
 
 
 
 
 
 

HOW STUDENTS MEASURE UP:  
AN ASSESSMENT INSTRUMENT FOR INTRODUCTORY 

COMPUTER SCIENCE 
 
 

 
 
 
 

 
by 
 

Adrienne Decker 
 

May 1, 2007 
 
 
 
 
 

A dissertation submitted to the 
Faculty of the Graduate School of 

The State University of New York at Buffalo 
In partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 
 

Department of Computer Science and Engineering



 ii 

 
Copyright by  

 
Adrienne Decker 

 
2007



 iii 

Acknowledgments 

To borrow from (and modify) Julie Andrews in the Sound of Music, “when a door 

closes, a window opens.”   That is exactly what happened one day in December 2003 

when I walked into Bill Rapaport’s office looking for a new advisor.  I was pleased when 

Bill agreed to take me on as a challenge.  Soon I discovered that the window I had 

jumped through would change everything.  My experience working on this dissertation 

was very different than the dreary picture of drudgery and turmoil that I had in my mind.  

In fact, Bill taught me more about the process of a dissertation, writing, researching, and 

expressing my ideas than I ever thought possible.  I had often heard rather half-heartedly 

that a dissertation was an “apprenticeship,”  but I can truly say that my experience has 

been just that.  I am extremely grateful for all of the help and guidance he has given me.  

I can only hope that I can be as good a mentor to someone else one day as he has been to 

me. 

My committee member Carl Alphonce, has provided me with valuable insight while 

on my committee and also as a collaborator on several projects.  If not for those other 

projects, I might have completed this dissertation sooner.  Our collaborations have been 

incredibly rewarding and I am most excitedly looking forward to our next steps now that 

this task is behind me. 

 



iv ACKNOWLEDGMENTS   
 

The rest of my committee, Tom Shuell and Ken Regan, have been invaluable as well.  

Tom has provided insight and guidance for many of the education issues that have played 

an important part in this endeavor.  Tom’s assistance on the “other side”  of my 

dissertation has been reassuring and supportive, and I am grateful for his help, even now 

in his retirement.  Ken’s insights and comments have spurned me on my way. 

Chris Egert is probably the most inspiring person I have ever met.  He has forgotten 

more about systems than I will probably ever know.  He can inspire his students 

effortlessly.  He has inspired me to do great things and to forge ahead and complete this 

dissertation throughout all my doubt and uncertainty.  While I could not achieve the awe-

inspiring size of his dissertation (in lines of code, nor length, nor the number of 

references), I can see his influence in how I approach my work, and my teaching.  If I try 

hard enough, I know there is much more I can learn from him if he’ ll let me.  

Furthermore, his friendship has meant so much to me over the past seven years, and 

while I miss his presence at UB daily, I can take solace in the fact that he is only a phone 

call or short car ride away whenever I need anything.  I’ ll continue to use the phone and 

car often. 

Phil Ventura gave me the inspiration for this work.  Had he not completed his 

dissertation so that I could find a problem with it, I wouldn’ t be here today.  He also gave 

me my start as a TA and then further guidance as I was the instructor for the first time.  I 

learned many things from him about teaching, educational research, statistics, and even 



ACKNOWLEDGMENTS v  

 

some miscellaneous computer science topics along the way.  I am grateful for all our 

friendship provided to me during this time. 

This dissertation would not have come together without the critique and criticisms 

given about the exam that I created.  Every person that undertook this challenge provided 

valuable insight on the exam and the questions contained within it.  Thanks to Kevin 

Bierre, Stuart Shapiro, and Bina Ramamurthy.  Extra special thanks to Alan Hunt, who 

not only reviewed the exam, but also agreed to allow his students to participate and 

provide me with data for analysis.  I must also thank from the school of education, Scott 

Meier, whose class provided me with important tools for completing this dissertation.  I 

have received a tremendous amount of support from the faculty and staff in our 

department.  I need to especially mention and thank Peter Scott, Bharat Jayaraman, and 

Helene Kershner for their support and guidance. 

It is cliché to say that I owe it all to the support of my family.  However, I have been 

blessed with a biological family, a matrimonial family, and an adopted family.   

My parents have given me so much throughout my life that I owe more than I can 

ever repay to them.  They blessed me with love and support.  They gave me my strength 

and my drive, which is the only way I could have achieved this goal.  I was also blessed 

to be incredibly close to my Grandma and Grandpa Janusz growing up.  When I went off 

to college and then on to graduate school, they were always there, smiling proudly. 

Grandma left me in the middle of this dissertation, which in some ways only made the 



vi ACKNOWLEDGMENTS   
 

journey that much more important.  Now, she has another accomplishment to smile about 

even if she can no longer share that smile with me.  I know she is smiling now. 

My other parents, the Deckers have been in my life for many years.  They have stood 

up and cheered as loudly as my own parents at all my accomplishments and have always 

been there as additional support whenever I needed it.  I can only be grateful that they 

have welcomed me as part of their family and that we continue to share a close bond. 

I have a brother, Dan, and a sister (by marriage) Nicole.  They are both younger than 

me and at every minute have lived up to the younger sibling image.  However, there are 

no other people that I know that would be before them in line to lend a hand or be there 

for me if I needed it.  I thank them for that. 

When I became a Decker, I also became a Rieth and I can say that I am proud to be 

both.  In fact, I’m not so sure that the Rieths remember that there was a time when I 

wasn’ t a Rieth.  I’ve relied on Rieth help and friendship in so many ways and I can not 

thank the Rieths enough for always being there.  There are too many Rieths to name 

individually, but I want to speak to a few special Rieths.  The Snees have provided a 

place to stay for a week or so for the last several summers as well as incredible 

conversation and support during this process.  The Cervis made sure I had the wedding of 

my dreams and moral support for life outside of school.  My favorite cousin Shannon has 

given me lots of laughs and can always say just the right things to let me know that she is 

thinking of me and proud of what I’ve done.  I will never be able to repay her for that. 



ACKNOWLEDGMENTS vii  

 

Most people are grateful for the set of parents they are born with.  I am lucky to also 

have a great set of parents that I received upon marriage.  However, even before that, I 

had a third set of parents that “adopted”  me and my husband back when we were in high 

school.  The Maslona’s (Carolyn & Gerald) always gave everything of themselves to 

their own children and decided along the way that I was someone else worthy of that 

attention.  I learned so much from Carolyn about dealing with people, dealing with 

students, and dealing within a school that I still have yet to process it all.  She left quite a 

legacy in her retirement with many of her students.  I can only hope that I can do that as 

well.  While I know both are extremely proud and happy for me at this time, I can only 

see the expressions of happiness from Carolyn because Jerry was stolen from us all too 

soon.  I know that he is watching and smiling and I can only smile when I think of him. 

I’ ve adopted many undergraduate teaching assistants throughout this process (Daniel 

Britt, Sara (Haydanek) Britt, Mark Zorn, Clark Dever, Mark Jensen, Christopher 

Kozlowski, Jim Perrin, Keith Stabins, and Kyle Savage).  They have been recruited to 

perform excellently in the classroom as well as to complete several other projects along 

the way.  I have forged a bond with each one of them and they have forged a bond among 

themselves. This bond was so strong that they collaborated to nominate me for the Milton 

Plesur award and I didn’ t even know anything about it.  I am forever grateful for their 

support and look forward to celebrating with them now that this mission is accomplished.   

I need to single out two of the UTA crowd for special mention, Benjamin Robboy and 

Michael Kozelsky.  Luckily for me, Ben broke his ankle in the Spring 2006 semester and 



viii ACKNOWLEDGMENTS   
 

was able to do some data entry, grading, and number crunching for me while he could do 

nothing else.  Also, many trips to Dairy Queen last summer helped to make the writing of 

this dissertation more bearable if not a little more costly on the calories.  It seems like 

Mike has always been around asking how my dissertation is going.  Sometimes I 

appreciated it, and sometimes not, but in any case, I knew he always was trying to be 

supportive.  His insights into students and learning have not only helped me in this 

project, but in other projects as well.  Even though Ben is gone and Mike is leaving me 

this semester, their impact on this dissertation and my teaching career has been huge and 

will not soon be forgotten. 

No one can really say whether we adopted Brandy or she adopted us.  In either case, 

it doesn’ t matter.  Who can resist a constantly smiling face with a large wet tongue?  

Brandy has always been there to offer her best advice and a helpful paw about the 

dissertation.  While her advice has been amazingly silent, it has been incredibly 

reassuring and comforting. 

Lastly, but not in any way the least, I owe a huge amount of thanks for the completion 

of this effort to my husband, Eric.  He has frequently expressed his support in my 

endeavor to finish this dissertation.  I couldn’ t have done this without that support and I 

am forever grateful that he has agreed to be by my side through this and all our other 

adventures.  Now that this adventure is over, we can begin out next adventure, raising a 

family. 



 ix 

 

 
For Carolyn Maslona O’Rourke, who expected good, wanted better, but always got my 

best.



 x 



 xi 

Table of Contents 

ACKNOWLEDGMENTS.........................................................................................................................  I I I  

LIST OF TABLES..................................................................................................................................XVI I  

LIST OF FIGURES................................................................................................................................. XXI  

ABSTRACT .......................................................................................................................................... XXI I I  

CHAPTER 1 INTRODUCTION..................................................................................................................1 

1.1 COMPUTING CURRICULA .............................................................................................................. 1 
1.2 PROBLEM STATEMENT ................................................................................................................. 3 
1.3 MOTIVATION................................................................................................................................ 6 
1.4 CONTRIBUTIONS AND SIGNIFICANCE OF THE DISSERTATION...................................................... 10 
1.5 OUTLINE OF DISSERTATION ....................................................................................................... 11 

CHAPTER 2 BACKGROUND ..................................................................................................................13 

2.1 METHODOLOGIES IN THE INTRODUCTORY CURRICULUM ........................................................... 13 
2.1.1 Courses that speak to this generation................................................................................... 14 
2.1.2 Approaches to CS1-CS2 using collaborative techniques...................................................... 16 
2.1.3 Approaches relying on paradigm......................................................................................... 18 

2.2 PREDICTORS RESEARCH ............................................................................................................. 18 
2.3 EDUCATIONAL OBJECTIVES AND OUTCOMES ASSESSMENT ....................................................... 23 
2.4 ASSESSMENT OF PROGRAMMING SKILL FOR CS1....................................................................... 25 

2.4.1 “ The”  Study (or at least the one everyone recognizes because of its failure) ...................... 25 
2.4.2 Critical Eye to Assessment Practices.................................................................................... 26 

2.5 STUDY OF PERFORMANCE IN NON-MAJORS COURSE ................................................................. 26 
2.6 ANALYSIS OF PUBLISHED ASSESSMENT INSTRUMENTS.............................................................. 27 

2.6.1 Advanced Placement Exam................................................................................................... 28 
2.6.1.1 Reliability of the AP Exam........................................................................................................ 30 
2.6.1.2 Validity of the AP Exam............................................................................................................ 31 

2.6.2 Graduate Record Exam Subject Test in Computer Science.................................................. 33 
2.6.2.1 Reliability of the GRE Subject Test in Computer Science......................................................... 35 
2.6.2.2 Validity of the GRE Subject Test in Computer Science............................................................ 35 

2.6.3 ETS Major Field Test in Computer Science......................................................................... 36 
2.6.3.1 Reliability of the ETS Major Field Test in Computer Science................................................... 38 
2.6.3.2 Validity Estimates for the ETS Major Field Test in Computer Science..................................... 38 

2.7 ANALYSIS OF AP EXAM DATA ................................................................................................... 38 
2.7.1.1 Discussion.................................................................................................................................. 39 

