prediction methods, these approaches have two
major limitations. First, the top ranked model reported by aserver is not necessar-
ily the best predicted model. The correct predicted model may be ranked within
the top 10 predictions after some false positives. Second, no single method can
give correct predictions for all proteins. To attempt to remedy these limitations,
protein structure prediction “meta” approaches have been developed. A meta-
server can select a set of candidate models by ranking modelsobtained from other
servers. In this article we present the Sample-Train-Predict algorithm and its ap-
plication to implement a new model quality assessment program (MQAP) based
on a consensus of five MQAP’s then we discuss the application of our MQAP as a
meta-selector. STP depends on the clustered nature of the training data and it can
dynamically handle constantly growing training data. STP selects clusters which
are similar to the input data, then trains a model on these clusters, and finally uses
the trained model to get predictions for the input data. Our experimental results
show that a hierarchical model trained using STP outperforms any tested model
quality assessment program by 7%-8%. When selecting from predictions made
by humans in a standard benchmark CASP7, our meta-selector achieves about 3%
improvement above the best human predictor.

1 Introduction

We live in the post-genomic era in which a large amount of biological data are being accumulated.
Such data have two main properties. First, the available training (labeled) data is constantly growing.
For example, gene banks and protein structure banks are increasing in size on an annual or even on
a monthly or a daily basis. Second, the data is intrinsicallyclustered, meaning that data can be
clustered based on similarity in sequence, structure or function i.e. each cluster has a biological
meaning. Once new labeled data which may contain new patterns becomes available, models such
as artificial neural network (ANN), support vector machine (SVM), and decision trees trained on the
old training data become out of date and need to be retrained on the updated training set. Our goal
is to devise a machine learning algorithm that can extend these models to make use of the newly
available labeled data dynamically. To that end, we proposetwo algorithms to realize this goal.
The first algorithm trains a model dynamically on related data to the unlabeled query (testing) data,
in another words, it trains dynamically a custom-made expert. The second algorithm dynamically
mixes local experts which are already trained and cached.

One of the most important problems in structural biology is the protein folding problem. A few prin-
ciples that govern protein folding are currently known; however, the main folding algorithm is yet to
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be discovered [1]. The three-dimensional structure of protein can be determined experimentally by
X-ray crystallography, nuclear magnetic resonance and other methods. However, the output of these
methods is not as fast as the output of sequencing projects. In addition, these methods are expensive,
and not applicable to all proteins. Therefore, protein structure prediction based on computational
methods is currently an active research area.

The importance and the difficulty of the folding problem haveled scientists to develop several com-
putational methods for protein structure prediction, the majority of which are available as servers
accessible through the internet. Despite the abundance of protein structure prediction servers, these
approaches have two major limitations [2]. First, the top ranked model reported by a server is not
necessarily the best predicted model. The correct predicted model may be ranked within the top
10 predictions after some false positives. Second, no single method can give correct predictions
for all target proteins. It has been observed in experimentsto assess the accuracy of protein struc-
ture prediction methods such as CASP [3] that the correct model is usually predicted by one of the
participating servers. To attempt to remedy these limitations, protein structure prediction “meta”
approaches have been developed.

Protein structure prediction meta-approaches consider the results obtained from several different
methods. A meta-server selects a set of candidate models by ranking models obtained from other
servers based on a local model quality assessment program (MQAP). Such servers are known as “
s” [4, 5]. Several MQAP’s are currently available to assess the quality of a given model of protein
of unknown three-dimensional structure. A model quality assessment program can use (i) physics
principles, (ii) statistical information derived from theknown protein structures, and (iii) machine
learning techniques that are trained on both physical and statistical properties of proteins of known
structures [7]. Currently many MQAP’s [4, 7, 8] [10]-[14] are available and have been applied
in protein structure prediction. The majority of these MQAP’s are composite scores i.e. they are
based on consensus of a few quality scores.Proq [13] andSIFT [9] are ANN-based composite
scores.SV Mod [7] is a SVM-based composite score. In this article we present The STP: Sample-
Train-Predict algorithm and its applicationZicoSelectorwhich is a meta-MQAP-selector based on
a consensus of MQAP’s.

