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Abstract

In this paper, we present a formal theory for symbolically modeling the spatial relationships that exist
between gross-level anatomical structures in the human body. We develop these theories with the goal
of computer-based inference. The formal theories are used for building models, which can be applied on
graph representations of medical images. We describe an end-to-end design for inferring (labeling) parts
of the anatomy from an unlabeled three-dimensional data set. Given a finite set of labels (corresponding
to anatomical structures from a taxonomy), we probabilistically assign one label to each node in an
anatomical graph. The paradigm we present is generalizable and can help bridge the gap between purely
informational ontologies and ontologies for intelligent agents.

1 Motivation and Background

The data from most current medical imaging modalities such as Computerized Tomography (CT), ultra-
sound, Positive Emission Tomography (PET) etc., are stored in digital format, yet image reading/analysis
is still a very manual process with little or no computer intelligence involved. Medical image reading by
humans can be a slow and tedious process, prone to human errors while lacking objective means of quan-
tifying and assessing the reader’s skills. To overcome this problem in clinical settings, multiple readers are
required to review the same data sets, to compensate for any errors that might arise from one reader alone.

We propose an ontology-enhanced probabilistic reasoning system for labeling gross anatomical struc-
tures i.e., maximally connected anatomical parts of non-microscopic size (thus anatomical structures like
cells and molecules are not gross-level anatomical parts) and narrow our area of focus to CT data in the
chest region.

In observing how human readers analyze CT scans to determine if a pathology exists or not, we dis-
covered that they primarily apply (1) their knowledge of the appearances of the gross anatomical structures
(such as intensity, shape, size etc.); (2) their knowledge of the locations of structures relative to each other
and (3)flag any unusual structures at unexpected locations. Hence, we incorporated these concepts in the
design of the anatomy labeler. Different models for representing the appearance of anatomical structures
have been investigated extensively in the areas of computer vision and medical image analysis and some
popular intensity-based representations include edge/gradient measurements, textures and histograms. Oth-
ers include spectral features, geometric representations. The study of the location and the arrangement of



anatomical structures within the human body (for interpretation by computers) has been much less investi-
gated and we argue that a good machine-based human anatomy segmentation/labeling system will need to
incorporate both concepts.

The representation of spatial relations between body parts is the main component of an anatomical
ontology. The quality of such an ontology is determined by how unambiguous the use of its relational terms
are, and ambiguity is avoided by a clear understanding/definition of what exactly the relational terms denote.

Foundational Model of Anatomy (FMA) is currently the most comprehensive ontology of human canon-
ical anatomy consisting of approximately 75,000 classes and over 120,000 terms. It has over 2.1 million
relationship instances from 168 relationship types and contains organs, their parts, as well as organ systems
and body parts (body regions). FMA also includes definitions of macromolecules, cells and their parts,
tissues etc. Although much research has gone into the development of the FMA, it is still not strongly suit-
able for supporting machine-based intelligence in its current state and we discuss this in more detail in the
ensuing sections.

The goal of this research work is to provide succinct, unambiguous definitions for the relational terms
in an anatomical ontology, integrating the ontology into a probabilistic reasoning framework to better label
the anatomical parts of a section of the human body.

2 Symbolic Modeling Principles

The representation of spatial relations between body parts includes mereological relations such as parthood
and overlap, topological relations such as connectedness and one-pieceness, as well as location relations
such as located in and partially coincides. We use qualitative relations (rather than exact measurements)
because of the many variations that often occur in the human anatomy from one individual to another. For
example, according to the Atlas of Vascular Anatomy [20] there is a number of variations in the origin of
aortic arch branches. There is a usual pattern that occurs in about 65% of the population, a less common
pattern in about 27%, and three other varieties, the least popular occurring in only 1.2%. Hence, for an
automated reasoning system, it is important to design a universal model where any variations observed will
be flagged either as a normal abberation or a pathology.

The qualitative spatial relations will be later exploited for probabilistic reasoning. In this section, we
briefly review the qualitative spatial relations as relevant for this paper. For Details see [8].