2.8 CONCLUSION.............................................................................................................................. 41 

CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME ...............................43 

3.1 SUMMARY OF CC2001............................................................................................................... 43 
3.1.1 Structure of CC2001............................................................................................................. 43 
3.1.2 CC2001 Sections Important to this Dissertation .................................................................. 44 
3.1.3 Chapter 5: Overview of the CS Body of Knowledge............................................................. 44 
3.1.4 Chapter 7: Introductory Courses.......................................................................................... 45 



xii TABLE OF CONTENTS   
 

3.1.4.1 Programming-first Approaches...................................................................................................46 
3.1.4.2 Advantages and Disadvantages of Programming-First Approaches...........................................47 
3.1.4.3 Non-programming-first Approaches...........................................................................................50 
3.1.4.4 Concepts across All Approaches................................................................................................52 

3.1.5 Appendix A: CS Body of Knowledge and Appendix B: Course Descriptions ....................... 55 
3.1.6 The rest of CC2001: Chapters 1 – 4, 6, and 8 – 13 .............................................................. 56 

3.2 ANALYSIS OF THE PROGRAMMING-FIRST APPROACHES TO THE INTRODUCTORY CURRICULUM. 61 
3.2.1 Two- or Three-Semester Sequence........................................................................................ 62 
3.2.2 Justification for Programming-First..................................................................................... 62 
3.2.3 Intersection of Topics for CS1 .............................................................................................. 63 

3.2.3.1 Knowledge Area Analysis..........................................................................................................64 
3.2.3.2 Knowledge Unit Analysis...........................................................................................................65 
3.2.3.3 Analysis of Knowledge Units in Intersection .............................................................................67 
3.2.3.4 Conclusions about CS1 intersection ...........................................................................................69 

3.2.4 Intersection of Topics for CS1 and CS2................................................................................ 70 
3.2.4.1 Knowledge Area Analysis..........................................................................................................70 
3.2.4.2 Knowledge Unit Analysis...........................................................................................................71 
3.2.4.3 Analysis of Knowledge Units in the Intersection .......................................................................73 
3.2.4.4 Analysis of Topics from the Knowledge Unit Intersection.........................................................74 
3.2.4.5 Analysis of Hours Covered by Each Approach for each Knowledge Unit .................................85 
3.2.4.6 Problems with Simply “Reading”  the Syllabi .............................................................................87 

3.2.5 Resolution of Discrepancies.................................................................................................. 89 
3.2.5.1 Reasons for Inconsistencies........................................................................................................89 
3.2.5.2 All topics should be covered, not all were indicated...................................................................89 
3.2.5.3 Topics should be covered, none or one were indicated...............................................................92 
3.2.5.4 All approaches should have topics covered, but only two of three do........................................93 
3.2.5.5 All approaches should have topics covered, but only one of three do ........................................96 
3.2.5.6 Non-uniform topical coverage across approaches......................................................................97 

3.2.6 Revised Intersection of Knowledge Unit Topical Coverage............................................... 101 
3.2.7 Comparison of the Current Intersection to CC2001 Chapter 7.......................................... 110 
3.2.8 Topics Included in some, but not All Programming-first Approaches................................ 118 

3.3 CONCLUSION ............................................................................................................................ 121 

CHAPTER 4 REFINING THE TOPIC LIST ........................................................................................ 125 

4.1 INTRODUCTION......................................................................................................................... 125 
4.2 TOPICS REMOVED..................................................................................................................... 126 

4.2.1 Topics Eliminated because of Time Constraints................................................................. 127 
4.2.1.1 Programming process...............................................................................................................127 
4.2.1.2 Concepts underlying the programming process........................................................................131 
4.2.1.3 Exploring different aspects of programming ............................................................................132 

4.2.2 Topics Eliminated because of Deeper Coverage in Advanced Courses.............................. 133 
4.2.3 Topics Eliminated because of Difficulty in Determining Material Coverage..................... 134 
4.2.4 Records............................................................................................................................... 135 

4.3 TOPICS REMAINING .................................................................................................................. 136 
4.4 CONCLUSION ............................................................................................................................ 136 

CHAPTER 5 LEARNING OBJECTIVES............................................................................................. 139 

5.1 M INING CC2001 FOR LEARNING OBJECTIVES.......................................................................... 139 
5.2 LEARNING OBJECTIVES FROM PROGRAMMING FUNDAMENTALS.............................................. 140 

5.2.1 PF1. Fundamental Programming Constructs Learning Objectives.................................... 140 
5.2.2 PF3. Fundamental Data Structures Learning Objectives................................................... 142 
5.2.3 PF4. Recursion Learning Objectives.................................................................................. 146 

5.3 LEARNING OBJECTIVES FROM ALGORITHMS AND COMPLEXITY ............................................... 147 



 TABLE OF CONTENTS xiii 

 

5.3.1 AL1. Basic Algorithm Analysis Learning Objectives.......................................................... 147 
5.3.2 AL3. Fundamental Computing Algorithms Learning Objectives........................................ 149 

5.4 LEARNING OBJECTIVES FROM PROGRAMMING LANGUAGES.................................................... 153 
5.4.1 PL4. Declarations and Types Learning Objectives............................................................ 153 
5.4.2 PL5. Abstraction Mechanisms Learning Objectives........................................................... 154 
5.4.3 PL6. Object-oriented Programming Learning Objectives.................................................. 156 

5.5 CONCLUSION............................................................................................................................ 158 

CHAPTER 6 CREATION AND CRITIQUE OF EXAM ......................................................................163 

6.1 INTRODUCTION......................................................................................................................... 163 
6.2 CREATING QUESTIONS ............................................................................................................. 163 
6.3 STRUCTURE OF EXAM QUESTION GROUPS............................................................................... 168 

6.3.1 Basic Syntax Questions (Group 1)...................................................................................... 168 
6.3.2 Fundamentals  and API Programming (Group 2).............................................................. 172 

6.3.2.1 Functions and parameter passing............................................................................................. 172 
6.3.2.2 Arithmetic and logical expressions.......................................................................................... 174 
6.3.2.3 Expressions and Assignment ................................................................................................... 175 

6.3.3 Types, Declaration Models, and Parameter Passing (Group 3) ........................................ 181 
6.3.4 Data Structures (Group 4).................................................................................................. 189 
6.3.5 Recursion (Group 5)........................................................................................................... 199 
6.3.6 Searching and Sorting Algorithms, and Algorithm Analysis (Group 6) ............................. 203 
6.3.7 Object-Oriented Programming (Group 7).......................................................................... 205 

6.4 CRITIQUE OF THE EXAM ........................................................................................................... 211 
6.5 CONCLUSION............................................................................................................................ 213 
6.6 CODING OF QUESTIONS ON EXAM ............................................................................................ 213 

CHAPTER 7 EXAM ADMINISTRATION AND GRADING ..............................................................217 

7.1 GENERAL EXAM ADMINISTRATION GUIDELINES...................................................................... 217 
7.2 GRADING PROCEDURE DEVELOPMENT..................................................................................... 220 

7.2.1 Multiple Choice Questions ................................................................................................. 221 
7.2.1.1 Questions with Only One Answer ........................................................................................... 221 
7.2.1.2 Questions with More than One Answer ................................................................................... 221 

7.2.2 Non-Multiple Choice Questions.......................................................................................... 222 
7.2.2.1 Objective Free-Response Questions – One Answer................................................................. 222 
7.2.2.2 Objective Free-Response Questions – Complex Answer......................................................... 223 
7.2.2.3 Subjective Free-Response Questions....................................................................................... 223 

7.2.3 Weighting of Questions....................................................................................................... 224 
7.2.3.1 Special Cases........................................................................................................................... 226 

7.2.4 Partial Credit (The Triage Theory of Grading).................................................................. 228 
7.3 STUDY DESIGN......................................................................................................................... 230 

7.3.1 Research Questions............................................................................................................ 230 
7.3.2 Subjects............................................................................................................................... 231 
7.3.3 Study Protocol .................................................................................................................... 232 
7.3.4 Exam Grading for Study Participants ................................................................................ 234 

7.4 RATING THE RATERS................................................................................................................ 235 
7.4.1 Questions Double Graded to Ensure Rater Consistency.................................................... 236 
7.4.2 Discussion of Rating the Raters.......................................................................................... 238 

7.5 RECOMMENDATIONS FOR GRADING......................................................................................... 240 
7.5.1 Two Raters for Subjective Questions.................................................................................. 240 
7.5.2 Grading Simultaneously ..................................................................................................... 241 
7.5.3 Grading Anonymous Tests.................................................................................................. 242 

7.6 CONCLUSION............................................................................................................................ 243 



xiv TABLE OF CONTENTS   
 

CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS........................................................... 245 

8.1 OVERALL EXAM STATISTICS.................................................................................................... 245 
8.2 TIME......................................................................................................................................... 246 

8.2.1 Time to Complete................................................................................................................ 246 
8.2.2 Correlation with Exam Score.............................................................................................. 248 
8.2.3 Analysis of students who took the full three hours to complete exam................................. 249 

8.2.3.1 Statistical Results......................................................................................................................250 
8.2.3.2 Analysis of Results...................................................................................................................252 
8.2.3.3 Additional Statistical Results & Analysis.................................................................................252 
8.2.3.4 Conclusions about Students who Took Three Hours to Complete............................................256 

8.3 RELIABILITY ............................................................................................................................. 256 
8.4 DEMOGRAPHIC INFORMATION .................................................................................................. 257 

8.4.1 Gender ................................................................................................................................ 258 
8.4.1.1 Statistical Results......................................................................................................................258 
8.4.1.2 Analysis of Results...................................................................................................................258 

8.4.2 Age...................................................................................................................................... 259 
8.4.2.1 Statistical Results......................................................................................................................260 
8.4.2.2 Analysis of Results...................................................................................................................261 

8.4.3 Year in School ..................................................................................................................... 261 
8.4.3.1 Statistical Results......................................................................................................................261 
8.4.3.2 Analysis of Results...................................................................................................................262 

8.4.4 Major .................................................................................................................................. 262 
8.4.4.1 Statistical Results......................................................................................................................263 
8.4.4.2 Analysis of Results...................................................................................................................264 

8.4.5 How Courses Were Taken................................................................................................... 265 
8.4.5.1 Students Who Took Courses at Other Institutions....................................................................265 
8.4.5.2 Statistical Results......................................................................................................................265 
8.4.5.3 Analysis of Results...................................................................................................................267 

8.4.6 Repeaters ............................................................................................................................ 267 
8.4.6.1 Statistical Results......................................................................................................................267 
8.4.6.2 Analysis of Results...................................................................................................................269 

8.4.7 Previous Programming Experience.................................................................................... 270 
8.4.7.1 Statistical Results......................................................................................................................270 
8.4.7.2 Analysis of Results...................................................................................................................272 

8.4.8 First Programming Language............................................................................................ 272 
8.4.8.1 Statistical Results......................................................................................................................273 
8.4.8.2 Analysis of Results...................................................................................................................273 

8.5 GRADES IN CS1 AND CS2 (INCLUDING EXAM SCORE).............................................................. 274 
8.5.1.1 Statistical Results......................................................................................................................274 
8.5.1.2 Analysis of Results...................................................................................................................278 

8.6 GRADES IN CS1 AND CS2 (EXAM SCORE REMOVED) ............................................................... 278 
8.6.1.1 Statistical Results......................................................................................................................279 
8.6.1.2 Analysis of Results...................................................................................................................281 

CHAPTER 9 DISCUSSION .................................................................................................................... 283 

