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Abstract. We present an abstract framework for ‘smart indoor environ-
ments’ that are monitored unobtrusively by biometrics capture devices,
such as video cameras, microphones, etc. Our interest is in developing
smart environments that keep track of their occupants and are capable
of answering questions about the whereabouts of the occupants. We ab-
stract the smart environment by a state transition system: Each state
records a set of individuals who are present in various zones of the en-
vironment. Since biometric recognition is inexact, state information is
probabilistic in nature. An event abstracts a biometric recognition step,
and the transition function abstracts the reasoning necessary to effect
state transitions. In this manner, we are able to accommodate different
types of biometric sensors and also different criteria for state transitions.
We define the notions of ‘precision’ and ‘recall’ of a smart environment in
terms of how well it is capable of identifying occupants. We have devel-
oped a prototype smart environment based upon our proposed concepts,
and provide experimental results in this paper. Our conclusion is that the
state transition model is an effective abstraction of a smart environment
and serves as a basis for integrating various recognition and reasoning
capabilities.

1 Introduction

The vision of pervasive computing [1] provides the inspiration for a smart en-
vironment saturated with sensors, computing, and communication devices that
are gracefully interfaced with human users [2]. In this paper, we focus on smart
indoor environments such as homes, offices, etc. Indoor environments do not
suffer from the problems of power or battery-life that confront outdoor environ-
ments. The goal of our research is to develop smart indoor environments that
can identify and track their occupants as unobtrusively as possible and be ca-
pable of answering queries about the occupants. Such ‘context-aware’ systems
can identify and track people in environments ranging from homes for elderly or
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disabled, office workplace, department stores and shopping complexes to larger
arenas such as airports, train stations, etc.

Identification approaches vary from tag-based approaches such as those in-
volving RFID to those based on biometrics of the user. Tag-based methodologies
tend to be obtrusive, requiring the individual to continuously retain them, how-
ever small the tag maybe. Some of the biometric techniques, such as fingerprint
and iris scans, require a ‘pause-and-declare’ interaction with the human [3]. They
are less natural than face, voice, height, and gait, which are less obtrusive and
hence are better candidates for use in our smart environments.

(a)

(b) (c)

Fig. 1. Architecture of a Biometrics Driven Smart Environment



Figure 11 shows the overall architecture of a biometrics-driven smart en-
vironment. Although the figure illustrates a single biometric modality of face
recognition, the architecture is also applicable to other biometric modalities. For
example, zone 1 might use voice recognition, zone 2 might use face recognition,
and zone 3 might use height estimation. However, in all cases the output of a
biometric recognition is the set of person probability pairs as discussed in more
detail below.

The main contribution of this paper is a framework for abstracting the be-
havior of a biometrics-driven smart environment in terms of a state transition
system. Our proposed framework supports multiple biometric modalities in a
uniform manner and facilitates a precise statement of the performance aspects
of a smart environment.

The state of an environment is expressed in terms of the probabilities of the
occupants being present in the different zones of the environment. The state
information is probabilistic because a biometric recognizer typically provides a
set of scores indicating the degree of match between the subject and the candi-
dates in the database. Therefore, in our approach an event abstracts a biometric
recognition step - whether it is face recognition, voice recognition, etc. - and is
represented as a set of pairs 〈o, p(o)〉 where p(o) is the probability 2 that occupant
o has been recognized at this event.

The transition function abstracts the reasoning necessary to effect state tran-
sitions. Effectively, the transition function takes as input, a state and an event,
and determines the next state by assigning revised probabilities to the occupants
in the environment based upon the probabilities in the event. In this manner,
we are able to accommodate different types of biometric sensors and also dif-
ferent criteria for state transitions, including those that incorporate declarative
knowledge of the individuals and the environment. It is not necessary for us to
consider non-deterministic transitions, since a state itself is represented as a set
of occupants and their probabilities.

We introduce the concepts of precision and recall in order to provide a quan-
titative measure of the performance of a smart environment. Precision captures
how well an occupant is recognized, while recall captures whether an occupant
is recognized at all. These are complementary concepts and together capture
the overall performance of a smart environment. The concepts of precision and
recall are standard performance measures in the information retrieval literature
[6], but we have adapted the definitions to suit our context.