Parthood, symbolized as P , is the relation that holds between two entities, x and y, whenever x is part of
y. For example, the heart is part of the chest (or thorax). Other relations, such as overlap (having a common
part) (DO) are defined in terms of parthood. For example, my hand is part of my body and my hand and my
body overlap.

Location relations are defined terms of a region function, r, that maps each spatial entity to the spatial
region at which is exactly located at the given moment. The function r is treated as a time-independent
primitive hence the notion of movement is absent in our ontology. x is located in y if x’s spatial region
is part of y’s spatial region (DLocIn); x and y partially coincide if x’s spatial region and y’s spatial region
overlap (DPCoin).

For example, the right lung is located in (but not part of) the thoracic cavity. The esophagus partially
coincides with the mediastinal space. The relation LocIn does not hold since the esophagus’ region is
not part of the region of the mediastinal space, i.e. part of the esophagus lies outside of the mediastinal
space. Also, a catheter or stent inside a patients chest is located-in (but not part of) the patients chest. The
“located-in” relation does not directly correspond to the English expression “is-in”.

Two entities x and y are connected, Cxy, if and only if x and y overlap or x and y are in direct external
contact. We define: x and y are externally connected if and only if x and y are connected and x and y do
not partially coincide (DEC); x and y are separated if and only if x and y are not connected (DSP ).
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label Axiom/Definition
(P1) Pxx
(P2) Pxy ∧ Pyx→ x = y
(P3) Pxy ∧ Pyz→ Pxz
(DO) Oxy ≡ (∃z)(Pzx ∧ Pzy)
(L1) Pxy → Pr(x)r(y)
(L2) r(r(x)) = r(x)
(DLocIn) LocIn(x, y) ≡ Pr(x)r(y)
(DPCoin) PCoin(x, y) ≡ Or(x)r(y)
(C1) Cxx
(C2) Cxy→ Cyx
(C3) LocIn(x, y)→ (∀z)(Czx→ Czy
(DEC) ECxy ≡ Cxy∧ 6= PCoin(x, y)
(DSP ) SPxy ≡6= Cxy

Table 1: Axioms and definitions of qualitative spatial relations

In addition to spatial relations between individual entities we define our representations of spatial rela-
tions on universal types. An example of an over-arching type would be Liver while its instances or individ-
uals would be Mrs Smith’s heart, Ifeoma’s lungs etc. Between individual entities and their universal types
the instantiation relation Inst holds. Type-based qualitative relations enable us to establish the connection to
canonical anatomy as represented in the FMA [14].

LetR be any binary relation on individuals – for example, the parthood relation (P ), the overlap relation
(O), the located in relation (LocIn), or any of the other relations introduced above. We can use R and
the instantiation relation to define the following three relations among types. (See also [7, 4] where these
distinctions are made for different versions of type-level parthood relations. [15] uses description logic for
distinguishing versions of type-level parthood relations. [18] also define additional type-level relations like
adjacent-to, participates-in, etc.)

(Type Relation Definition Schema 1)
R1(A,B) ≡ (∀x)(Inst(x,A)→ (∃y)(Inst(y,B) ∧Rxy))

(Type Relation Definition Schema 2)
R2(A,B) ≡ (∀y)(Inst(y,B)→ (∃x)(Inst(x,A) ∧Rxy))

(Type Relation Definition Schema 1-2)
R12(A,B) ≡ R1(A,B) ∧R2(A,B)

As [7] puts it, R1 type-level relations place restrictions on all instances of the first argument. R1(A,B) tells
us that something is true of all A’s – each A stands in the R relation to some B. R2 type-level relations
place restrictions on all instances of the second argument. R2(A,B) tells us that something is true of allB’s
– for each B there is some A that stands in the R relation to it. R12 type-level relations place restrictions on
all instances of both arguments. R12(A,B) tells us that something is true of all A’s and something else is
true of all B’s– each A stands in the R relation to some B and for each B there is some A that stands in the
R relation to it.

