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Abstract—In this paper, we introduce the cellphone-
based indirect sensing problem. While participatory sens-
ing aims at monitoring of a phenomenon by deploying a
dense set of sensors carried by individuals, our indirect
sensing problem aims at inferring the manifestations of
a sparsely monitored phenomenon on the individuals. The
main advantage of the indirect sensing method is that,
by making use of existing exposure modeling and esti-
mation methods, it provides a more feasible alternative
to direct sensing. Collection of time-location logs using
the cellphones plays a major role in our indirect sensing
method, while direct sensing at the cellphones is unneeded.
We focus on the air pollutant exposure estimation problem
as an application of the indirect sensing technique and
propose a web-based framework,iMAP, for addressing this
problem.

I. INTRODUCTION

Wireless sensor networks (WSNs) [4], [12] are inade-
quate for large-scale sensing tasks due to the limitations
of communication reach, battery life, and the static
deployment of the sensors. To overcome these handicaps
against scaling,cellphone-based participatory sensing
has been proposed to enable public and professional
users to share their local knowledge [1], [10], [11],
[15], [20]. In this approach, sensors on the cellphones
gather data, and these data are collected to form a fine-
granularity monitoring of a phenomenon in a large-
scale area. Example applications include urban planning,
public health, cultural identity, creative expression and
natural resource management.

In this paper we introduce thecellphone-based
indirect sensing problem: a dual and complementary
problem of the one that participatory sensing addresses.
While participatory sensing aims atmonitoring of a
phenomenon by deploying a dense set of sensors carried
by individuals, our indirect sensing problem aims at
inferring the manifestations of a sparsely monitored
phenomenon on the individuals. In other words, the goal

of participatory sensing is to enable the fitting of a model
on the phenomenon by using the sensor values collected
from the cellphones, whereas indirect sensing deals with
the converse process: leveraging on an existing model to
predict the values individuals have been subject to. For
the indirect sensing problem, the time-location logs kept
by the cellphones play a major role, while direct sensing
at the cellphones is not necessary.

There are several applications of the indirect sensing
problem. To keep our discussion concrete, we focus on
the air pollutant exposure estimation as a running exam-
ple. Here the goal is to accurately determine the impact
of air pollution on an individual’s health. This problem
is difficult because many air pollutant concentrations,
particularly those related to vehicular traffic, vary as
much within cities as they do between cities [7]. To ac-
curately estimate individual air pollutant exposures when
studying their health effects, this intraurban variation
needs to be taken into account.

The main advantage of the indirect sensing method is
that, by making use of existing exposure modeling and
estimation methods, it provides a more feasible alterna-
tive to direct sensing. The feasibility of the direct sensing
approach is limited by the cost, size, and bulk of the
different sensors required. For the air pollutant exposure
monitoring application, the sensors for PM2.5 (fine par-
ticulate matter, one of the most hazardous/critical pollu-
tant type for human health [2]) are at least 5lbs in weight
and around $5000 in cost. In contrast, indirect sensing
is feasible for the air pollutant exposure application due
to the prevalence of exposure modeling and estimation
methods. In US cities, the regional air pollution monitor-
ing agency provides streaming pollutant information data
from several monitoring sites employing PM2.5 sensors.
In many urban areas, it is possible to use these data
to develop an interurban prediction model that allows
estimation of location-specific air pollutant exposures.
Further, using the time-location logs from a cellphone,



it is possible to return an accurate estimation of the air
pollutant exposure for the individual.

Indirect sensing decouples the accurate determination
of the effects of a phenomenon on an individual (which
is done by using the model and the time-location logs)
from the construction of the model (which is done by
collecting data via direct sensing at several locations).
As a byproduct, indirect sensing eliminates some privacy
concerns. The user may choose not to disclose her
time-location data, and instead download the model and
perform the indirect sensing on her cellphone or PC.
This being said, we note that indirect sensing can also
be participatory. Several applications are made possible
just by publishing time-location data, including urban
planning, epidemic monitoring, and social networking
applications. In fact, in our proposed iMAP framework
below, we consider publishing of time-location data to a
secure central web-site for processing.

Contributions. We introduce the indirect sensing
problem for cellphone-based sensing. This problem fo-
cuses on accurately estimating the value of a mod-
eled phenomenon on an individual using the cellphone-
captured time-location logs of the individual. The advan-
tage of this method is to decouple the construction of the
model (which can be performed using sparser sensing)
from the accurate estimation of the effects of the model
on the individual.