The rest of this paper is organized as follows. The related work is presented
in Section 2 while the details of our model are discussed in Section 3. The
experimental prototype is described in Section 4 and the conclusions and the
future work are presented in Section 5.

1 Face images blurred to preserve anonymity.
2 Such scores can be mapped to probabilities by running the recognizer on a large

number of samples, as shown in [4, 5].



2 Related Work

There has been considerable interest in the subject of smart environments. A
major difference between our proposed approach and several of the approaches
surveyed below is our use of a framework in which the details of biometric recog-
nition are abstracted simply as events in a state transition system. We also char-
acterize the performance of the smart environment in terms of the concepts of
precision and recall. We briefly survey closely related efforts below and highlight
their main features.

The survey paper by Cook and Das [7] provides a good account of the state-
of-the-art in smart environments. There are several projects that focus on smart
homes (MavHome [8], the Intelligent Home [9], the House n [10] and development
of adaptive control of home environments by also anticipating the location, routes
and activities of the inhabitants.

2.1 Location Estimation

An extensive survey and taxonomy of location systems for a ubiquitous comput-
ing application is discussed in [11] while [12] provides a more recent survey of
position location techniques in mobile systems and draws a comparison between
their parameters. Fox et al. [13] highlight the relevance of Bayesian filtering
techniques in dealing with the uncertainty characteristic of sensors in pervasive
computing environments and apply them in the context of estimation of an ob-
ject’s location. Data Association problem [14] is a pertinent issue in scenarios
which involve tracking of multiple people using anonymous sensors. The ambi-
guity in identity estimation arising due to the absence of ID sensors and the
corresponding tags on people is difficult to resolve. Thus identity estimation,
absolute or relative is a desirable and integral subsystem of any object tracking
mechanism.

2.2 Tracking

Bui et al. [15] propose an Abstract Hidden Markov Model(AHMM) based ap-
proach for tracking human movement in an office like spatial layout and to
predict the object trajectories at different layers of detail. For location tracking
in a single inhabitant smart space, Roy et al. [16] propose an optimal algorithm
based on compressed dictionary management and online learning of the inhab-
itant’s mobility profile. In a related work [17], they highlight the complexity
of optimal location prediction across multiple inhabitants in a smart home and
propose a stochastic game-theoretic approach, which learns and estimates the
inhabitants’ most likely location profiles. This study uses RFID tags to track
the inhabitants. A combination of particle filters with Kalman filters to track
multiple objects with accuracy of anonymous sensors and identification certainty
of id-sensors is discussed in [13, 18]. Krumm et al. [19] investigate the nuances
of visual person tracking in intelligent environments in the context of the Ea-
syLiving project [20] by deploying multiple cameras for tracking multiple people.



However this tracking experiment was within the confines of a single room and
the identity estimation and maintenance for facilitating the tracking only dealt
with non-absolute, internally system generated identity of tracked persons.

2.3 Biometrics in Smart Environments

Pentland and Choudhury [3] highlight the importance of deploying audio-and-
video based recognition systems in smart environments as these are modalities
similar to those used by humans for recognition. They summarize the face recog-
nition efforts and discuss various commercial systems and applications as well
as its novel applications in smart environments and wearable computing. Chen
and Gellersen [19] propose a new method to support awareness based on fusion
of context information from different sources in a work environment which in-
cluded integration of audio and video sources with more specific environment
sensors and with logical sensors that capture formal context. Reasoning over the
context information generated by applying different perception techniques on
the raw data collected is used to generate a refined context.

Hamid Aghajan et al. [22] propose a vision-based technology coupled with
AI-based algorithms for assisting vulnerable people and their care givers in a
smart home monitoring scenario. However, users are expected to wear a wireless
identification badge that broadcasts a packet upon sensing a significant signal
by one of the accelerometers. Gao et al. [23] propose a new distance measure
for authentication in their face recognition system for a ubiquitous computing
environment which relies on a fusion of multiple views of each person. Their
work focuses on optimizing a single modality to improve robustness rather than
deploying a multimodal approach that fuses different biometrics. Hong et al. [24]
discuss structure, operation and performance of a face verification system using
Haar-like features and HMM algorithm in a ubiquitous network environment.
Zhang et al. [25] propose a distributed and extensible architecture of a continu-
ous verification system that verifies the presence of logged-in user. A Bayesian
framework that combines temporal and modality information holistically is used
to integrate multimodal passive biometrics which includes face and fingerprint.