2 The STP: Sample-Train-Predict Algorithm

The machine learning scientist often faces the problem of a shortage in labeled training data; how-
ever, in fields such as modern computational biology we can acquire new labeled data on daily basis.
Thus, one must deal with large quantities of constantly growing training data since the newly ac-
quired labeled data may contain information that is not present in the old training data. Typically one
will discard the models trained on the old training data and train new ones. Clearly such an approach
is a waste of computation and needs manual human intervention to retrain the learning algorithm.
We have devised the Sample-Train-Predict (STP) algorithm to attempt to solve this problem. The
STP algorithm can handle a growing training data and learns from the newly added labeled data
dynamically. In another words, the STP algorithm grows as the training data set grows.

We propose a dynamic learning algorithm called STP:Sample-Train-Predict. The STP algorithm
can be used when the data have two main properties. First, theavailable training (labeled) data is
constantly growing. For example, gene banks and protein structure banks are increasing in size on
an annual or even a monthly basis. Second, the data is intrinsically clustered based on similarity in
sequence, structure or function (each cluster has high-level semantic meaning).

We state the problem as follows. The input is a set of labeled data which is continuously growing
in size and a set of testing unlabeled data. The algorithm outputs labels for the unlabeled data.
Formally,STP (D,X) = T whereD is the set of labeled data and the size of the training data set
|D| continuously increases.X is the set of testing data andT is the set of labels (classification) or
real values (regression) corresponding to elements in setX. The STP algorithm does its prediction
in a batch mode i.e. it takes a cluster of data of unknown target values as its input and outputs the
results in a batch mode as well. The STP algorithm has three stages: (i) sample (ii) train (iii) predict.
We describe two variants of the STP algorithm: STPdata and STPmodel. We consider STPdata as a
way to dynamically build a custom-made expert and STPmodel as a method to dynamically mix a
set of local experts similar to [15, 17].
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Figure 1: The STPdata Algorithm

2.1 STPdata

Figure 1 outlines the STPdata algorithm. In STPdata, we select a subset of the training data based
on the similarity to the unlabeled data. The similarity measure is problem dependent and the imple-
menter should decide on how to sample from the training data.Then the STPdata algorithm trains
a model such as ANN, SVM, etc. on the sampled data in the “train” stage. In the “predict” stage,
STPdata uses the trained model to assign labels to the unlabeled input set. Since STPdata builds
models dynamically, it incorporates the newly added labeled data in the “train” stage.

The STPdata algorithm works as follows: letDall be a set of all the available training data clusters,
andX is the set we wish to predict its unknown target values i.e.X is the testing data, thenDx is
the union of similar clusters to clusterX in the training data and is the output of the sample function
such thats(Dall,X) = Dx. The sample function is defined as follows.Input: Dall = { Di | Di is a
subset of the training data} andX. Let A,B ∈ Dall and

δ(A,B) =

{

1 if setA and setB are neighbors;
0 o.w.

Output:Dx such thatDx ⊆ Dall, Dx 6= ∅ andDx = {Di|Di ∈ Dall andδ(Di,X) = 1}.

The train function outputs a modelMx trained on the data sampled in the previous step i.e. the
neighbors ofX such thatt(Dx) = Mx. The train function is defined as follows.Input: Dx =
{(b1, a1), ..., (b

k, ak)} where inputbi is m-dimensional vector andai is the corresponding target.
Output:A modelMx trained onDx. The predict function outputsTx which is a set of the predicted
target values or labels for setX such thatp(Mx,X) = Tx. The predict function is defined as
follows. Input: Mx is a model trained on the neighbors of set X.Output: Tx is the prediction of set
X target values.

The STPdata algorithm has been implemented successfully totrain a hierarchy of linear models
based on the pseudo inverse solution, details are given in section 3. The STPdata cycle takes a few
seconds for a batch of about 200 queries. However, retraining a non-linear model for each batch
can be computationally expensive and limits the practical models to computationally simple ones
e.g. linear. For example, training a multi-layer neural network requires a long time of training, in
addition to manually adjusting several parameters. To remedy this limitation, we propose (i) the
STPmodel algorithm discussed in section 2.2 (ii) a modification to the STPdata algorithm to cache
the trained models.