9.1 DISCUSSION OF EXAM CREATION PROCESS.............................................................................. 283 
9.2 DISCUSSION OF ANALYSIS OF EXAM ........................................................................................ 284 

9.2.1 Students who chose not to participate in study................................................................... 287 
9.2.1.1 Overall enrollment....................................................................................................................287 
9.2.1.2 Gender ......................................................................................................................................288 
9.2.1.3 Year in School ..........................................................................................................................288 
9.2.1.4 Declared Major.........................................................................................................................289 
9.2.1.5 Grade in course.........................................................................................................................289 
9.2.1.6 Conclusions about Participants.................................................................................................291 



 TABLE OF CONTENTS xv 

 

9.3 FUTURE WORK ......................................................................................................................... 292 
9.3.1 Additional Student Data ..................................................................................................... 292 
9.3.2 Continuation of Predictors Research ................................................................................. 293 
9.3.3 Testing of curricular changes............................................................................................. 293 
9.3.4 Trends and Longitudinal Research..................................................................................... 294 
9.3.5 Multiple Languages and Multiple Forms........................................................................... 295 
9.3.6 Multi-Institutional Analysis................................................................................................ 296 
9.3.7 Updates for Future Curricula............................................................................................. 297 

REFERENCES..........................................................................................................................................299 

APPENDIX A EXAM QUESTIONS.......................................................................................................307 

APPENDIX B GRADING GUIDELINE FOR EXAM ..........................................................................349 

APPENDIX C REVIEWER QUESTIONNAIRE...................................................................................373 

APPENDIX D DEMOGRAPHIC QUESTIONNAIRE..........................................................................375 

APPENDIX E ANALYSIS OF RATERS OF EXAM ............................................................................381 
Question 5..................................................................................................................................................... 381 
Question 9..................................................................................................................................................... 382 
Question 10................................................................................................................................................... 385 
Question 11................................................................................................................................................... 386 
Question 12................................................................................................................................................... 387 
Question 23................................................................................................................................................... 389 
Questions 57 and 58...................................................................................................................................... 391 
Question 59................................................................................................................................................... 394 
Question 101................................................................................................................................................. 396 
Question 102................................................................................................................................................. 398 
Question 103................................................................................................................................................. 400 

 



 xvi 



 xvii 

List of Tables 

Table 3-1: Figure 7-1 of CC2001 describing the concepts that should be covered in an introductory 

curriculum__________________________________________________________________________ 53 

Table 3-2: Figure 7-2 from CC2001 knowledge units and topics that are covered by all six introductory 

tracks______________________________________________________________________________ 54 

Table 3-3: Knowledge Area Coverage for Programming-first CS1 courses________________________ 64 

Table 3-4: Programming Fundamentals Knowledge Unit Coverage for CS1_______________________ 65 

Table 3-5: Algorithms and Complexity Knowledge Unit Coverage in CS1_________________________ 66 

Table 3-6: Programming Languages Knowledge Unit Coverage in CS1 __________________________ 66 

Table 3-7: Social and Professional Issues Knowledge Unit Coverage in CS1 ______________________ 66 

Table 3-8: Software Engineering Knowledge Unit Coverage in CS1 _____________________________ 67 

Table 3-9: Percentages of Knowledge Units Covered by Intersection ____________________________ 68 

Table 3-10: Percentages of Total Course Lecture Hours Covered by Intersection___________________ 69 

Table 3-11: Knowledge Area Coverage for Programming-first CS1 & CS2 _______________________ 70 

Table 3-12: Programming Fundamentals Knowledge Unit Coverage for CS1 and CS2 ______________ 71 

Table 3-13: Algorithms and Complexity Knowledge Unit Coverage in CS1 and CS2 ________________ 71 

Table 3-14: Programming Languages Knowledge Unit Coverage in CS1 and CS2__________________ 72 

Table 3-15: Social and Professional Issues Knowledge Unit Coverage in CS1 and CS2______________ 72 

Table 3-16: Software Engineering Knowledge Unit Coverage in CS1 and CS2_____________________ 72 

Table 3-17: Percentages of Knowledge Units Covered by Intersection ___________________________ 73 

Table 3-18: Percentages of Total Course Lecture Hours Covered by Intersection___________________ 74 

Table 3-19: PF1. Fundamental Programming Constructs topics covered in programming-first CS1-CS2 75 

Table 3-20: PF2. Algorithms and Problem-Solving topics covered in programming-first CS1-CS2 _____ 76 

Table 3-21: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2________ 76 

Table 3-22: PF4. Recursion topics covered in programming-first CS1-CS2 _______________________ 76 

Table 3-23:AL1. Basic Algorithmic Analysis topics covered in programming-first CS1-CS2 __________ 77 

Table 3-24: AL3. Fundamental Computing Algorithms topics covered in programming-first CS1-CS2 __ 77 

Table 3-25: AL5. Basic Computability topics covered in programming-first CS1-CS2 _______________ 77 

Table 3-26: PL1. Overview of Programming Languages topics covered in programming-first CS1-CS2 _ 78 

Table 3-27: PL2. Virtual Machines topics covered in programming-first CS1-CS2__________________ 78 

Table 3-28: PL4. Declarations and Types topics covered in programming-first CS1-CS2 ____________ 78 



xviii LIST OF TABLES   
 

Table 3-29: PL5. Abstraction Mechanisms topics covered in programming-first CS1-CS2 ____________78 

Table 3-30: PL6. Object-oriented Programming topics covered in programming-first CS1-CS2 _______79 

Table 3-31: SP1. History of Computing topics covered in programming-first CS1-CS2 ______________79 

Table 3-32: SE1. Software Design topics covered in programming-first CS1-CS2___________________79 

Table 3-33: SE2. Using APIs topics covered in programming-first CS1-CS2_______________________79 

Table 3-34: SE3. Software Tools and Environments topics covered in programming-first CS1-CS2_____80 

Table 3-35: SE5. Software Requirements and Specifications Constructs topics covered in programming-

first CS1-CS2________________________________________________________________________80 

Table 3-36: SE6. Software Validation topics covered in programming-first CS1-CS2________________80 

Table 3-37: Topics covered by all three approaches to CS1-CS2________________________________81 

Table 3-38: Topics covered by two of three approaches to CS1-CS2 _____________________________82 

Table 3-39: Topics covered by one of three approaches to CS1-CS2 _____________________________83 

Table 3-40: Topics covered by none of the three approaches to CS1-CS2 _________________________84 

Table 3-41: Hours devoted to each knowledge unit for programming-first CS1-CS2_________________86 

Table 3-42: PF1. Fundamental Programming Constructs topics covered in programming-first CS1-CS2102 

Table 3-43: PF2. Algorithms and Problem-Solving topics covered in programming-first CS1-CS2 ____102 

Table 3-44: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2_______102 

Table 3-45: PF4. Recursion topics covered in programming-first CS1-CS2 ______________________103 

Table 3-46:AL1. Basic Algorithmic Analysis topics covered in programming-first CS1-CS2 _________103 

Table 3-47: AL3. Fundamental Computing Algorithms topics covered in programming-first CS1-CS2 _103 

Table 3-48: AL5. Basic Computability topics covered in programming-first CS1-CS2 ______________104 

Table 3-49: PL1. Overview of Programming Languages topics covered in programming-first CS1-CS2 104 

Table 3-50: PL2. Virtual Machines topics covered in programming-first CS1-CS2_________________104 

Table 3-51: PL4. Declarations and Types topics covered in programming-first CS1-CS2____________104 

Table 3-52: PL5. Abstraction Mechanisms topics covered in programming-first CS1-CS2 ___________105 

Table 3-53: PL6. Object-oriented Programming topics covered in programming-first CS1-CS2 ______105 

Table 3-54: SP1. History of Computing topics covered in programming-first CS1-CS2 _____________105 

Table 3-55: SE1. Software Design topics covered in programming-first CS1-CS2__________________105 

Table 3-56: SE2. Using APIs topics covered in programming-first CS1-CS2______________________106 

Table 3-57: SE3. Software Tools and Environments topics covered in programming-first CS1-CS2____106 

Table 3-58: SE5. Software Requirements and Specifications Constructs topics covered in programming-

first CS1-CS2_______________________________________________________________________106 

Table 3-59: SE6. Software Validation topics covered in programming-first CS1-CS2_______________106 

Table 3-60: Topics covered by all three programming-first approaches to CS1-CS2________________109 



LIST OF TABLES xix 

 

Table 3-61: Topics covered by all two of three programming-first approaches to CS1-CS2 __________ 109 

Table 3-62: Topics covered by one of the three programming-first approaches to CS1-CS2__________ 109 

Table 3-63: Topics covered by none of the three programming-first approaches to CS1-CS2_________ 110 

Table 3-64: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2_______ 114 

Table 3-65:AL1. Basic Algorithmic Analysis topics covered in programming-first CS1-CS2 _________ 115 

Table 3-66: AL3. Fundamental Computing Algorithms topics covered in programming-first CS1-CS2 _ 116 

Table 3-67: SE1. Software Design topics covered in programming-first CS1-CS2 _________________ 117 

Table 3-68: Topics covered only by imperative-first and functional-first CS1 & CS2 _______________ 119 

Table 3-69: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2_______ 120 

Table 3-70: SE1. Software Design topics covered in programming-first CS1-CS2 _________________ 120 

Table 3-71: Topics covered only by imperative-first CS1 & CS2 _______________________________ 121 

Table 3-72: Topics covered only by functional-first CS1 & CS2 _______________________________ 121 

Table 3-73: Final List of Intersection Topics ______________________________________________ 124 

Table 4-1: Revised List of Topics _______________________________________________________ 137 

Table 5-1: Comparison of old and revised learning objectives for PF1. Fundamental Programming 

Constructs _________________________________________________________________________ 142 

Table 5-2: Comparison of old and revised learning objectives for PF3. Fundamental Data Structures _ 145 

Table 5-3: Comparison of old and revised learning objectives for PF1. Fundamental Programming 

Constructs _________________________________________________________________________ 147 

Table 5-4: Comparison of old and revised learning objectives for AL1. Basic Algorithmic Analysis ___ 148 

Table 5-5: Comparison of old and revised learning objectives for AL3. Fundamental Computing 

Algorithms_________________________________________________________________________ 152 

Table 5-6: Comparison of old and revised learning objectives for PF1. Fundamental Programming 

Constructs _________________________________________________________________________ 154 

Table 5-7: Comparison of old and revised learning objectives for PL5. Abstractions Mechanisms_____ 156 

Table 5-8: Comparison of old and revised learning objectives for PL6. Object-oriented Programming_ 158 

Table 5-9: Final List of Learning Objectives ______________________________________________ 161 

Table 6-1: Topics from knowledge units included in each group _______________________________ 167 

Table 6-2:  Categorization of Questions on Exam __________________________________________ 216 

Table 7-1: Discrepancies by Question ___________________________________________________ 237 

Table 7-2: Number of Discrepancies per Exam ____________________________________________ 238 

Table 8-1: Time to Complete Exam______________________________________________________ 247 

Table 8-2: t-test for time to complete exam________________________________________________ 251 

Table 8-3: Levene's Test for Equality of Means for time to complete exam _______________________ 251 



xx LIST OF TABLES   
 

Table 8-4: t-test (unequal variances) for time to complete ____________________________________251 

Table 8-5: Mann-Whitney test for time to complete__________________________________________252 

Table 8-6: Conversion of Letter Grades to 4.0 Scale ________________________________________253 

Table 8-7: t-test for CSE 115 overall course grades_________________________________________254 

Table 8-8: t-test for CSE 116 overall course grade__________________________________________254 

Table 8-9: t-test for recalculated CSE 116 overall course grades ______________________________255 