Driven by the proliferation of commercially available hand-held computers,
Hazen et al. [26] research the improvements in identification performance by
adopting a bimodal biometric approach to user identification, for use on mobile
devices by integrating audio and visual biometric information in the form of voice
and face. They also report significant improvements in identification performance
that can stem from using dynamic video information instead of static image
snapshots on a database of 35 different people. Highlighting the privacy concerns
of video recording discussed in Bohn et al [27] and reliability issues of face
recognition techniques for user authentication, Vildjiounaite et al. [28], deploy
a fusion of accelerometer based gait recognition and speaker recognition as an
unobtrusive and marginally privacy-threatening means of user authentication
with personal mobile devices. They have reported improved performance in the
combination mode as opposed to individual modalities for a user base of 31.
More recently Bernardin and Stiefelhagen [29] have implemented a system for



the simultaneous tracking and incremental multimodal identification of multiple
users in a smart environment which fuses person track information, localized
speaker ID and high definition visual ID cues opportunistically to gradually
refine the global scene model and thus increase the system’s confidence in the
set of recognized identities.

In terms of the focus on the use of non-obtrusive biometrics based recognition
and location estimation, our work is similar to [29]. However, in our research,
we propose an abstract framework where in a variety of biometric modalities
can be incorporated in a uniform manner. Our approach to identity estimation
deals with the absolute identity of people across multiple zones of a facility.
However, we attempt to highlight the inherent uncertainty of automated face
recognition by recasting the eigen distances generated by eigenface algorithm
into a probability distribution of the registered faces, instead of the conventional
approach of assigning the value with the least eigen distance as the matching face.
This probabilistic approach to biometric recognition is a key theme around which
we construct our abstract framework for a biometrics driven smart environment.

2.4 State Space Representation

It might appear that a Hidden Markov Model(HMM) would serve as an elegant
basis for representing the state space. From a HMM perspective, a smart envi-
ronment with n occupants and m zones can have mn distinct possible states.
Thus probabilities are not associated with the states but with the transitions
between them; these transition probabilities are to be learnt from past behavior
or by simulation [15]. Thus an HMM approach is computationally more com-
plex due to a state space explosion and the requirement of a priori probabilities
of trajectories. In our approach, the size of a state is m ∗ n, meaning that for
each of the m zones we record the probabilities of each of the n occupants being
present in that zone. Therefore, in Section 4 (Evaluation), we depict a typical
state as a table with n rows and m columns. The transitions from one state to
another are deterministic. Therefore, given any event in a zone, the next state
is unambiguously determined. In contrast with the HMM approach, we do not
need to learn the transition probabilities in order to determine the next state
because biometric recognition (or event) provides a direct means for effecting
state transitions. Our state transition model is discussed in the next section.

3 Framework

Definition (Smart Environment): An n-person smart environment is ab-
stracted as a state transition system (S,E,∆) where S is the set of states labeled
s0, s1, . . . sx; E is the set of events labeled e1, e2, . . . ex and ∆ : S × E → S is
a function that models the state transition on the occurrence of an event. The
state transitions may be depicted as follows:

s0
e1→ s1

e2→ s2 . . .
ex→ sx



We shall consider a smart environment as being divided into a number of
zones, each of which may be a region (or a set of rooms). We include two special
zones, an external zone and a transit zone, for the sake of convenience.

Definition (State): Given n occupants, o1 . . . on and m zones labeled 1 . . .m,
a state sk of the environment is represented by an m-tuple 〈Z1k . . . Zmk〉 where
for 1 ≤ j ≤ m, Zjk = {〈oi, pjk(oi)〉 : 1 ≤ i ≤ n}. Also, in each state sk and for
each occupant oi,

∑m
i=1 pjk(oi) = 1.