A universal type should have at least one instance or entity which, at each moment of its existence, occu-
pies a unique spatial location. The universal related to the entity can be material (lung, muscle) or immaterial
(thoracic cavity, mediastinum). Material types have instances with a positive mass while immaterial type
instances have no mass.
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2.1 Convexity

With only the parthood relations, the connectedness relations, and the region function we cannot introduce
the kind of location relation that holds between say, the pleural space and the pleural membrane. The region
of my pleural space does not overlap the region of the pleural membrane. The region of the pleural space
does not overlap the region of the pleural membrane, rather, the region of the pleural space lies within a
region which is somewhat bigger than the region of the pleural membrane, i.e. the convex hull the region of
the pleural membrane.

An region can be said to be convex if for every pair of points within the region, every point on the straight
line segment that joins them is also within the region. The region occupied by a solid cube is convex, but
any region that has a dent in it is not convex. Regions occupied by a flower vase or the pleural membrane
are not convex. The convex hull of an entity x is the smallest convex region of which x’s region is part. For
example, the convex hull of the pleural membrane extends over both the pleural membrane and the space
inside the pleural membrane.

We therefore define a new primitive, the convex hull function, ch, which maps every entity to its convex
hull. The following axioms capture important properties of the convex hull:

(CH1) Pr(x)ch(x)
(x’s region is part of x’s convex hull)

(CH2) LocIn(x, y)→ Pch(x)ch(y)
((if x is located in y, then x’s convex hull is part of y’s convex hull)

(CH3) ch(ch(x)) = ch(x)
(the convex hull of x’s convex hull is x’s convex hull)

Using the convex hull function we now define further spatial relations: x is surrounded by y if and only
if x’s region is part of y’s convex hull and x’s region does not overlap y’s region (DSurrBy); x is partly
surrounded by y if and only if x’s region overlaps y’s convex hull and x’s region does not overlap y’s region
(DPSurrBy); Symbolically:

(DSurrBy) SurrBy(x, y) ≡ Pr(x)ch(y) ∧ ¬Or(x)r(y)
(x is surrounded by y)

(DPSurrBy) PSurrBy(x, y) ≡ Or(x)ch(y) ∧ ¬Or(x)r(y)
(x is partially surrounded by y)

2.2 Summary

The primitive relations and definitions presented to this point are sufficient to characterize the important
properties required for performing our probabilistic reasoning. As can be observed, all the relations binary
across entities. We are especially interested in the binary relations because they will be used to provide
evidence either for or against the results of our probabilistic reasoning.

As an example, if the system used probabilistic reasoning to generate a belief that a particular section
of the anatomy was say, the trachea, then the anatomical ontology can either strengthen or disqualify such
a belief by examining the entities with binary relations with the trachea. So if the so-called trachea was
surrounded by bone, there would be strong evidence that the result of the probabilistic reasoning was wrong!
If on the other hand, the so-called trachea was found to be externally-connected to a pulmonary vessel, the
evidence that the entity was truly the trachea would be very strong. This type of evidence-based statistical
inference will be discussed in more detail in the ensuing section.
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3 Machine Realizability

We define machine realizability as the ability of a computer to extract information by processing input data
in a manner consistent with human interpretation of the same data. In observing how human readers analyze
CT scans to determine if a pathology exists or not, we discovered that the readers primarily apply (1) their
knowledge of the appearances of the gross anatomical structures (such as intensity, shape, size etc.); (2)
their knowledge of the locations of structures relative to each other and (3) flag any unusual structures at
unexpected locations. For the remaining part of the paper, we describe the machine-realizable design of an
Anatomy Labeler implementing concepts (1) and (2) above.

Figure 1: Flowchart of the processes of the ontology-enhanced anatomy labeler

3.1 Overview of the end-to-end process

The first step in the machine realizability process is to identify a suitable form of representing the given
image data. The study of the representation of natural images and anatomical structures for statistical in-
ferencing, has been investigated extensively in the areas of computer vision and medical image analysis.
Specifically for CT images,most modern equipment has a capacity of 4096 gray tones which represent dif-
ferent density levels in Hounsfield Units (HU). The HU density scale is a linear transformation of the linear
attenuation coefficient measurement of substances such that the HU value of water is zero and that of air is
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-1000. Therefore, HU in the human anatomy values are typically between -1000 (air) and +1000 (bone-like
structures). The HU values alone are used for the appearance representation.