We illustrate the indirect sensing method using the
air pollutant exposure application as our case study. To
this end, we identify “Land Use Regression” (LUR) [19]
as a suitable modeling solution. LUR uses geographic
information system (GIS) software to measure local traf-
fic, population, and weather characteristics measured at
regional air monitoring stations. Next, linear regression
models are designed to quantify the relation between
the set of these environmental characteristics and the
air pollutant concentrations measured at each site. To
use the model, the same environmental characteristics
are measured at individuals’ locations (their geocoded
residential addresses) and entered into the model as
predictor variables. This results in estimated pollutant
concentrations for each user.

We improve over the state-of-the-art for LUR using
cellphone-based time-activity data logs. Our method
allows us to estimate exposures at multiple locations
per person rather than only at the residence. Therefore,
this method gives a more accurate determination of
the air-pollutant exposure of an individual and solves
the time-activity monitoring barrier facing the public
health specialists working on the air pollutant exposure

problem.
To implement our indirect sensing method, we propose

a web-based framework,iMAP, for indirect measurement
of air pollution exposure with cellphones. In our pro-
posed framework, cellphones collect time-activity logs
for their users and transmit this information to a website
opportunistically when an available wireless access point
is encountered, or through general packet radio service
(GPRS) as a fallback mechanism. The website also pulls
GIS information from other websites and calculates indi-
vidual exposures using the time-location logs. We outline
our plans for an air pollutant sensing deployment of
iMAP using 50 Motorola MC35 cellphones. We identify
the Motorola MC35 cellphones as being most suitable
for our deployment due to theirbuilt-in GPS modules
and wi-fi interface.

Outline. After introducing the air pollutant expo-
sure estimation problem in Section II, we discuss the
LUR method in Section III. In Section IV, we present
our proposed web-based framework. We present further
discussion on the applications of indirect sensing in
Section V and conclude our paper in Section VI.

II. A IR POLLUTANT EXPOSURE ESTIMATION

Two million premature deaths annually are attributable
to air pollutants [9]. Even at lower levels typical of
more developed countries, air pollution adversely im-
pacts health across the lifespan. Acute and chronic air
pollutant exposures increase risks of cardiovascular and
respiratory diseases [8], exacerbate, and perhaps cause,
asthma among children [21], and increase risks of neona-
tal death, low birthweight, and preterm delivery [21],
[23].

Estimating air pollutant exposures is difficult for the
following reasons. Air pollution is usually highest in ur-
ban areas. Many air pollutant concentrations, particularly
those related to vehicular traffic, vary as much within
cities as they do between cities. To accurately estimate
individual air pollutant exposures when studying their
health effects, this intraurban variation needs to be taken
into account. Since the feasibility of directly measuring
individual air pollutant exposures is limited by the cost,
size, and bulk of most monitoring equipment, researchers
have focused on methods of estimating individual, in-
traurban air pollutant exposures using modeling. These
methods are motivated by the fact that many air pollutant
concentrations are strongly related to nearby environ-
mental characteristics such as vehicular traffic, land
use, and elevation. By measuring such characteristics,



it would be possible to predict the nearby air pollutant
concentration with reasonable accuracy.

The modeling approaches often use the residential
address of an individual to estimate air pollutant expo-
sures for the individual [3]. Investigators have attempted
to incorporate time-activity data into air pollutant es-
timation procedures by interviewing study participants
regarding their travel schedules [22], filming children to
estimate their exposures to indoor sources of pollution
(cooking fires) [5], and modeling time-activity patterns in
GIS using self-reported travel characteristics [14]. These
methods are too costly and time-consuming to apply to
large populations. In Section IV, we discuss how we
overcome this limitation of modeling approaches using
cellphone-based time-activity collection.

Recently, there has been work on using cellphones
for air pollution monitoring as part of the participatory
urbanism project [18]. This work deployed a simple SMS
system that allows one to send a text message containing
a zipcode to the system in order to receive the current
air quality data for that zipcode. Although this is a
very useful service, it has intrinsic limitations because
it needs to be user initiated and the granularity of air
quality is very low (at the zipcode level). In contrast,
our framework aims to provide continuous and passive
monitoring of air pollutant exposure of an individual at
a much finer granularity.

III. L AND USE REGRESSION

Land use regression (LUR) is a modification of a
method developed by Brauer et al [6] to estimate air
pollutant exposures in epidemiologic studies. Briefly,
the method uses geographic information system (GIS)
software to measure local traffic, population, and weather
characteristics measured at regional air monitoring sta-
tions and then develops linear regression models to
estimate the relations between the set of these charac-
teristics and each air pollutant concentration. The same
characteristics measured at residential addresses are then
entered into the developed models as predictor variables,
resulting in estimated pollutant concentrations for each
individual.