The state of an environment is expressed in terms of the probabilities of the
occupants being present in the different zones of the environment. The constraint∑m

i=1 pjk(oi) = 1 indicates that sum of probabilities of any occupant being
present across all the zones in any state equals one. In the initial state s0, we
may assume without loss of generality that all occupants are in the external zone
with probability 1. Given a smart environment with n occupants, m zones, and
x number of events, the total size of the state space is m ∗ n ∗ (x + 1). Thus,
the size of the state space is quadratic in m and n rather than exponential, as
in HMMs. In this paper we model all exit events as entry events into a transit
zone. Hence it suffices in our model to only consider entry events. An event is
essentially an abstraction of a biometric or feature recognition step performed
in the environment.

Definition (Event): Given n occupants o1 . . . on, an (entry) event ek occur-
ring at zone j (1 ≤ j ≤ m) at time t is represented as 〈t, j, P 〉, where P =
{〈oi, pjk(oi)〉 : 1 ≤ i ≤ n} and pjk(oi) is the probability that an occupant oi was
recognized at zone j in event ek.

As noted earlier, an event is an abstraction of a recognition step. For simplic-
ity, we assume that events happen sequentially in time, i.e., simultaneous events
across different zones are ordered arbitrarily in time. That is, the entry of an
occupant oi into zone zi and occupant oj to zone zj at the same time t can be
modeled as oi before oj or oj before oi.

Definition (Transition Function): ∆ : S × E → S, maps state sk−1 into
state sk upon an event ek = 〈t, j, P 〉 occurring at time t in zone j, where P =
{〈oi, pjk(oi)〉 : 1 ≤ i ≤ n}. Let sk−1 = 〈Z1k−1 . . . Zjk−1 . . . Zmk−1〉 and Zjk−1 =
{〈oi, pjk−1(oi)〉 : 1 ≤ i ≤ n}. Then ∆ determines state sk = 〈Z1k . . . Zjk . . . Zmk〉
as follows: Let xi = 1− pjk(oi). Then,

Zjk = {〈oi, pjk(oi) + xi ∗ pjk−1(oi)〉 : 1 ≤ i ≤ n} (1)

Zlk = {〈oi, xi ∗ plk−1(oi)〉 : 1 ≤ i ≤ n}, for 1 ≤ l ≤ m and l 6= j (2)

The transition function maps a state sk−1 to a state sk upon an event ek

occurring at zone j. For zone j, we sum the new probability pjk(oi) for an oc-
cupant generated by event ek with the complement of the new probability value
1− pjk(oi), apportioned by a factor of the existing probability pjk−1(oi). In the
event of a revision, there might be a violation of the constraint that the sum of
probabilities for any occupant across all zones equals one (

∑m
i=1 p(oi) = 1). To



restore adherence to this constraint, for each occupant oi, we apportion to the
probability of oi being present in each zone l 6= j by redistributing the comple-
ment of the new probability value, 1 − pjk(oi), in the ratio of the probability
value in existing state plk−1(oi). This transition function ensures that the prob-
ability values associated with a new event as well as the current state figure in
the determination of the new state as in a Markov process.

Since we are dealing with a closed environment with a fixed set of occupants,
o1 . . . on, we can, in general, utilize a priori declarative knowledge regarding
the occupants, such as their schedules or knowledge of the environment, such
as the distance between rooms and whether an occupant could move between a
pair of rooms within a certain interval of time. However, the transition function
presented in the above definition does not make any use of such declarative
knowledge of the occupants. The nature of the declarative knowledge can also
be fuzzy to factor in the probabilistic nature of the environment. The reasoning
component can alleviate some of the weaknesses in the recognition component.
However it should ensure that its results are not totally contradictory to the
recognition system thereby generating inconsistencies.

We now define the concepts of precision and recall for a smart environment.
These are defined in terms of the ground truth, which, for a given input event
sequence, is a sequence of states of the environment wherein the presence or
absence of any occupant in any zone is known with certainty (0 or 1). Precision
captures how well an occupant is recognized, while recall captures whether an
occupant is recognized at all.