The modified STPdata algorithm treats the training data as anarray of clusters in which each cluster
can be indexed by a unique number. Each trained model is associated with the indices of the clusters
used in its training. The sampling step returns the indices of the clusters which are similar to the
testing cluster. There is an extra query step before the training step. In the query step it searches
the cached trained models for a model whose indices significantly overlap with the sampled clusters
indices. If such a model exists, then STPdata uses it in the prediction and the training step is escaped,
otherwise it trains a new model. The modified STPdata algorithm grows as it is being used and as
the training data grow.
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Figure 2: The STPmodel Algorithm

2.2 STPmodel

Figure 2 outlines the STPmodel algorithm. In the STPmodel algorithm we start with a set of trained
models each is trained on a cluster of the training data; therefore, in the “sample” stage, we sample
from trained models by selecting models which are trained ondata similar to the unlabeled data.
In the “train” stage we combine these models linearly and usethat mixed model in predicting the
labels of the unlabeled input set. When we have new labeled data set, we train a new model on these
data, then add that trained model to the trained models set. Since STPmodel builds mixed models
dynamically, it incorporates the newly added labeled data in the training stage.

The STPmodel algorithm works as follows: letDall andX be defined as before,Mall is a set of
models each trained on a cluster of the training data. Then the sampling stage in STPmodel collects
two sets. The first set isMx which is a set of modelsMi’s, eachMi is trained on a cluster that is
similar to setX. The second set isDx which is the union of similar clusters to clusterX in the
training data such thats(Dall,Mall,X) = {Mx,Dx}. The sample function is defined as follows.
Input: Dall = { Di | Di is a subset of the training data}, Mall = { Mi | Mi is a model trained on
subsetDi of the training data} is a set of modelsMi’s, eachMi is trained on a clusterDi ∈ Dall,
and the setX. Let A,B ∈ Dall andδ(A,B) defined as before.Output: Mx such thatMx ⊆ Mall,
Mx 6= ∅ andMx = {Mi|Mi ∈ Mall andDi ∈ Dall andδ(Di,X) = 1}. Dx such thatDx ⊆ Dall,
Dx 6= ∅.

The train function outputs a linear modelMmix trained to linearly combine the outputs of the set
of local experts sampled in the sampling step such thatt(Mx,Dx) = Mmix. The train function is
defined as follows.Input: Mx ={ Mi | Mi is a model trained on subsetDi of the training data}
is a set of local experts each trained on clusterDi, Dx = {(b1, a1), ..., (b

k, ak)} where inputbi is
m-dimensional vector andai is the corresponding target,Dx is the union of clustersDi’s. Output:
a linear modelMmix trained to linearly combine the outputs of modelsMi’s. EachMi is used to
predict the target values of setDx. In other words, the train function assigns weights to theselocal
experts.

In the prediction step we use the set of local expertsMx and the mixing modelMmix which we have
trained in the training stage to predictTx which is a set of the predicted target values or labels for
setX such thatp(Mx,Mmix,X) = Tx. The predict function is defined as follows.Input: Mx is
a set of local experts.Mmix is a linear mixing model trained on the neighbors of the testing set X.
Output:Tx is the prediction of setX target values.

The STPmodel algorithm is related to the mixture of local experts [17, 15]. One applies a mixture
of local experts if the data set can be partitioned into smaller subsets which have a higher level
semantics. Then we train a system of a set of local experts anda gating model. Each local expert
is trained on a subset. The gating model allocates the experts to be used on a given input data and
decides the strategy to combine the experts’ predictions. Hampshire and Waibel [17] use a gating
model that linearly combines the outputs made by the local experts while Jacobs and Hinton [15]
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Figure 3: ZicoSelector: a hierarchy of general linear models

adapt a competitive strategy in the gating model to select the local experts to be used on the input
data. The weights of the local experts and the gating model are adjusted together in the training
process. Each local expert is a multi-layer network. We regard the STPmodel as a way to build
dynamically a mixture of local experts in which the weights of the local experts and the gating
model are adjusted separately. The STPmodel algorithm can mix ANN, SVM, decision trees and
other models and is not limited to ANN as the mixtures described by Hampshire, Waibel, Jacobs
and Hinton.