Specification of models. With each pollutant con-
centration as the dependent (outcome) variable, LUR
fits a multivariable linear regression model. Briefly,
this model is constructed so that any variable that is
moderately predictive of the PM2.5 concentration is
included in the final model. This example shows a model
designed to estimate monthly average PM2.5 at a specific
location.

E(Yijk) = α + β1 ∗ (streetdensity)ij + β2 ∗

(max.temp.)ijk +β6∗(popn.density)ij +β3∗(year)j +
β4 ∗ (month)ijk

According to this model, the average monthly PM2.5

concentration at a specific pointYijk, is a function of
the following environmental characteristics, wherei =
location,j = year,k = month

1) street density: the density (m/km2) of surrounding
streets, usually measured within a circular area
of 250-1000 m surrounding the point at which
PM2.5 is measured. Street density is a surrogate
for traffic volume, which contributes to local PM2.5

concentrations.
2) max. temp.: The average monthly high temperature

measured at a nearby weather monitoring station.
This variable captures the fact that PM2.5 concen-
trations fluctuate according to weather patterns.

3) popn. density: the density (persons/km2) living in
the surrounding census tract, according to US Cen-
sus measurements. Population density also influ-
ences traffic volume, and thus PM2.5 concentration.

4) year: This variable captures time trends in PM2.5

concentration.
5) month: This variable captures seasonal changes in

PM2.5 concentration.

This model is fit at local PM2.5 monitoring sites, where
both PM2.5 and the environmental characteristics can be
measured.β coefficients are estimated for each of the
environmental characteristics. Then, by plugging into the
equation the values for the individual’s local environmen-
tal characteristics (which can be feasibly measured), in-
dividual PM2.5 concentrations (which cannot be feasibly
measured) can be estimated. The novelty of our proposed
iMAP framework (discussed in Section IV) is that it will
allow multiple PM2.5 estimates per person according to
their travel patterns, rather than one estimation based
solely on their residential location.

Estimation of model validity. The accuracy of the
LUR model can be measured in two ways. First, accu-
racy is measured by using the model to estimate PM2.5

concentrations at the PM2.5 monitoring sites. An accurate
model will show little difference between these estimates
and the measured PM2.5 concentrations at the monitoring
sites. Identification of specific locations with poor fit will
allow us to reevaluate the model components and design,
if necessary. Second, the best test of model accuracy is
its ability to predict concentrations at an independent
set of PM2.5 monitoring sites: that is, sites that were
not used to fit the model. To this end, we will use the



regression model estimated from all but one of the PM2.5

monitoring sites to predict the remaining site’s monthly
concentrations, for each pollutant separately. This pro-
cedure (theN − 1 method) is conducted for each of
the monitoring sites and the results compared using a
correlation coefficient. We plan to use both approaches
to evaluate and quantify the fit of our model.

IV. A WEB-BASED FRAMEWORK FORiMAP

Land use regression is cost-efficient and fairly easy
to implement. Its main limitation is that it is used only
to estimate exposures at an individual’s residence. The
resulting exposure estimate is inaccurate because it does
not take into account a person’s time-activity patterns,
i.e. where he or she travels over time, to examine the
health effects of air pollution.

Here we propose a novel method to address this
fundamental limitation of land use regression. GPS-
equipped cellphones can provide a valuable source of
time-activity information with low burden to individuals
and low cost to researchers. We will periodically record
the cellphone’s location (and therefore, typically, an
individual’s location) and use the resulting geocoordi-
nates (latitude and longitude) to measure an individual’s
time-activity patterns. Then, instead of relying on a
person’s residence to estimate his or her air pollutant
exposures, we will estimate exposures based on her
changing locations throughout the time period. A partic-
ularly important benefit of our approach is the ability to
capture locations during commuting and traveling, when
air pollutant exposures are usually highest [3].

Our goal is to demonstrate the feasibility of incorpo-
rating time-activity data measured with GPS-equipped
cellphones into a land use regression model designed to
estimate individual exposures to PM2.5. Henceforth, we
use the term cellphone-based estimates to describe the
exposure estimates created from such a model. By using
cellphone-based rather than residence-based estimates,
we can greatly improve the accuracy with which we are
able to estimate PM2.5 exposures in epidemiologic and
clinical studies of the health effects of air pollution.