Definition (Ground Truth): Given n occupants O={o1 . . . on} and an event
sequence e1 . . . ex, then the ground truth is the sequence of states g1 . . . gx where
each gk = 〈T1k . . . Tjk . . . Tmk〉 and Tjk = {〈oi, qjk(oi)〉 : 1 ≤ i ≤ n ∧ qjk(oi) ∈
{0, 1}}. Also, 〈oi, 1〉 ∈ Tjk → 〈oi, 1〉 6∈ Tlk, for all l 6= j in state gk.

Given a zone of a state, the precision for that zone of the state is defined as
the average probability of those occupants that are present in that zone of the
state as given in the ground truth. The average precision across all zones (where
at least one occupant is present as per the ground truth) is the precision for
the state, and the average precision across all states is the precision for a given
ground truth. Finally, the average across multiple ground truths is the precision
of the smart environment.

Definition (Precision): Given an environment with m zones, n occupants O =
{o1 . . . on}, an event sequence E = e1 . . . ex, a ground truth G = g0, g1, . . . gx,
and state transitions S = s0, s1, . . . sx. We define the precision, π, with respect
to G as follows:

Let πjk = ajk/bjk, where

ajk =
∑
{pjk(oi) : 1 ≤ i ≤ n ∧ qjk(oi) = 1}



bjk = |
∑
{oi : 1 ≤ i ≤ n ∧ qjk(oi) = 1}|

Then πk =
m∑

j=1

πjk/m, and we define π =
x∑

k=1

πk/x.

Now, given a set of ground truths {G1, G2, . . . Gt} with the corresponding preci-
sions {π1, π2, . . . πt}, the precision of the smart environment, Π =

∑t
l=1 π

l/t.

For a given ground truth, state and zone, we define recall with respect to a
threshold θ as the ratio a/b, where a is the number of occupants of that zone
with probabilities greater than θ and who are present in the ground truth, and
b is the number of occupants who are present in the ground truth for that zone.
The recall for a state is the average of the probabilities across all zones where at
least one occupant is present as per the ground truth. The average recall across
all states is the recall for a given ground truth, and the average across multiple
ground truths is the recall of the smart environment.

Definition (Recall): Given an environment with m zones, n occupants O =
{o1 . . . on}, an event sequence E = e1 . . . ex, a ground truth G = g0, g1 . . . gx,
and state transitions S = s0, s1, . . . sx. We define the recall, ρ, with respect to a
threshold θ as follows:

Let ρjk = ajk/bjk, where

ajk = |
∑
{oi : 1 ≤ i ≤ n ∧ qjk(oi) = 1 ∧ pjk(oi) > θ}|

bjk = |
∑
{oi : 1 ≤ i ≤ n ∧ qjk(oi) = 1}|

Then ρk =
m∑

j=1

ρjk/m, and we define ρ =
x∑

k=1

ρk/x.

Now, given a set of ground truths {G1, G2, . . . Gt} with the corresponding preci-
sions {ρ1, ρ2, . . . ρt}, the recall of the smart environment, R =

∑t
l=1 ρ

l/t.

As it is clear, the recall is inversely proportional to the threshold, θ, since
lowering the threshold will result in more occupants being identified. This figure
is generally arrived at experimentally for a smart environment. A reasonable
choice of θ is 0.5, and this is also the value that we adopt in our experiments. In
the above definition, the recall was defined zone-wise. An alternative approach is
to disregard the zones while taking the ratio; doing so would increase the overall
recall. Our definition gives due importance to zones, and hence is a relatively
more conservative.

4 Evaluation

We have developed an experimental prototype embodying the ideas presented
in this paper. Figure 1(b) illustrates a 4-zone smart environment (fourth zone



representing the external zone) with 25 occupants who are monitored by video
cameras installed in each of the zones. Our experimental prototype collects sam-
ple face images of the 25 occupants of an office facility and pre-registers them in
a training database. The image sensors deployed in each zone detects the pres-
ence of occupants as they move through the zones and verify the face images
extracted from the video against the database. The distance scores generated
by eigenface is recast into a probability value [4, 5] which denotes a posterior
probability of the detected face matching the pre-registered occupants. This set
of person-probability pairs generated essentially constitutes an event as defined
in Section 3.