3 An Example Application: Protein Structure Meta-Selection

In this section we consider a concrete implementation of theSTP algorithm. The data used in
this experiment is the protein structure predictions submitted to CASP6 and CASP7 by servers and
human predictors. The data is intrinsically clustered i.e.all three-dimensional structures predicted
for the same a.a. (amino acids) sequence form a cluster. For CASP6 there are about 60 clusters and
for CASP7 there are about 100 clusters. New clusters are available once new protein structures are
deposited in the protein structures bank. In this section wefirst state the meta-selection problem.
Second, we describe a hierarchical model calledZicoSelector. Then we illustrate how the STPdata
and the STPmodel algorithms trainZicoSelectordynamically.

The protein structure meta-selection problem can be statedformally as follows. Input: An × m
scores matrixS, such thatsij is the score of 3d-structurei assigned by MQAPj. The scores matrix
S contains the MQAPs’ scores of the 3d-structures predicted for the same a.a. sequence.

S =











S11 S12 . . . S1m

. . . .

. . . .

. . . .
Sn1 Sn2 . . . Snm











Output: The predicted quality score of each 3d-structure.

ZicoSelectoris a hierarchy of general linear models (GLM). Figure 3 givesan overall view of the
hierarchical system. The input toZicoSelectoris a set of 3d-structures predicted for the same amino
acids sequence. The selection process is composed of three levels. At the first level, the topn1

models ranked byDFire are chosen to pass to the second level where a linear classifier is used to
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Figure 4: The distributions of MaxSub scores and 3D-Jury scores of the 3d-strucutres generated
from three different a.a. sequences

select models whose ranks are less thann2. Models selected at the second level are ranked by a
regression linear model at the final stage. The GLM forn observations can be expressed as

A = Sv + e

Where A is a matrix of target values, S is then × m features matrix as defined earlier, v is the
m-dimensional regression coefficients vector, and e is them-dimensional errors vector. Let w be a
m + 1 dimensional vector of 1 andm regression coefficients, then

Sw = A

ST Sw = ST A

w = (ST S)−1ST A

Next we describe how we train theZicoSelectorusing the STPdata algorithm.

Pre-processing. This stage is designated to the following data preprocessing (i) select models that
are at least85% complete (ii) select full atoms models (iii) run theModeller program on selections,
Modeller is a homology or comparative modeling program, then remove models whoseMaxSub
score with the original model is less than0.85. MaxSub is a similarity measure between two 3d-
strucutres.

STP Sampling. STPdata considers the MQPAs’ scores of the 3d-strucutre generated for the same
a.a. sequence as one cluster. We represent each cluster by two centers of the bimodal distribution
of the 3D-Jury score and the percentages of the 3d-structures that belong to each mode. We obtain
the two centers by applying the k-means clustering algorithms with initial centers 0.0 and 1.0. We
specifically choose the 3D-Jury score for the following three reasons (i) the 3D-Jury score is highly
correlated with the MaxSub (the target) score (ii) the distributions of MaxSub and 3D-Jury scores
are bimodal as shown in figure 4 (iii) the distribution of the 3D-Jury score has one of the least KL
divergence from the distribution of the MaxSub score indicating the similarity between these two
distributions.

STP Training. Once the sampling step is done, we trainZicoSelector, which is a hierarchy of
general linear models, on the sampled data. Training a linear model based on the pseudo inverse
solution is very fast which makes the STPdata algorithm suitable to the problem under consideration.
Next we describe the three levels of the hierarchical model.

ZicoSelector: first level.Models whoseDFire’s rank is less thann1 are chosen to pass to the next
stage. We assume that models whose ranks are greater thann1 are noisy models and hence will
affect the training process negatively.

ZicoSelector: second level.In this stage a linear classifier (GLM) is trained to select the topn2

models. The classifier is trained to separate two classes: the first class is composed of models whose
ranks are less thann2 and the second class is composed of models whose ranks are greater thann2.
We choosen2 = 0.5 × n1 to make sure that the data is balanced and the classifier is notbiased to
any of the two classes. The linear classifier is trained on setD1 = {(x1, a1), ..., (x

q, aq)} Where
q = n1 × |T |, such that|T | is the number of the clusters in the sampled data, inputsx1, ..., xq are
m-dimensional vectors andm is the number of MQAP’s.xi = {x1, ..., xm}, where

xj =

{

1 if the mqapj ranks the model belown2 ;
−1 o.w.;
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Methods Easy Medium Hard Total