Table 8-10: t-test for averaged CSE 115 and CSE 116 overall course grades _____________________256 

Table 8-11: t-test for Gender ___________________________________________________________258 

Table 8-12: Age Ranges of Participants __________________________________________________260 

Table 8-13: t-test for Age______________________________________________________________260 

Table 8-14: t-test for Year in School _____________________________________________________262 

Table 8-15: t-test for Major (Computer Science or Computer Engineering vs. Other Majors) ________263 

Table 8-16: t-test for Major (Computer Science Majors vs. Computer Engineering Majors)__________264 

Table 8-17: t-test for Taking CS1-CS2 in consecutive semesters _______________________________266 

Table 8-18: t-test for Taking CS1-CS2 in traditional academic year ____________________________266 

Table 8-19: t-test for Repeaters (Students who failed CS1 vs. those who did not) __________________268 

Table 8-20: t-test for Repeaters (Students who failed CS2 vs. those who did not) __________________268 

Table 8-21: t-test for Repeaters (Students who failed CS1 and/or CS2 vs. those who did not) _________269 

Table 8-22: t-test for Prior Programming Experience _______________________________________271 

Table 8-23: t-test for Prior Programming (Prior Java programming) ___________________________271 

Table 8-24: t-test for Prior Programming (C-derived languages) ______________________________272 

Table 8-25: t-test for First Language (Java vs. not Java) _____________________________________273 

Table 9-1: Course grade breakdown for all CSE 116 students_________________________________290 

Table 9-2: Course grade breakdown for CSE 116 students who elected not to particpate in the study __290 

 



 xxi 

List of Figures 

Figure 8-1: Histogram for Time to Complete Exam _________________________________________ 248 

Figure 8-2: Plot of Total Points Earned versus Time Finished_________________________________ 249 

Figure 8-3: Plot of Points Earned on Exam vs. CSE 115 Overall Course Grade___________________ 275 

Figure 8-4: Plot of Points Earned on Exam vs. CSE 116 Overall Course Grade___________________ 276 

Figure 8-5: Plot of Points Earned on Exam vs. Averaged CSE 115 & CSE 116 Overall Course Grade _ 277 

Figure 8-6: Plot of Points Earned on Exam vs. Revised CSE 116 Overall Course Grade ____________ 279 

Figure 8-7: Plot of Points Earned on Exam vs. Averaged CSE 115 & CSE 116 Overall Course Grade _ 280 

 



 xxii 



 xxiii 

Abstract 

 This dissertation presents an assessment instrument specifically designed for 

programming-first introductory sequences in computer science as given in Computing Curricula 

2001:  Computer Science Volume.  The first-year computer science course has been the focus of 

many recent innovations and many recent debates in the computer science curriculum.  There is 

significant disagreement as to effective methodology in the first year of computing, and there has 

been no shortage of ideas as to what predicts student success in the first year of the computing 

curriculum.  However, most investigations into predictors of success lack an appropriately 

validated assessment instrument to support or refute their findings.  This is presumably due to the 

fact that there are very few validated assessment instruments available for assessing student 

performance in the first year of computing instruction.  The instrument presented here is not 

designed to test particular language constructs, but rather the underlying principles of the first 

year of computing instruction.  It has been administered to students at the end of their first year of 

an introductory computer science curriculum.  Data needed for analysis of the instrument for 

reliability and validity was collected and analyzed.  Use of this instrument enables validated 

assessment of student progress at the end of their first year, and also enables the study of further 

innovations in the curriculum for the first year computer science courses.



 xxiv 



 1 

Chapter  1 

Introduction   

Pedagogic innovation at the introductory level of computer science education is not 

new.  The notion that some curricular idea “works for me” is not good enough for most 

people to consider adoption of that particular idea and is not sufficient for scientific 

exploration.  A reliable and validated instrument is needed for use in scientific 

experimentation of new curricular advances to enable researchers to study the impact of 

the curricular innovation on student knowledge and skills in a particular subject area.  

The purpose of this work is to create a validated assessment instrument that can be used 

to measure student achievement at the introductory level of computer science curriculum. 

1.1 Computing Curr icula  

Computers and computing began to emerge as a field of study in the middle of the 

last century.  Colleges and universities began creating departments and degree programs 

in the 1960s.  As these departments grew in number, a group of faculty from some of 

these colleges and universities was formed under the auspices of the Association for 

Computing Machinery (ACM) to explore the various issues facing these institutions 

while developing these programs in computing.  This group produced a report outlining a 



2 CHAPTER 1 INTRODUCTION   
 

curriculum for the newly emerging discipline of computer science (Committee on 

Computer Science Curriculum 1968).  Since that time, several revisions have been made 

to reflect changing times and trends in the field (Committee on Computer Science 

Curriculum 1978; ACM/IEEE-CS Joint Curriculum Task Force Curricula 1991; Joint 

Task Force on Computing Curricula 2001). 

The most recent of these, commonly known as CC2001 (ACM/IEEE-CS Joint Task 

Force on Computing Curricula 2001) is divided into several volumes, each covering a 

different sub-discipline of computing.  These volumes are: Computer Science, Computer 

Engineering, Software Engineering, and Information Systems.  This dissertation focuses 

on the Computer Science volume, which will be referred to as CC2001 for the remainder 

of this dissertation.  CC2001 divides the computer science curriculum into fourteen 

knowledge areas and subdivides the curriculum into introductory, intermediate, and 

advanced course levels.  For each level, the report recommends pedagogical approaches 

to the topics in each area, including many specific details that were not present in 

previous curricula. 

 Before CC2001, there was much information in the literature about the approach, 

assignments, lab environments, and teaching aids that were most appropriate for courses.  

These issues are discussed in Chapter 2.  Of special interest are the CS1-CS2 introductory 

courses, since these are the first courses that students are exposed to.  CC2001 recognizes 

six approaches to the introductory sequence: three programming-first approaches 

(Imperative-first, Objects-first, and Functional-first) and three non-programming-first 



CHAPTER 1 INTRODUCTION 3 

 

approaches (Breadth-first, Algorithms-first, and Hardware-first).  The report does not 

recommend one over the other, but rather points out their relative strengths and 

weaknesses. 

1.2 Problem Statement 

  Whenever a new curricular device is conceived, its effectiveness must be 

determined: Does the innovation actually help students’  understanding of the material?  

Research investigations conducted on new curricular innovations have employed 

measures based on lab grade, overall course grade, resignation rate, or exam grades 

(Cooper, Dann et al. 2003; Decker 2003; Ventura 2003). 

 The problem with using these types of metrics in a study is that often they are not 

proven reliable or valid.  Reliability, or the “degree of consistency among test scores”  

(Marshall and Hales 1972, p. 4), and validity, the ability of a test to be “both consistent 

and relevant”  (Marshall and Hales 1972, p. 104), are both essential whenever the results 

of any metric are to be analyzed.   

If a metric is reliable, then the results for a particular student for that metric must be 

reproducible. Reliability can be assessed using a time-sampling method, a parallel-forms 

method, or an internal-consistency method (Ravid 1994; Kaplan and Saccuzzo 2001).  

The most common time-sampling method is the test-retest method, where the same 

subjects take an exam at two different times and scores are checked for consistency.  For 

a parallel-forms method, two tests are created that are designed to test the same set of 



4 CHAPTER 1 INTRODUCTION   
 

skills.  Students then take both forms of the exam, and their results are compared for 

consistency.  For an internal-consistency method, the test is split into two halves, and the 

two halves are compared for consistency.  With an internal consistency method, the test is 

only taken once, which saves time and resources for the researcher.   

However, some of the methods have drawbacks.  When using a test-retest method, 

there can be a practice effect.  The practice effect is the possibility that when students 

take an exam more than once, they will do better the second time simply because they 

have taken the exam before.  This effect is not easy to address, so many researchers 

choose to measure reliability using some variant of the parallel-forms method or internal-

consistency methods (Marshall and Hales 1972; Ravid 1994; Kaplan and Saccuzzo 

2001).  However, with parallel forms, there is a burden on the participants and 

administrators of the exam.  The participants must take a very similar exam twice, and 

resources must be devoted to administering these two exams.  To minimize practice 

effect, this duplicate testing should occur on the same day (Marshall and Hales 1972; 

Ravid 1994; Kaplan and Saccuzzo 2001).   

Validity can be assessed using the methods of face validity, content-related validity, 

or criterion-related validity.  Face-validity evidence is gathered from the appearance of 

validity.  For example, a test screening for suitable mechanics to fix cars for a dealership 

should have questions about cars and their component parts and would probably not 

include questions about the interpretations of famous literary works.  This type of validity 

does not include an in-depth analysis of the test, but rather a quick read of the questions 



CHAPTER 1 INTRODUCTION 5 

 

to assure that the test appears to be applicable to the domain (Marshall and Hales 1972; 

Ravid 1994; Kaplan and Saccuzzo 2001). 

Content-related validity is like face validity in that it is a logical, rather than a 

statistical, way of assessing validity.  With content-related validity, one must determine 

whether the construction of the test adequately assesses the knowledge it is supposed to.  

Expert judgment is often called on to assess the content-related validity of a measure 

(Kaplan and Saccuzzo 2001). 

Criterion-related validity is the assessment of how well a particular metric 

corresponds with a particular criterion (Kaplan and Saccuzzo 2001).  For example, the 

Scholastic Aptitude Test (SAT) is used by most colleges and universities as an indicator 

of how well a student will perform after high school.  In order for one to use the SAT in 

this way, the SAT Program Handbook provides results of criterion-validity testing to 

show the evidence that it is predictive of college performance (SAT Program Handbook 

2006).  

The investigations cited in the first paragraph of this section (Cooper, Dann et al. 

2003; Decker 2003; Ventura 2003) suffer not only from using assessments which are not 

demonstrated valid and reliable, they suffer a further drawback in that they do not specify 

how a particular grade is arrived at.  For example, when using overall course grade as the 

success marker, one should know if there was a curve placed on the grades, or even the 

basic breakdown of what is considered “A”  work.  This problem persists even when 



6 CHAPTER 1 INTRODUCTION   
 

using numeric percentage grades, such as 89%.  Grading standards must be well 

documented to be valuable for assessing the quality of the study.   

1.3 Motivation 

 As with the previous curricula, CC2001 does not provide faculty with instructions 

for how to implement its suggestions and guidelines.  This leaves faculty to take their 

own approaches to the material, and invent assignments, lab exercises, and other teaching 

aids for specific courses outlined in the curriculum.  When faculty claim innovation in the 

CS1 curriculum, we need a way of assessing students’  comprehension of the core CS1 

material.  The original goal of this dissertation was to create a reliable and validated 

assessment instrument that assesses the knowledge of a student who has taken a CS1 

class using one of the programming-first approaches described in CC2001.  However, 

that goal was broadened to create an assessment for the entire introductory sequence 

(CS1-CS2).  This change was necessitated when it was discovered through the work of 

this dissertation that the topical coverage of CS1 as described by CC2001 did not provide 

a rich enough set of topics for creating an assessment that would serve across all 

approaches to the introductory curriculum.  A detailed explanation of this process is 

described in Chapter 3.  



CHAPTER 1 INTRODUCTION 7 

 

An assessment that can be used to measure curricular innovation (i.e., the success of 

students in a course using a particular approach)1 should be independent of the approach 

and the programming language used in the introductory sequence.  Essentially, the 

assessment should not be tied to one particular language of implementation and should 

not be concerned with the testing of syntactic minutiae of a particular programming 

language.  If the assessment is designed with this idea in mind, it can be used to test the 

results of curricular changes regardless of the language of choice in the introductory 

sequence or the particular approach taken.   