Although our abstract framework is independent of the details of any partic-
ular biometric modality, we illustrate our concepts in terms of face recognition.
Automated face recognition is yet to attain any comparable levels of robustness
as that of humans. Factors such as viewing angle, distance, background clutter,
lighting spectrum, intensity, angle and diffuseness of lighting, differences between
posed photographs and spontaneous expression can cause fluctuations in the per-
formance of computer vision based on statistical classifiers [30]. Our prototype
is based upon OpenCV’s [31] implementation of the eigenface algorithm [32],
which provides a basis for a simple though not robust implementation of face
recognition.

This prototype can be extended to incorporate other biometric recognizers
in a similar manner. For example, for voice recognition, the voice samples of
occupants are pre-registered in a database instead of face image samples. The
ambient voice that is picked up by the voice sensors installed in different zones
can be matched against the voice database to generate a set of person-probability
pairs. In this manner the different biometric recognizers are interfaced in a uni-
form way with the rest of the system.

We illustrate with figures 2, 3, and 4, the computation carried out by the
state transition system that is embodied in the 4-zone smart environment. We
have presented the observations and results obtained in a tabular form for ease
of understanding. Figure 2 presents 10 events involving four of the occupants of
the smart environment. Each event is presented as a column of probability val-
ues - these form the output of the face recognition module as it matches a given
face against the training database. Shown in boldface are the probability values
corresponding to the actual occupants who were involved in the corresponding
events, as per the ground truth. Italicized values indicate the probabilities cor-
responding to the occupants who were not involved in the corresponding events,
but falsely assigned values by the recognizer. This ambiguity may arise due to
any of the reasons already discussed above.

Figure 3 illustrates a sample transition from state s8 to s9 upon the occur-
rence of event e9 in zone 1. The probabilities of the occupants in zone 1 in state
s9 are obtained as per equation (1) defined under the transition function defini-
tion. For the remaining zones of s9, the probability values are obtained as per
equation (2) defined under the transition function.



Fig. 2. Event Sequence

Figure 4 illustrates the results of the precision and recall for the ground truth
corresponding to the event sequence of figure 2. The low values for precision at
zone 3, corresponding to states s3 and s10 in particular, can be traced to the
ambiguity arising in the face recognition step at events e3 and e10, both occurring
at zone 3 which results in a low probability of recognition of occupants o1 and
o2 at these events respectively. For the same reason, the values for recall at zone
3 also suffers, thereby affecting the average recall of the states s3 . . . s6.

5 Conclusions

We have presented a novel framework for non-obtrusive biometric based indoor
smart environments for identification and tracking.

1. A state transition framework in which events abstract different biometric
recognition steps and transitions abstract different reasoning steps.



Fig. 3. Sample State Transition

(a) (b)

Fig. 4. Illustrating Precision and Recall



2. A characterization of the performance of the smart environment in terms of
the concepts of precision and recall.

Our state transition system is fundamentally probabilistic because the biomet-
ric recognition that underlies events is inexact in nature. Our formulation of
precision and recall succinctly characterizes the performance of a smart environ-
ment. We believe that our state transition model is an effective abstraction of
a smart environment and serves as a basis for integrating different recognition
and reasoning capabilities.

In our model, a state provides location information at a zone level and a
sequence of consecutive states implicitly contains zone level tracking information
for all occupants. While it is possible to define precision and recall with respect to
any query of interest, we have formulated them in a query independent manner
which we believe is more general. Our model is capable of supporting spatial
and temporal queries, such as: the location of an occupant in the facility; time
of entry/exit of an occupant; the first/last person to enter/leave the facility;
the current occupants present in the facility; etc. A query of special interest is
tracking of individuals over time and space.

We plan to enhance our current prototype by incorporating a variety of bio-
metric recognizers, such as for height, gait, voice, etc. It is possible to fuse two
or more biometric modalities to enhance the overall performance of recognition.
We also plan to incorporate spatio-temporal reasoning based upon declarative
knowledge of the environment as well as the occupants. Through such enhance-
ments in recognition and reasoning, we can improve the overall precision and
recall of the smart environment. We plan to test this approach on larger en-
vironments and support speech-based information retrieval queries about the
environment.
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