Off-line, a taxonomy (set of controlled vocabulary terms) of the gross anatomical entities-of-interest is
created and corresponding labels are assigned (one label for each entity). The taxonomy drives the final
output results of the anatomy labeler. The 3D volumes obtained from normal CT scans are manually tagged
with the labels corresponding to the different parts of the anatomy. The appearance representations are
trained with the labeled data to generate probability distributions of the entities. The anatomical ontology
is also created for the items of the taxonomy, paying particular attention to the pairwise relationships. The
“learned” distributions and the anatomical ontology provide the back-end statistics to the anatomy labeler.

The input to the labeler is a 3D volume constructed from the CT slices-to-be-investigated. Using the ap-
pearance representations, the volume is segmented into smaller “chunks” using the well-tested segmentation-
by-weighted-aggregate algorithm (SWA) [5, 16]. The output of the algorithm is a set of local, coher-
ent grouping of voxels which preserves most of the structure necessary for segmentation. Because over-
segmentation is an easier problem to solve than true segmentation, we pre-process the data by over-segmenting
it.

To infer the most likely label on each chunk, the unary pseudo-probability (called belief since the
probabilities do not add up to 1) is computed from the training distributions. The pairwise relationships
- parthood, overlaps, located-in, partially-coincides, externally-connected, surrounded-by and partially-
surrounded-by are used to compute evidence between any two neighboring chunks. Iteratively updating
the beliefs/evidences propagated by it neighbors, every chunk will eventually converge to have maximum
evidence of its true label. The process flow is presented pictorially in figure 1.

3.2 Statistical inference from anatomical graphs

Mathematically, the pairwise adjacency relationships between the chunks of the 3D volume can be repre-
sented with a graph G(V,E) where V is the set of vertices or ’nodes’and E is the set of edges connecting
pairs of vertices. A Markov network graphical model is especially useful for explicitly modeling the re-
lationships between the nodes of the graph. We consider the undirected pairwise Markov Random Field
(MRF) where each node i ∈ V has a set of possible statesX corresponding to hidden states x = x1, · · · , xn

. If each hidden node is connected to an observed node yi and y = {yi}, then the goal is to infer some infor-
mation about the states xi ∈ X . The edges in the graph indicate statistical dependencies. In our anatomical
graph labeling problem, the hidden states X are related to the labels identified in the taxonomy. The joint
probability function over the entire graph is given by:

p(x1, x2 · · ·xn|y) =
1
Z

∏
i

φi(xi, yi)
∏
ij

ψij(xi, xj) (1)

where φi(xi, yi) is the local belief for node i; ψij(xi, xj) is the compatibility function between nodes i and
j and Z is a normalization constant. We can write φi(xi) as shorthand for φi(xi, yi).

Equation (1) can be solved recursively by making some simplifying assumptions on the graph. Although
the recursive solution is obtained for the simple graph (such as a chain), it has been empirically observed to
generalize to more complex graphs [21] although convergence is not always guaranteed.

The recursive updating can be mathematically written as:

mij(xj)← k
∑
xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)\j

mki(xi) (2)

bi(xi)← kφi(xi)
∏

k∈N(i)

mki(xi) (3)
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where mij denotes the message node i sends to node j, k is a normalization constant, N(i) \ j refers to all
the neighbors of i, except j and bi is the approximate marginal posterior probability (or belief) at node i.

Equation(2) describes how messages are propagated across the nodes of G. This message passing algo-
rithm is also known as belief propagation (BP). φi(xi) is obtained through maximum likelihood estimation
using the probability distribution obtained from training. ψij(xi, xj) is obtained using the formal ontology
assigned to entities from the taxonomy.

Figure 2: Illustration of local message passing.

The BP algorithm solves inference on graphical models problems via a series of local message-passing
operations. Refer to Figure 2 for an example. To compute the outgoing message (red) in the figure, the
central node must combine all incoming messages (blue) with its own inherent belief. In our implementation
BP is applied to the graph using discrete variables where the messages are vectors.