The main motivation for this work is the fact that no such assessment instrument is 

available.  Many forms of assessment at the end of the four years of undergraduate 

education are available to computer science faculty.  Two such examples are the 

Educational Testing Service’s (ETS) Graduate Record Examinations (GRE) Subject Test 

in Computer Science ( GRE Subject Test General Description 2004) and ETS’s Major 

Field Test in Computer Science (ETS 2003).  The GRE Subject Test is designed to assess 

a student’s ability to succeed in graduate school, while the Major Field Test is designed 

as an overall outcomes test for the undergraduate curriculum.  In either case, since the 

tests are administered at the end of the student’s program for the undergraduate degree, 

they are not practical sources of information about the students’  knowledge at the end of 

their first year of their undergraduate career.  Furthermore, careful examination of the 

                                                 
1 Several approaches for the introductory sequence are discussed in CC2001. Chapter 3 of this dissertation 
provides more details about these different approaches. 



8 CHAPTER 1 INTRODUCTION   
 

reliability and validity of these two exams gives us a better indication of their lack of 

applicability to this endeavor.   

The GRE subject tests across all disciplines have been shown to predict first-year 

graduate grade-point average moderately well and are more predictive than 

undergraduate grade-point averages in half the cases (GRE Score Use 2003).  The subject 

test scores have also been used in conjunction with GRE test scores and undergraduate 

grade-point average to help predict performance.  Unfortunately, the data provided by 

ETS about the GRE Subject tests does not include information specifically about the 

predictive value of the computer science subject exam. 

The ETS Major Field Test in Computer Science was created with the help of experts 

in the subject area.  There is no indication, however, that the test corresponds to a 

particular curriculum or to the recommendations of CC2001 (Major Field Test 2003).  

The reliability reported for the test for the academic year 2001–2002 was 0.89 (Major 

Field Test 2002), which is deemed acceptable.  However, the exam tests all of the 

following topics: programming fundamentals, software engineering, computer 

architecture, computer organization, operating systems, algorithms, theory, computational 

mathematics, and certain other specialized topics in computer science (Major Field Test 

Content 2003).  This topic list is much larger than what is covered in any CS1, whether 

programming-first or non-programming-first.  Even though there is a sub-section of the 

exam that students who have completed CS1-CS2 could complete, the breadth of the 



CHAPTER 1 INTRODUCTION 9 

 

concepts covered on the test would be overwhelming for students who had only 

completed one year of study, even in a programming-first approach. 

Another test that is available is the Advanced Placement (AP) exam (AP 2003) in 

computer science, which students can take while in high school to show their knowledge 

of material in a  particular subject area before entering college.  This test has been shown 

to be an effective instrument to gauge a student’s readiness and abilities in the 

introductory computing courses.  However, this exam has shortcomings that will be 

discussed in §2.6.  The information about the reliability and validity of the AP exam has 

been collected by its creators.  This information only tells us the results for the AP as a 

measure of student’s knowledge of the material tested on the AP exam.  It has not been 

shown to be reliable or validated for any other purpose, especially not as an assessment 

for introductory computer science at the college level using the CC2001 guidelines. 

These assessment measures, which are taken before starting CS1 or after the end of 

four years of study, do not help us evaluate student’s understanding of the core CS1-CS2 

material immediately after completion of the CS1-CS2 sequence, nor do they provide a 

good source of comparison of curricular innovations for CS1.  In order to promote further 

experimentation within the development of this course, a validated and reliable 

assessment instrument needs to be created. 



10 CHAPTER 1 INTRODUCTION   
 

1.4 Contr ibutions and Significance of the Disser tation 

The first part of this dissertation establishes the common subject matter among the 

three programming-first approaches to teaching CS1-CS2 presented in CC2001.  One 

finding is that there is a basic skill set that students who leave CS1-CS2 should have, no 

matter which of the seemingly disparate approaches was used to teach the course.  

The second contribution is the assessment instrument.  This assessment is a paper-

and-pencil exam that is language and approach independent.  It is the first validated and 

reliable means of assessing a student’s understanding of the material in the programming-

first CS1-CS2 sequence and should prove useful to individual course instructors.  It also 

provides a useful benchmark for studies that focus on the relative success of different 

approaches to teaching the introductory sequence, CS1-CS2.  This instrument will be 

available to test if a particular teaching technique or pedagogical advance really improves 

students’  performance in CS1-CS2.  If instructors use the instrument as a means of 

assessing their students’  performance in a CS1-CS2 sequence, the results could indicate 

poor performance of a particular instructor or teaching technique.  A poor result may 

cause the institution to reassess their current methodologies or curriculum in the CS1-

CS2 sequence.   

This instrument can be useful in further study of the computer science curriculum in 

many areas.  First, it can provide a means of assessing curricular innovation and change 

at the introductory level.  Instructors can use previous scores as a baseline for comparison 



CHAPTER 1 INTRODUCTION 11 

 

of changes that have been made to the first year courses.  Second, it can provide better 

information for studies that have looked at predictors of success in the first year courses 

(see §2.2).  Many such studies have been published, but few, if any, report on the 

measure of success that has been used.  Furthermore, the metrics that have been identified 

have not been validated before their use.  This assessment provides a validated instrument 

to measure success in the introductory sequence.   

1.5 Outline of Disser tation 

The rest of this dissertation is organized as follows.  Chapter 2 is an investigation of 

research on methodologies for the introductory curriculum, predicting success in the 

introductory curriculum, and assessing students within the curriculum. 

Chapter 3 gives a detailed analysis of the CC2001 document and establishes a core 

list of topics that are common to all programming-first introductory sequences described 

in CC2001. 

Chapter 4 shows how the list created in Chapter 3 was refined to a more manageable 

list of topics that could be used to to create the exam. 

Chapter 5 discusses the learning objectives as they are given in CC2001 and which of 

those learning objectives map onto the topics chosen for inclusion in this exam.  

Chapter 6 discusses the creation and format of the exam as well as the results of the 

reviews of the instrument by various members of the computer science community. 



12 CHAPTER 1 INTRODUCTION   
 

Chapter 7 discusses the administration procedure for the exam as well as the grading 

guideline for the exam.  It also presents the information about the study conducted to 

gather the data needed to analyze the exam for validity and reliability. 

Chapter 8 presents the results of the statistical analysis of the exam data collected 

during the study described in Chapter 7.



 13 

Chapter  2 

Background   

This chapter provides a look at the research that has been published within the three 

major categories that the work of this dissertation spans:  methodology in the 

introductory curriculum, predictors research, and assessment issues.  It also presents the 

results of my preliminary work in studies of object-oriented understanding in a non-

majors CS2 course (§2.5) and another study of the correlation between AP exam grades 

and student performance in introductory computing courses.  It highlights the lack of and 

therefore need for appropriately validated assessment instruments in each of these 

research areas. 

 

2.1 Methodologies in the Introductory Curr iculum 

Both for years before and during the development of CC2001, there was a long 

debate regarding the most acceptable way to teach the introductory computer science 

curriculum.  CC2001 does not advocate a particular approach, but rather provides a 

selection of six approaches for the introductory curriculum and encourages institutions to 

select which one they feel is best.  However, even after the publication of CC2001, the 



14 CHAPTER 2 BACKGROUND   
 

debate over methodology still continues.  In this section, we look at the pre-CC2001 

debate. 

Owens et al. (1994), Evans (1996), Fincher (1999) and Marion (1999) each give 

opinions about how to present the information to students in an introductory course.  

Each of these papers lays out many of the foundational ideas for the advocated six 

approaches to the introductory curriculum given in the CC2001 document.  It is clear that 

the CC2001 committee used these ideas as guidelines for preparing the more detailed 

treatment of the approaches to the introductory curriculum that appear within CC2001 

itself.  The papers argue for introductory methodologies that concentrate on programming 

as well as approaches that will be labeled non-programming-first approaches in CC2001. 

2.1.1 Courses that speak to this generation 

There is no doubt that the current generation of students has grown up with the 

computer, computer games, and the Internet.  The question to educators becomes whether 

this familiarity impacts the way students see and interact with computers.  Many would 

argue that the exposure of these students to computers greatly influences what they 

believe computers should do for them. 

Stein (1996) argues that introductory programming should become more interactive 

and more closely mimic the way that users are interacting with the machine.  This way, 

students realize that they are creating and modifying an interactively changing system, 

which will parallel more closely with what software development is like in industry. 



CHAPTER 2 BACKGROUND 15 

 

Guzdial and Soloway (2002) suggest that one reason we have a problem keeping 

students interested in computing is that we have an “outdated view of computing and 

students”  and that we should be shifting our focus towards media and the use of media to 

drive the direction of courses.  Since the first publication of these ideas, they have 

continued to be developed by Guzdial, who has just released a text (Guzdial and Ericson 

2006) that integrates multi-media into the CS1 course as a way to engage students in the 

process of programming. 

Another approach that utilizes the more advanced graphical capabilities of modern 

computers is advocated by Cooper, Dann, and Pausch (2003), who developed a 

programming environment called Alice.  Alice uses 3D graphics and drag and drop 

syntax creation while interacting in an object-oriented world.  Dann, Cooper, and Pausch 

(2006) is a text based on this that gives support materials to their environment and their 

view of introductory programming. 

Other graphical approaches are those of Proulx, Rasala, and Fell (1996), Reges 

(2000), and Alphonce and Ventura (2003).  These groups argue for an approach to CS1 

that utilizes graphics and event-driven programming to motivate students while learning 

the concepts presented in CS1.  However, Reges (2005, 2006) has recently abandoned 

this view of introductory computing in favor of the more traditional view of 

programming instruction (text-based, control-structure oriented) because he believes that 

his earlier approach was not working.  The evidence he presents for this belief is 

anecdotal, as his belief that since his switch “back,”  his students are performing better 



16 CHAPTER 2 BACKGROUND   
 

than before.  Reges’s switch due to personal belief rather than evidence of performance 

points once again to the need for an instrument that can measure student understanding 

and that can be used as a comparison between approaches. 

2.1.2 Approaches to CS1-CS2 using collaborative techniques 

 Approaches that are not strictly focused on programming constructs and syntactical 

issues have also been explored.  These ideas focus on the act of programming and how to 

create more effective programmers using various types of collaborative techniques. 

In the Applied Apprenticeship Approach (AAA), Astrachan and Reed (1995) seek to 

change the way the introductory courses are taught in three key areas: expectations, 

focus, and delivery.  They expect students to read and modify programs before actually 

writing them from scratch.  They change the type of problem that students focus on in the 

introductory courses, moving students away from “ toy”  problems that are too small to 

illustrate the power of computing to larger problems that really showcase the power of 

the discipline.  They change the order of delivery of the topics presented in the course 

advocating not introducing a topic before the time in a course when it is needed.   

Kölling and Barnes (2004) suggest an enhancement to AAA by more closely 

integrating the lab (programming) part of a course with the lecture portion.  The problems 

are presented and discussed in lecture.  There are perhaps partial solutions worked on in 

lecture that are continued by students on their own.  They also advocate having students 

work with code that has been expertly written and modify and expand it.   



CHAPTER 2 BACKGROUND 17 

 

In Pair Programming (Nagappan et al. (2003)), two students work together at one 

computer to solve a problem.  One student acts as the “driver” , actually typing and using 

the mouse, while the other acts as a “navigator,”  providing direction about what needs to 

be done.  Nagappan et al., showed empirical evidence that pair programming in their CS1 

class improved retention rates for the number of students that remained in the course, and 

improved their students’  perspective on working in collaborative environments.  After 

doing pair programming, the students feel that working in a collaborative environment is 

more beneficial than they originally thought.  The authors further conclude using the data 

collected from the grades of students that pair programming is in no way a deterrent to 

student performance. 