In this proposed iMAP (indirect measurement of air
pollution) framework, we aim to do the following three
tasks:

1) to collect time-activity data from local volunteers
using GPS-equipped cellphones.

2) to incorporate these data into a land use regression
model to produce cellphone-based PM2.5 expo-
sure estimates, and compare these estimates to
residential-based PM2.5 exposure estimates.

3) to design algorithms to determine the optimal
efficiency of this process so that it will be feasible
to use in large study populations.

Task 1: time-activity data collection. We will recruit
50 volunteers for a three-month observational study. El-
igible volunteers will be Buffalo, NY community mem-
bers who are willing to provide their residential address
and allow us to intermittently collect geocoordinates
from their cellphones throughout a three-month period.
Volunteers can choose to use a cellphone that we will
loan to them or, if they own a cellphone that meets study
requirements, use their own for the study. Those who
borrow a cellphone from us will be able to use their own
subscriber identity module (SIM) cards and thus will be
able to retain their current phone numbers and network
providers during the study.

We will use Motorola MC35 smart-phones for our
study. The built-in GPS system will enable us to record
the geocoordinates of the phone intermittently (for in-
stance, at every 10 minutes) with high precision. These
wi-fi capable smart-phones can automatically connect
to wireless access points in residential or public areas.
We will use this feature to daily transmit encrypted
geocoordinate data to our central processing computer
(henceforth called the webportal) without any cost to
the study participants or involvement of the cellphone
service provider. If there is no such wi-fi connection
opportunity for more than 24 hours, we will program
the smart-phone to transmit encrypted geocoordinate
data to the webportal by using its general packet radio
service (GPRS) capability as a fallback. Because these
smart-phones are equipped with Microsoft Windows
Mobile 6 operating system, the time and effort associated
with software development for the cellphones will be
significantly reduced. Using the Mobile 6.0 SDK and
embedded Visual C++ 4.0 platforms, we will be able test
our applications in a PC environment before deploying
them in the field.

The geocoordinates collected from the cellphones will
be stored in the webportal in a suitable format for future
analysis. We will also design our webportal to automat-
edly retrieve publicly available data from government
websites measuring local current PM2.5 concentrations
and vehicular traffic. These data will be used in building
and implementing exposure models (see below). The
final product of this first task will be a dataset of
geocoordinates that will be used in land use regression
models.

Task 2: cellphone-and residential-based PM2.5 ex-
posure estimation. We will construct and employ



land use regression models to estimate individual PM2.5

exposures within the Buffalo, NY region. First, using
geographic information system (GIS) software, we will
collect and map PM2.5 measurements taken hourly at
eight monitoring sites administered by the regional air
pollution monitoring agency. We will also collect and
map data on regional environmental characteristics such
as annual traffic volume, real-time traffic conditions,
population and street density, land use, and altitude.
All of these data are publicly available at no cost
from governmental web sites, such as N.Y. State De-
partment of Environmental Conservation website, N.Y.
State Department of Transportation website, N.Y. State
Transportation Federation, and U.S. Census Bureau Ge-
ography Division website. Next, we will measure these
environmental characteristics at each of the PM2.5 mon-
itoring sites using GIS. We will then choose the set of
characteristics that best predicts the PM2.5 concentrations
measured at the monitoring sites. These procedures will
be based on stepwise least-squares linear regression and
will be performed using statistical software. Finally,
using statistical software, we will apply the land use
regression models to estimate PM2.5 exposures among
the study volunteers.

We will produce residence-based PM2.5 estimates
by fitting the models with environmental characteris-
tics measured at each participant’s residence. We will
then produce cellphone-based PM2.5 estimates by fitting
multiple models per person, each using environmental
characteristics measured at a location reported by her
cellphone. As a baseline, we will measure a person’s
location once every ten minutes over the three month en-
rollment period. This amounts to approximately 13,000
PM2.5 exposure estimates per individual. We will daily
average these estimated exposures to produce a time-
activity integrated PM2.5 exposure estimate, i.e. our
cellphone-based estimate. We will also be able to derive
exposure estimates during more specific intervals, for
instance during weekday rush hours or weekdays and
weekends separately.