3.2.1 Computing initial inherent beliefs via EM-GMM

In order to compute the initial inherent belief φi, we first manually assign labels to every voxel in the CT
data, where each label represents the anatomical structures-of-interest (see Table 2). If there wereM labeled
tissue classes, by assuming a Gaussian distribution for each tissue label, we learn a mixture of M Gaussian
models over the HU values of the labeled data. The resulting observation model is called the Gaussian
Mixture Model (GMM).

If p(x|Θ) is the density function of the mixture of Gaussian distributions, then the resulting probabilistic
model can be written as:

p(x|Θ) =
M∑
i=1

αipi(x|θi) (4)

where we have M component densities mixed together with M mixing coefficients αi such that
∑M

i=1 αi =
1. Also, Θ = (α1, · · · , αM , θ1, · · · , θM ); each pi is a Gaussian density function parameterized by θi =
(µi, σ

2
i ).

The inherent belief φi can then be computed by testing for the maximum likehood parameters using
expectation-maximization (EM) [6].

3.2.2 Computing compatibility functions

The compatibility function ψi,j relates the chunks or nodes of the graph to each other using the anatomic
ontology relationships. We use the simplest interacting Pott’s model where the function takes one of 2
values −1,+1 and the interactions exists only for amongst neighbors with the following binary relations
- parthood(P ), overlap(O), located-in(LocIn), partially-coincides(PCoin), externally-connected(EC) and
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for completeness, separate(SP ), as defined in section 2. Our compatibility function is therefore given as:

ψ(xi, xj) :=
{

+1 if R(i, j) ∈ {P,O,LocIn, PCoin,EC}
−1 otherwise

(5)

4 Preliminary Results and Discussion

Table 2 shows some examples of binary relations in our ontology. The level of granularity in the ontology
is determined by the tissue structures of the entities. For example, the left lung and the right lung are very
different anatomical structures where the left lung typically overlaps the heart and the right one does not,
but their tissue structure is exactly the same, hence we define an entity lung rather than right lung, left lung.
Similarly, there are many different muscles in the thoracic cavity such as the deltoid muscle, stenothyroid
muscle, scalenus muscle etc., but the ontology is defined only with the entity muscle at this stage.

The inference algorithm does not consider geometric properties when computing the initial inherent
beliefs, it only uses the tissue make-up thus far.

Entity(x) Relation Entity(y)
Lung PSurrBy Muscle
Lung EC Bone
Lung LocIn Pleural Cavity
Lung Overlaps Heart
Heart LocIn Mediastinum
Arteries LocIn Mediastinum
Bone EC Muscle
Muscle PSurrBy Fat
Trachea SurrBy Muscle
Esophagus SurrBy Muscle
Arteries PCoin Heart
Superior mediastinum LocIn Thoracic Cavity
Mediastinum LocIn Thoracic Cavity
Pleural Cavity LocIn Thoracic Cavity

Table 2: Examples of common binary relations of the anatomical ontology of the thoracic region

Figure 3: An example of the “chunking” concept shown on a 2D CT slice. Each chunk becomes a graph
node. Adjacent nodes share an edge in the graph.
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5 Conclusion

In this paper, we presented the design of an ontologically enhanced method of labeling anatomical structures.
To accomplish this, we presented a formal theory for the ontology of modeling anatomical parts, using
mereological relations such as parthood and overlap, topological relations such as connectedness and one-
pieceness, as well as location relations such as located in and partially coincides. In addition, we a presented
a probabilistic method of initially labeling the anatomical parts. This involved the generation of a model,
via training. Labels were inferred from the model and evidences from the ontology were used to strength
the likelihood of the true labels of the structures.

Although this process is currently in the design phase, it is being implemented on 2D slices as a proof-
of-concept. Extending to 3D might be challenging because pairwise interactions might not be sufficient for
accurate inferences from the graph. But these are issues we intend to handle as the design and implementa-
tion progress.

Future work will involve a post-processing step where the level of granularity in the ontology can be
raised, to incorporate true anatomical entities such as the deltoid muscle, stenothyroid muscle, scalenus
muscle etc., rather than tissue-based entities like muscle. Also we intend to investigate incorporating 3D
textures for appearance feature representation. Related work in Artificial Intelligence includes [1].
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