A common theme in each of these ideas is that programming should not be taught as a 

necessarily singular activity and that the learning environment can be enhanced from both 

the students’  and educator’s perspectives using some sort of collaborative technique.  

These ideas shift the focus away from simply memorizing the syntax of a language and 

then working on problems in isolation to working with programs along with other people 

and using the collaboration to benefit the learning experience for all parties. 

These ideas provide an interesting viewpoint about teaching this material.  For some 

of the approaches, anecdotal evidence is suggestive of their success.  Since no validated 

assessment instrument was used to measure the effect of any approach on student 

performance, the effectiveness remains in question and points to a need for an instrument 

to assess their effectiveness in conveying introductory concepts. 



18 CHAPTER 2 BACKGROUND   
 

2.1.3 Approaches relying on paradigm 

A programming paradigm is a view of a particular program’s main unit of 

computation.  For example, when one programs in Lisp, the main unit of computation is 

the function, and the paradigm is called functional programming.  Another set of 

documented approaches relies heavily on language, but more importantly on paradigm, 

and on issues that arise when teaching a particular paradigm   

Pattis (1993), who was teaching Pascal, was concerned about the appropriate point in 

the curriculum to teach subprograms.  He argued, in contrast to the prevailing ideas of the 

times, that procedures should be taught “ first”  (i.e. as early as possible in the curriculum).   

Moving forward a few years, we see Culwin (1999) arguing how to appropriately 

teach object-oriented programming, followed by a strong course outline for an Objects-

first CS1 advocated by Alphonce and Ventura (2002; Ventura 2003).   

For these approaches as well as others, while there may be strong anecdotal evidence 

to support them, little empirical evidence, aside from Ventura (2003), has been presented 

as to the real effect of these methodologies on learning the appropriate material for CS1.  

2.2 Predictors Research 

The need for accurate assessment instruments is again evident when one looks at the 

literature on predictors of success for CS1.  Numerous studies have focused on predicting 

success in the first year.  Success for each of these studies has been measured in various 



CHAPTER 2 BACKGROUND 19 

 

ways, none of which have been shown to be reliable or validated, nor do any of the 

measures of success have an ability to be reproduced exactly, because many of them 

involve specific assignments for a course or unpublished exam questions.  Still others 

simply used overall course grades in a CS1 course that were computed using various 

weightings of course components. 

Mazlack (1980) administered the IBM Programmer Aptitude Test (PAT) to study its 

predictive ability for students in computer science.  Little information is available about 

the PAT.  In the early 1980s, it was used by many companies (including IBM) to screen 

potential applicants for jobs.  However, there does not seem to be any publicly available 

information about its validity for this purpose.  Mazlack uses the results on the PAT as a 

potential predictor for each of quiz grades, programming assignment grades, midterm 

exam grade, final exam grade, and overall course grade.  His results showed that PAT 

was not predictive of achievement in any of these areas.   

Evans and Simkin (1989) studied demographic profiles, past high school 

achievements, prior programming experience, behavioral habits, cognitive style, and 

problem solving abilities to try to predict success in introductory curriculum.  To measure 

success, Evans and Simkin used as individual measurements, homework problem scores 

(presumably programming problems), as well as scores on multiple choice exam 

questions, fill-in-the-blank exam questions, and overall exam scores.  They concluded 

that none of the variables they studied best predicted computer proficiency in their course 

and that more work was needed in this area.   



20 CHAPTER 2 BACKGROUND   
 

Hagan and Markham (2000) studied the impact of prior programming experience on 

student success in introductory computing.  They used the amount of prior programming 

as a possible predictor of assignment scores (programming projects), midterm exams, and 

a final exam individually.  They found that not only did prior programming experience 

help, but the more languages that a student was exposed to before entering CS1, the more 

their CS1 performance improved. 

Cantwell-Wilson and Schrock (2001) investigated twelve possible predictive factors 

in their study of success in their introductory CS1 course.  They concluded that “comfort 

level”  was the best predictor for success in the course, followed by mathematics 

background.  It is interesting that comfort level a students’  feelings about a course and 

their place in the course, came out as the most predictive of performance in this study.  

To measure comfort level, the Computer Programmer’s Self-Efficacy Scale was used, 

which is a validated tool for measuring aspects of self-efficacy including comfort level 

(Ramalingham and Wiedenbeck 1998).  The measurement of success that was used was 

midterm course grade.  Cantwell-Wilson and Schrock showed that midterm course grade 

was highly correlated with final course grade, so a successful midterm grade also would 

indicate a successful final course grade. 

For each of the four previous studies mentioned, the measures of success used were 

all created specifically for the course.  These measures were not consistent across the 

studies, nor are they particularly reproducible to those outside of the course because no 



CHAPTER 2 BACKGROUND 21 

 

information is publicly available about what exam questions looked like, how they were 

graded or exactly what the individual assignments were and how they were graded.   

 Kurtz (1980) used final course grade as his measurement of success in CS1 and 

created and administered a test of formal (abstract) reasoning ability in order to classify 

the students and study their performance in an introductory programming course.  His 

classification scheme (late concrete, early formal, late formal) of abstract reasoning 

ability has never been validated, but he did show that students classified into one of his 

groups performed well in CS1 (late formal) and should be advised to attend an advanced 

section, while those classified in another (late concrete) performed poorly and should be 

discouraged from attending an advanced section. 

Leeper and Silver (1982) concluded that SAT verbal score, followed by SAT math 

score, were the two highest predictors of success in the population of CS1 students they 

studied.  Success was determined for this group by overall letter grade in the course as 

well.  Other measures that were studied, but did not reveal a significant predictive factor 

were a student’s exposure to Science, Math, and Foreign language in high school as 

measured by the number of units of each type of course taken. 

For the final two studies, since overall course grade was used as a measure for 

success, the measurement included assignments as well as exams.  For Leeper and Silver, 

the proportional weightings that were used to compute the overall course grade were not 

even reported.  As before, even if test grades are used as a factor to compute overall 



22 CHAPTER 2 BACKGROUND   
 

course grades, the test questions, or assignment specifications are not available and no 

information about reliability or validity is offered about these measures. 

Another factor that is unfortunate for reproducing and accurately interpreting these 

results is the fact that the CS1 course had not been clearly defined.  We cannot be sure 

that the outcomes that were expected of the students in some of these studies are in line 

with the recommendations of CC2001, or even in line with each other.  For the studies 

that occurred before the publication of CC2001, it must be assumed that the researchers 

could not have anticipated CC2001 and therefore the courses will not reflect its 

recommendations. 

Even recent work done on a course that embraces CC2001’s recommendations for an 

objects-first CS1 uses only measures of overall course grade, exam grades, and lab grades 

in its study (Ventura 2003).  The predictive values of the factors studied are given, as in 

the other work cited above, and predictive factors have been found in this study as well 

(overall course average, lab (programming) assignment average, exam average and 

measures of effort (actually completing the assigned tasks for the course)).  However, the 

study once again fails to convince that the measures used for students’  level of success 

have been validated. 

 



CHAPTER 2 BACKGROUND 23 

 

2.3 Educational Objectives and Outcomes Assessment 

 Well-defined educational objectives and outcomes assessment measures for 

creating new curricula in CS1 are increasingly common.    Parker, Fleming et al. (2001) 

give a methodology for integrating assessment into the course so that it provides frequent 

feedback to the students (their performance) and the instructors (in seeing student 

performance).  They also provide a methodology for creating these frequently-

administered assessment instruments.  This paper provides a methodology for doing this 

type of assessment, but does not give the actual assessments.  Since we are looking for an 

assessment for introductory courses, not simply a methodology, this work does not solve 

the problem presented for this dissertation. 

 Neebel and Litka (2002) propose a design of a CS1 course where a student’s grade in 

the course is based on how many learning outcomes the student has achieved.  The 

outcomes for the course have been created before the course is taught and the students are 

informed of what the outcomes are.  The assessment mechanism can vary from objective 

to objective, but students must achieve a grade of 80% on the assessment for the outcome 

to have it count as achieved.  The student’s grade is determined by how many outcomes 

are achieved. 

One set of educational objectives that has been explored in a CS1 course is that of 

Bloom’s Taxonomy of Educational Objectives (Lister and Leaney 2003).  Lister and 

Leaney use Bloom’s Taxonomy as a way to structure the criterion used to grade the 



24 CHAPTER 2 BACKGROUND   
 

students of the course.  Students who receive the minimum passing grade in the course 

are expected to have successfully completed criteria that fall into the lowest two levels of 

Bloom’s Taxonomy.  Higher grades in the course are earned by completing criteria that 

are categorized at higher levels of the taxonomy.  Missing, however, is a clear description 

of exactly what (if any) skills the student should come out of CS1 with.  It is unclear 

whether students are required to understand such topics as iteration or selection to pass 

the course.  The authors argue that, with this approach, CS2 must be modified to embrace 

Bloom’s Taxonomy as well.  When adapting a CS2 course for using Bloom’s Taxonomy 

the outcomes expected from CS2 seem to differ from the traditional set of topics that are 

normally associated with CS2 by including several software engineering concepts as 

opposed to the typical data structures presented.  These software engineering concepts 

include analysis, design, and synthesis of larger software systems. 

Another approach to course-embedded assessment2 is used at Slippery Rock 

University (Whitfield 2003).  Their curriculum was designed so that each student would 

come out of the program having learned a well-defined set of topics and ideas.  The 

courses at this university are designed to make sure that the appropriate material was 

presented to achieve these outcomes.  However, the stated outcomes for the curriculum 

seem generalized and vague.  It is difficult to see whether or not they coincide with 

CC2001’s recommendations for CS1.  Their assessment methods were not proven valid 

                                                 
2 Course-embedded assessment is assessment that occurs within the course at semi-regular intervals.  For 
example, midterm exams, graded homeworks, and quizzes all could be administered throughout the 
semester as course-embedded assessment instruments. 



CHAPTER 2 BACKGROUND 25 

 

or reliable, nor did they indicate whether students were meeting the designated goal of 

success in their CS1 course. 

2.4 Assessment of Programming Skill for  CS1 

2.4.1 “ The”  Study (or  at least the one everyone recognizes because of 
its failure) 

There has been one documented attempt at creation of an assessment for CS1.  A 

working group from the Conference on Innovation and Technology in Computer Science 

Education (ITiCSE) created a programming test that was administered to students at 

multiple institutions in multiple countries (McCracken, Almstrum et al. 2001).  The 

group’s results indicated that students coming out of CS1 did not have the programming 

skills that the test assessed.   

Among the positives of this attempt at assessment were that it included problems that 

were well thought out and that it made an attempt to define and cover all of the material 

that a CS1 student should have mastery of.  Another positive was the fact that there were 

specific grading rubrics created for the problems, which helped lead to uniform scoring.  

The students were not restricted to a particular language or programming environment, so 

the students completed the exercises in whatever way was most comfortable to them. 

However, the study was flawed.  This was recognized even by the members of the 

working group.  The problems given had an inherent mathematical flavor that would have 

disadvantaged students with mathematical anxiety.  They also admit in their analysis that 



26 CHAPTER 2 BACKGROUND   
 

one of the test questions “was undoubtedly difficult for students who had never studied 

stacks or other basic data structures”  (McCracken, Almstrum et al. 2001).  They also 

pointed out flaws in the presentation of the problems and the instructions for 

administering the exercises.  Therefore, even with all the positives of this study, there is 

still room for improvement to make an assessment instrument that could be more true to 

the current flavors of CS1 as described in CC2001.   