Task 3: efficiency improvement of our PM2.5 es-
timation procedures. To use this method in future
larger studies, we must develop an efficient automated
process to collect and integrate the data. For instance, if
we aim to estimate average 90-day exposures among 50
people using geocoordinates sampled every 10 minutes,
we must calculate 648,000 exposure estimates. A study
population of 5,000 (typical for this field) would require
64,800,000 estimates. We will improve the efficiency of
our method in several ways. For example, we will design

an algorithm to calculate exposure estimates on a “need
to know” basis. The webportal will store each person’s
last location and the corresponding exposure estimate. If
the current location is the same or very near to the last
location, then we need not re-estimate the exposure but
can use the previously stored estimate. We will explore
the ways in which our assumptions (such as proximity
of locations) impact our exposure estimates.

Another way to improve efficiency is to less frequently
collect geocoordinates from the cellphone while it is
less mobile. This method would allow us to sample and
record location data more frequently when a person is
commuting than when she is at home each night, for
instance. We model this idea in terms of the following
algorithmic problem. Let each measurement correspond
to a point in some high dimensional space. In the case
of iMAP, each point can lie in a three dimensional
space where the latitude, longitude and time form the
three dimensions. Given an input parameterD, the
problem is to partition the points into as few clusters
as possible such that any two points in each cluster have
an Euclidean distance of at mostD. This parameterD
will be determined by the application: for example, in
iMAP this will be the measure of the mobility of the
cellphones. Given such a clustering, the cellphone needs
to report just one measurement from each cluster (by a
suitable choice ofD, all the points in a cluster will be
“equivalent”).

We also add two key constraints that iMAP imposes
to this clustering problem formulation. First, we would
like to cluster a measurement as soon as we receive it
(in other words, the algorithm can make only one “pass”
at the data). Second, the cellphone has limited resources
so the algorithm should work with limited memory and
time constraints1. These two constraints areexactly what
are addressed bydata stream algorithms [17]. We plan
to use techniques from data stream algorithms to solve
this clustering problem.

V. D ISCUSSION

Here we consider other applications and extensions of
indirect sensing with cellphones.

Our indirect sensing method is also well suited to
epidemic monitoring and control applications. In this
case, the model tracks the dissemination patterns of an
illness approximately. People who have become infected

1This is especially important as we would like our client software
on the cellphones to use up as little resources so as not to interfere
with the primary tasks of the cellphone.



may choose to disclose their time-activity logs (with cer-
tified documentation from a physician) to a centralized
secure/anonymized webportal. Users may occasionally
synchronize their time-activity logs with the webportal
to check if they are under risk for any illnesses. This
technique could especially help with monitoring and
early diagnosis of sexually transmitted diseases as it
respects the privacy of the users. For this application,
bluetooth-based connectivity logs can also be maintained
at the cellphones in order to improve the accuracy of the
modeling and prediction.

A suitable high-level abstraction for time-activity logs
is that of a time-activitytrace. Here the idea is to mine
the commonsubsequences from a user’s time-activity
log, label them as a trace data-structure, and represent the
time-activity log as a concatenation of a small number of
traces. Some examples of traces may include home-to-
work, work-to-home, home-to-markets, Saturday-night,
Sunday night, etc. It is well known that humans exhibit
a fair repetition of traces in their daily, weekly, and
monthly travel patterns [13]. These higher level trace
abstractions (calculated via data-mining without any
need for user input) may simplify calculation of LUR
for sequences of time-activity inputs. If such a sequence
corresponds to a trace with minor differences, the pre-
computed LUR value for the trace can be used with
minor adjustments. The trace concept may also be useful
for proactive and selective notification of threats in an
area to the users whose likely traces in the near future
intersects the area.

VI. CONCLUDING REMARKS

We introduced the indirect sensing problem for
cellphone-based sensing which focuses on accurately
estimating the value of a modeled phenomenon at the
level of an individual. We illustrated the indirect sensing
method using the air pollutant exposure application as
our case study. The advantage of this method is to
divorce the construction of the model (which can be
performed using sparser sensing) from the accurate esti-
mation of the effects of the model on the individual. We
outlined our proposal for a web-based framework for
indirect sensing. Our iMAP framework employs LUR
and improves on the current-state-of-the-art by using the
cellphones to passively collect time-location logs for the
users and refine the estimated risk factor accordingly.

We plan to develop and deploy our iMAP framework
using 50 Motorola MC35 cellphones in the Buffalo,
NY area. Our future work will include investigation
of alternative modeling techniques for the air pollution

exposure problem. We will consider the Kriging [16]
method as an alternative to LUR and compare and
contrast their characteristics using iMAP. We will also
investigate efficient solutions to the online clustering
problem we formulated in Section IV in order to enable
adaptive sampling that optimizes both the granularity and
efficiency of the time-activity logging process.
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