Best Human 16.399 24.53 6.116 47.761
Best MQAP 15.834 23.872 5.164 45.62
ZicoSelectorSTP 16.175 25.329 6.297 49.263
Improvement over Best Human -1.366% 3.257% 2.959% 3.145%
Improvement over Best MQAP 2.154% 6.103% 21.940% 7.986%

Table 1: The performance ofZicoSelectortrained by STPdata on the set of human predictions

ZicoSelector: third level.Models selected by the linear classifier in the previous stage are passed
to this stage. A linear model for regression is trained to predict the rank of the 3d-structures. The
training setD2 = {(x1, a1), ..., (x

k, ak)}. Wherek = n2×|T |, inputsx1, ..., xk arem-dimensional
vectors.xi = {x1, ..., xm} ,wherexj is the model’s rank according to thejth MQAP. The outputaj

is the model rank according toMaxSub. In other words, letR = {1, 2, .., n2 − 1, n2}, thenxj ∈ R
andaj ∈ R i.e. the model is trained on the 3d-structures’ ranks according to the MQAP’s to predict
the 3d-structure’s rank according toMaxSub.

STP Prediction. Once the hierarchical modelZicoSelectoris trained, STPdata uses it to predict the
quality of the query 3d-structures.

To evaluate our methods we have divided targets into four categories according to the difficulty level:
easy, medium, hard, and impossible. The impossible category is ignored in our evaluation. The
results presented in this section are obtained by setting k to 22 in the k-nearest neighbors algorithm
and the threshold at the third stage to 80 and the threshold atthe fourth stage to 40.

Two experiments have been conducted to evaluate the performance ofZicoSelectortrained by STP-
data. The meta-MQAP-selector used in both experiments is trained on 3d-structures sampled from
predictions made by servers and human predictors in CASP6. In the first experiment, models
predicted by human predictors in CASP7 are used in testing.ZicoSelectoroutperforms all tested
MQAP’s in the three categories and in the total score by about7%-8%, and outperforms the best
human predictor in the medium and the hard categories and in the total score by about 3%. The
performance ofZicoSelectoris shown in table 1, the total score in the table includes scores from the
impossible category. In the second experiment, models predicted by servers in CASP7 are used in
testing. Results are not shown.ZicoSelectoroutperforms all tested MQAP’s and its performance is
very similar to the best server performance in all of the three categories and in the overall score.

We also applied the STPmodel algorithm to trainZicoSelector. We obtained 56 clusters by applying
the k-nearest neighbors algorithm withk = 20 to each protein in the CASP6 servers and humans
sets. Each cluster is indexed by the target protein. Next, wetrained 56 GLM’s. Each GLM is
trained on one cluster of the 56 clusters. In the sampling stage, we select models based on the
similarity between the test protein and the index proteins in the same way used in the STPdata
algorithm. STPmodel trains another GLM to learn to combine the outputs of the set of the local
experts sampled in the previous stage. Figure 5 shows the performance of the meta-MQAP-selector
trained by STPmodel as a function of the number of experts on the servers’ set and on the humans’
set respectively. The x-axis represents the number of experts collected in the sampling stage and the
y-axis represents the total MaxSub score of rank one models selected by the meta-MQAP-selector.
The performance of the meta-MQAP-selector deteriorates asthe number of experts increases due
to the curse of dimensionality. The performance ofZicoSelectortrained by STPmodel with two or
three local experts is very similar to the performance of theone trained by STPdata.

4 Conclusions

Our findings from the current research can be summarized as follows: (i) the invention of the STP-
data and STPmodel algorithms which are suitable to large, intrinsically clustered, constantly grow-
ing training data sets (ii) the dynamic training used in the STP algorithm proved effective when
applied to the protein structure meta-selection problem (iii) the STP algorithm can be generalized
and applied to other problems in the computational biology field and problems in other fields. The
experimental results show thatZicoSelector, our hierarchical model trained using the STPdata algo-
rithm, outperforms any tested MQAP by 7%-8%. When selecting from predictions made by humans
in CASP7, our meta-MQAP-selector achieves about 3% improvement over the best human predic-
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Figure 5: The performance of the meta-MQAP-selector trained by STPmodel as a function of the
number of experts on the servers’ predictions and on the humans’ predictions respectively

tors. The performance of the meta-MQAP-selector on servers’ predictions in CASP7 is very similar
to the performance of the best server.
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