2.4.2 Critical Eye to Assessment Practices 

Daly and Waldron (2004) suggest that traditional written exams in computer science 

courses do not accurately assess students and that laboratory or practical coding exams 

are a better way to get a true assessment picture of student learning.  They show that there 

is a stronger correlation between their laboratory assessment and a larger software project 

that students complete in their third year than between the traditional written exam and 

the software project.  It is not clear from their publications whether the correlations are 

statistically significant, nor do they provide information about the reliability, validity, or 

grading of their laboratory assessment.  Even though the correlation is stronger with their 

lab assessments than the more traditional written exams that they had administered 

previously, it does not give any information for an educator to use in their own courses. 

2.5 Study of Per formance in Non-Majors Course 

In an earlier project, I analyzed students’  retention of object-oriented concepts was 

conducted in the CS2 course for non-majors at the University at Buffalo, SUNY (Decker 



CHAPTER 2 BACKGROUND 27 

 

2003).  One problem that grew out of this investigation was that of how to accurately 

assess students’  knowledge in this area.  The solution that was used was one that is 

commonly found in the rest of the literature, to simply use exam scores as the benchmark 

of success.  The experiment was well received by the reviewing committee for the 

Consortium for Computing Sciences in Colleges Eastern Conference as well as attendees 

at the conference as a true empirical investigation of student comprehension of basic 

object-oriented material in a CS1-CS2 sequence.   

However, this study in itself suffers from the same problems as much of the literature 

in this area.  The exams and tests that were administered were not proven to be reliable or 

valid.  Furthermore, this experiment covered only the students’  knowledge of object-

oriented concepts, not general CS1 knowledge.  In this dissertation, we seek a valid, 

reliable, and comprehensive assessment of CS1 knowledge that is independent of 

language or paradigm. 

2.6 Analysis of Published Assessment Instruments 

Three publicly available instruments will be considered in this section, the Advanced 

Placement (AP) Exam for Computer Science, the Educational Testing Services’  (ETS) 

Major Field Test in Computer Science, and the Graduate Record Exam (GRE) Subject 

Test in Computer Science.  For each exam, the content of the exam, the construction 

process, and some information about the grading of the exam will be presented, as well as 



28 CHAPTER 2 BACKGROUND   
 

information about the psychometric properties of the instruments, specifically reliability 

and validity measures. 

Information about the reliability of these tests has been gathered mainly from the test 

makers themselves.  This could be viewed by some as potentially problematic.  

Especially for test makers like the ETS, which produces the AP, Major Field Test, and 

GRE, reliability will have to be high for people to continue to use the tests.  However, 

since ETS owns all of the raw data, it is difficult for independent analysis to be 

performed on the exams and this provides the ability for some to question these tests and 

pushes the test makers to provide continued data about the reliability and validity of the 

tests upon which so many rely. 

2.6.1 Advanced Placement Exam 

 The Advanced Placement (AP) exam is given at the end of a high school course 

of study in a topic that is usually reserved for the college level.  The program was 

designed to help high school students take college-level courses before graduating from 

high school.  There are many different topics that one can take an advanced placement 

course in.  Each high school can offer as many different types of AP courses as they see 

fit.  At the end of the course, students take the AP exam.  These AP grades are then 

passed along to the college or university of their choice, which have traditionally given 

some sort of credit for “good” scores on the AP exam.  Each college or university sets its 

own standards for awarding credit based on AP score. 



CHAPTER 2 BACKGROUND 29 

 

There are two AP courses and tests in computer science, the Computer Science A and 

the Computer Science AB.  The Computer Science A exam covers material generally 

presented in CS1, while the AB exam covers material from CS1 and CS2 (AP, 2003).  

The AP exams are written by a team called the Development Committee (AP CS 

Development Committee, 2004).  The committee for the Computer Science exams 

consists of instructors from colleges and universities that teach introductory computer 

science.  They develop questions, which are then reviewed by content experts and the 

chief reader for that exam from ETS, the company that publishes the exam.  After 

approval, questions can be added to the exam.   

The AP exam was developed with the recommendations for curriculum of the ACM 

and IEEE, which would indicate that it should follow the CC2001 recommendations (AP 

2003).  However, the exam booklet does not indicate that the exam is based on any 

curricular models specifically, so it is not certain whether it follows CC2001.     

Both the Computer Science A and AB exam are broken into a multiple choice and 

free response section.  The multiple choice section has 40 questions, and the free 

response has four questions.  The multiple choice section is given 75 minutes, and the 

free response section is given 105 minutes (AP CS A Test Description, 2004; AP CS AB 

Test Description, 2004).   

The multiple choice sections are scored by a computer, and the free response 

questions are scored by outside readers using a grading guideline.  For each exam, the 

development committee gives weighting to the sections of the exam.  A final score is 



30 CHAPTER 2 BACKGROUND   
 

computed and then mapped to a 5-point system, with 5 indicating extremely qualified in 

this subject area, and 1 indicating not qualified in the area (AP Exam Grading, 2004).  

2.6.1.1 Reliability of the AP Exam 

In the AP exam data, it is a shame that the n3 is not properly reported.  One could 

infer from reading the text that accompanies the tables about reliability that the reliability 

estimates were made from the entirety of the population that took the AP exam for a 

particular year.  In this case, the AP exam data is from the 2003 administration of the 

exam.  The sample population used for this statistical analysis was high school students 

who took the AP exam.  Even though the explicit n is not reported for these statistics, it 

can be assumed that the n consisted of all students who took the AP exam in the year 

2003 (AP CS A Reliability 2004; AP CS AB Reliability 2004).   

It is interesting to note that the reliability coefficients are lower for the Computer 

Science AB exam (.919) than for the A exam (.955).4 It is hard to know why this would 

be the case and also not evident whether the reliability is statistically significantly lower.  

From a cursory examination of the numbers provided, they seem close enough to not be a 

statistically significant difference.  In either case, the reliability coefficients are 

considered adequate for an instrument. 

 

                                                 
3 In statistical reporting, n is the total number of data points used in any statistical analysis. 
4 The numbers given in reliability estimates are the results of the statistical test known as Cronbach’s alpha.  
This is a measure of internal consistency reliability.  The results of Cronbach’s alpha range from 0 to 1 with 
1 being 100% reliable, with a number above .7 considered minimally acceptable for consistency. 



CHAPTER 2 BACKGROUND 31 

 

2.6.1.2 Validity of the AP Exam 

For the AP exam, two types of validity information are given.  The first is a 

comparison between AP students and non-AP students on an alternate exam developed 

by the AP exam creators.  The alternate exam that was created contained 12 multiple 

choice questions and one free response question from the 1999 Computer Science A or 

AB exam.  Equal weights were placed on both sections of the exam.  Thirteen colleges 

and universities participated in the study for the Computer Science A exam, and 12 

participated in the Computer Science AB exam (AP Validity, 2004).   

The results that are reported for this study are the average scores on these sample 

questions for the students.  For the AP CS A exam, AP students had an average score of 

47, while non-AP students had an average score of 40.  For the AP CS AB exam, AP 

students had an average score of 55, while non-AP students had an average score of 47.  

The fact that the average score for the AP students is higher is reported as being 

significant.  However, there is no indication if there is a statistically significant difference 

between the scores of the two groups, because information was not reported about which 

statistical test was used or the computed values of those tests. 

I have reservations about using the results from this study as any form of evidence of 

validity for this test.  First of all, saying one number is higher than another does not show 

statistically that the results of one group are any different than the other.  Secondly, since 

the students were using actual questions from the AP exam, students who took the AP 

courses could have the unfair advantage of having seen those questions before while 



32 CHAPTER 2 BACKGROUND   
 

taking the AP course and practicing for the exam.  There could be a practice effect 

influencing their scores.  Lastly, this study was conducted on students who are already in 

college.  The study does not indicate when the exam was administered to the students.  It 

could be the case that students in college would approach an exam of this type differently 

than the typical high school students that would normally take the AP exam.  However, 

this evidence is presented as proof of validity for the AP exam.   

The second reporting of validity information shows the overall performance of AP 

students versus non-AP students in higher level courses overall.  The GPAs of the 

students were compared to show that in most cases the average GPA of an AP student 

was higher than the average GPA of those who did not take AP but who took lower-level 

college courses in that particular discipline.  The report cited here worked with 21 

colleges and universities and covered all of the AP exams that were given at the time of 

the study (Morgan and Ramist, 1998).  The use of overall GPA as an outcome measure to 

show the validity of the AP exam is questionable at best.  The validity of the AP exam for 

assessing student proficiency in a particular topic area would have nothing to do with a 

student’s overall GPA after taking the exam. 

Once again, it is not clear whether the differences in student performance are 

statistically significant.  The reporting only points out the difference between the two 

groups of scores, not the results of statistical tests (such as a t-test) looking for differences 

in the two groups.  Furthermore, I am not sure if this evidence provides support for the 

validity of an AP exam to assess the content of a particular discipline.  It can be argued 



CHAPTER 2 BACKGROUND 33 

 

that students choosing to pursue college-level work in high school are probably more 

motivated to succeed than those who do not, and this motivation could contribute more to 

their overall success in college than the AP program itself.  No precautions were 

reportedly taken when analyzing the data reported in this study.  With the lack of real 

statistical evidence, I once again call into question the usefulness of these results in 

assessing validity. 

2.6.2 Graduate Record Exam Subject Test in Computer  Science 

For most students entering a graduate program, a GRE general test is required in 

order to show their suitability for graduate work.  The GRE subject tests provide 

information about a student’s overall abilities in a particular subject area (GRE Subject 

Test General Description, 2004).  In the case of computer science, the test contains 

questions in the areas of software systems and methodologies, computer organization and 

architecture, and theory and mathematical background.  It is designed to be given at the 

end of an undergraduate program to be used as a tool by graduate departments to assess a 

candidate’s suitability for graduate work in Computer Science (GRE Subject Test 

Computer Science Description, 2004). 

The test contains 70 multiple choice questions, which are scored on a scale from 20-

99.  The raw scores are computed by adding up the number of correct scores and 

subtracting ¼ of a point for each incorrect answer given.  When scores are reported, they 

are scaled by adding a zero to the points earned, so scores could range from 200-990 on 



34 CHAPTER 2 BACKGROUND   
 

any particular subject test.  This scaling is not reported as a normalizing procedure in the 

published GRE descriptions, although it is reasonable to assume that it could be a 

normalizing of the scores.  Students are given two hours and fifty minutes to complete the 

test (GRE Subject Test Computer Science Description, 2004).   

The test creation process involves professors at both the graduate and undergraduate 

levels at colleges and universities in the United States and Canada.  The members of this 

committee write and review test questions that are assembled by ETS into a test.  

Members of the ETS testing service then also review the test for content and any 

potential bias.  New versions of the tests are analyzed to make sure they are equivalent in 

content and difficulty to the older versions.  Revisions to content and scope of the test are 

undertaken regularly to assure that test content is in line with current trends in 

undergraduate programs across the country (GRE Subject Test Computer Science 

Description, 2004). 

Although this test is available for colleges and universities for administration to 

students at any time during their academic careers, it covers much more material than the 

first year of instruction and would therefore not be a suitable instrument for the purposes 

of this dissertation. 



CHAPTER 2 BACKGROUND 35 

 

2.6.2.1 Reliability of the GRE Subject Test in Computer  Science 

There is data available for the reliability of the regular GRE as an instrument, but I 

could not find any published data could be found about the subject tests to determine 

their reliability. 

2.6.2.2 Validity of the GRE Subject Test in Computer  Science 

The GRE subject tests provide more information about validity of its subject tests, 

however.  Kuncel, Hezlett and Ones (2001) give information for the regular GRE as well 

as the subject tests.  Although no subject test is studied individually, Kuncel, Hezlett and 

Ones provides one of the few pieces of information available about the subject tests at all.  

There were 1,753 independent samples studied in this work to yield the predictive 

validity of the GRE.  The operational validity for the GRE predicting overall graduate 

GPA is reported to be p = .415.  The operational validity for the GRE predicting first year 

graduate GPA is reported to be p = .45.  The operational validity for the GRE predicting 

results on comprehensive exam scores is reported to be p=.51.  The operational validity 

for the GRE correlating with faculty ratings of student performance is reported to be 

p=.50. 

 Another aspect of the GRE Subject Test’s validity is the effort made to ensure that 

the content of the test is appropriate for the departments that will eventually use the test 

results.  In 2001-2002, a survey was conducted to assess the appropriateness of the 

                                                 
5 In this case, the p that is reported is a result of the statistical testing that is done, not an indication of 
significance.  The results reported in this study are significant. 



36 CHAPTER 2 BACKGROUND   
 

content of the GRE Subject Test in Computer Science.  1,250 computer science 

departments were contacted, and there were 256 departments whose input was used to 

analyze the content of the test.  Based on the feedback from the departments, some 

changes were implemented in the content of the test in 2003 (CS Content Rep Study, 

2002).  This evaluation of the material of the test points to a commitment to content 

validity of the instrument. 

2.6.3 ETS Major  Field Test in Computer  Science 

Of the three “standardized”  tests described in this paper, the ETS Major Field Test is 

probably the least known to the average person.  ETS is the creator of the AP, GRE, and 

the Major Field Tests.  The Major Field Tests are designed to be given at the end of a 

four-year undergraduate curriculum.  For the computer science version, students are 

expected to have completed an undergraduate curriculum whose major area of study is 

computer science.  The content of the Major Field Test ranges over all four years of 

undergraduate study and therefore includes introductory programming, but the content is 

not limited to that.  It was modeled after the GRE subject test, but not designed to predict 

success in a graduate program in computer science.  Rather, it was designed to provide an 

assessment of the basic knowledge and understanding of senior undergraduates ready to 

graduate from a field of study (ETS Major Field Test Description, 2004).  Another key 

difference between the GRE Subject Test and the ETS Major Field Test is that with the 

Major Field Test, schools have the opportunity to add to the test up to 50 questions that 

are unique to the institution.  This provides a mechanism for an institution to assess the 



CHAPTER 2 BACKGROUND 37 

 

unique facets of its undergraduate program, while also using the main body of the test as 

a mechanism for comparing its program to other programs across the country. 

This test consists of 60 multiple choice questions in four main areas:  programming 

fundamentals; software engineering; computer architecture, organization, and operating 

systems; and algorithms, theory, and computation mathematics.  There is also a special 

topics section that contains other senior-level computer science topics.  Of these areas, 

only the first would contain information that deals with first year introductory 

programming topics (ETS Major Field Test Description, 2004). 

Faculty from colleges and universities in the discipline of computer science are 

consulted for the creation of the test, and the test is revised every five years.  Students are 

given two hours to complete the test, and institutions can choose to add additional 

questions to the end of the test that are specific to their students.  Students receive scores 

in the range of 120-200, and students are given their score as well as how they ranked 

among their peers taking the test.  Only correct answers are graded on the ETS Major 

Field tests.  No penalty is given for incorrect or omitted answers (ETS Major Field Test 

Description, 2004). 

Once again, this test covers much more information than needed for this dissertation 

and would not be appropriate to administer to students for the purpose of assessing first-

year topics. 



38 CHAPTER 2 BACKGROUND   
 

2.6.3.1 Reliability of the ETS Major  Field Test in Computer  Science 

The reliability estimates for the Major Field test were computed using an internal 

consistency method and are estimated at .87 for the 60 items on the test (ETS Reliability 

2004). 

2.6.3.2 Validity Estimates for  the ETS Major  Field Test in Computer  Science 

Unfortunately, ETS does not provide any validity data about its Major Field Tests.  

This is disappointing and disconcerting.  If there are schools that are using this test as part 

of a final-year assessment of their students, some indication of the appropriateness of this 

test for that task should be given, or at the very least demanded by those faculty that use 

it. 

2.7 Analysis of AP Exam Data 

An experiment was run to see if the grades students received on the AP exam 

correlated with their performance in the introductory courses at the University at Buffalo 

(UB).  The results of the experiment are presented here. 

We looked for a correlation between a student’s AP exam score and the final letter 

grade the student received in CSE 115, which is the first year, first semester course for 

majors offered at UB, the CS1 course.  The AP exam is scored on an ordinal scale of 1 to 

5, with 5 being the highest grade attainable (AP 2003).  Students’  letter grades in CSE 

115 can be A, A-, B+, B, B-, C+, C, C-, D+, D, or F.  There is an option for students to 



CHAPTER 2 BACKGROUND 39 

 

resign courses during the semester; students who resign are given a grade of R.  Students 

who resigned the course and earned a grade of R were omitted from this analysis.  The 

Spearman rank-order correlation test was used, since we have strictly ordinal data in this 

analysis. 

The first group examined consisted of those students who took the AP Computer 

Science A exam and later took CSE 115.  The analysis produced a significant correlation 

between the students’  AP exam score and their overall grade in CSE115, rs(49) = .42, p < 

.01.6 

 In the second analysis, students who took the AP Computer Science AB exam and 

then took CSE 115 were examined.  This analysis showed that there was not a significant 

correlation between the students’  AP exam score and their overall grade in CSE 115, rs = 

.21, n = 27, p > .05.7 

2.7.1.1 Discussion 

 The results for the AP Computer Science A exam show a correlation with CS1 

grade, indicating, for example, that a high grade on the AP exam will indicate a high 

                                                 
6 For statistical reporting purposes, rs(F) = m reports the information about the correlation coefficient.  rs is 
the abbreviation indicating that we are using the Spearman rank-order correlation test.  F represents the 
degree of freedom, which is one less than the total number of data points in the sample.  m is the actual 
correlation coefficient.  Positive numbers represent a direct correlation, while negative numbers represent 
an inverse correlation.  Recall that for any statistical analysis, p values that are less than .05 are considered 
statistically significant results at the 95% confidence level.  Results that have p values less than .01 are 
considered statistically significant at the 99% confidence level. 
7 For the results that are not statistically significant, the correlation coefficient is still reported in the same 
manner as above, but instead of reporting the degree of freedom, we simply report the size of the sample 
data, represented by the letter n. 



40 CHAPTER 2 BACKGROUND   
 

grade in CS1.  However, this type of correlation is not useful, because the AP exam is 

administered at the end of an academic year of high school study.  It has not been proven 

reliable or valid except for use as a predictor for success in CS1 course, or CS1-CS2 

sequence, in the case of the AB exam.  We are looking for an assessment of CS1 

knowledge to be administered after the completion of CS1 in a higher education setting.   

Another shortcoming of the AP exam is that the questions on the exam are given 

using the language C++ and test student knowledge of the object-oriented paradigm.  The 

test has recently switched languages to Java, but remains heavily focused on language.  

The goal for our assessment is one that is language-independent and paradigm-

independent.  The AP exam fails to serve our needs on both of those points.  

The results of the AP Computer Science AB exam seem troubling in that they show a 

lack of correlation with the CS1 grade.  This is likely due to the difference in emphasis of 

the AB exam, which focuses on material in both a CS1 curriculum as well as a CS2 

curriculum as opposed to strictly a CS1 curriculum.  We must recall that a non-significant 

result simply shows us that it is not possible to say definitively that a good grade on the 

AP Computer Science AB exam would lead to a good grade in CS1, or vice versa.  

Prediction of poor performance is also not possible.  In some cases, there may be a 

correlation, but there is not enough significance in the trend to have a statistically 

significant result.  It is also important to note, however, that this exam also has the 

shortcomings of the A exam in that the exam questions are specific to C++ and to object-

oriented programming. 



CHAPTER 2 BACKGROUND 41 

 

Overall, the results of the analysis show that one of the AP exams does correlate with 

student course grades in our institution’s version of CS1.  However, it is not a viable 

solution for the problem this dissertation seeks to address, due to the shortcomings of the 

AP exam discussed previously. 

2.8 Conclusion 

While there have been many investigations into both approaches to the introductory 

curriculum and predictors for success in the introductory courses, little has been done to 

address the issues of assessment of these skills for students as they move forward into the 

more advanced curriculum.  Such assessment is necessary when looking at curricular 

innovation or predictors for success.  An assessment instrument for this purpose needs to 

have a clearly defined set of objectives to assess.  An assessment instrument for this 

purpose also needs to have evidence of reliability and validity. 

There are several standardized and validated instruments available for assessment.  

However, none meet the criteria for applicability at the end of a CS1-CS2 sequence as 

described in the CC2001 document.  This type of instrument is most desirable for future 

testing of curricular development and new exploration of predictors of success. 

In the next chapter, the beginning of the process to create such an instrument will be 

discussed beginning with the analysis of the CC2001 document to create a list of topics 

from which to build an exam.



 42 



 43 
 

Chapter  3 

Analysis of the CC2001 Computer 
Science Volume 

This chapter analyzes relevant portions of CC2001, the curriculum document that 

serves as a basis for constructing my assessment instrument.  Since I am most interested 

in the introductory curriculum for computer science, the sections of CC2001 that contain 

information important for that part of the curriculum will be explained in detail.  Other 

sections of the CC2001 Computer Science volume that are related to other topics will be 

explained briefly for completeness and reference.   

The remainder of the chapter discusses which topics will be considered for inclusion 

as potential topics for the assessment instrument.  The process by which the topics were 

selected will be discussed. 

3.1 Summary of CC2001 

3.1.1 Structure of CC2001 

CC2001 was produced by the members of the Joint Task Force on Computing 

Curricula 2001, created with the support of both the ACM and the IEEE Computer 



44 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

Society.  Three drafts of CC2001 were released in March 2000, February 2001, and 

August 2001.  The final document was released on December 15, 2001.  The main body 

of CC2001 is divided into thirteen chapters, two appendices, an acknowledgments 

section, and a bibliography.   

3.1.2 CC2001 Sections Impor tant to this Disser tation 

Since this chapter of the dissertation serves as a reference to the entire CC2001 

document, it is important to point out that the sections of CC2001 of greatest importance 

to this dissertation are Chapter 5, Chapter 7, Appendix A, and Appendix B, especially the 

subsections Syllabus and Units Covered. 

3.1.3 Chapter  5: Overview of the CS Body of Knowledge 

Chapter 5 of CC2001 begins by listing the fourteen knowledge areas making up the 

core computing science body of knowledge, which correspond to the knowledge focus 

groups discussed in Chapter 1 of CC2001 (see §3.1.6):  

• Discrete Structures (DS) 
• Programming Fundamentals (PF) 
• Algorithms and Complexity (AL) 
• Architecture and Organization (AR) 
• Operating Systems (OS) 
• Net-Centric Computing (NC) 
• Programming Languages (PL) 
• Human-Computer Interaction (HC) 
• Graphics and Visual Computing (GV) 
• Intelligent Systems (IS) 
• Information Management (IM) 
• Social and Professional Issues (SP) 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 45 

 

• Software Engineering (SE) 
• Computational Science and Numerical Methods (CN) 
 

Each knowledge area is further broken down into knowledge units, which represent 

smaller topics within the more general knowledge area.  The knowledge units are further 

broken down into specific topics.  The details of this breakdown are given in the 

Appendices to CC2001 discussed further in §3.1.5 of this dissertation.  

One of the task force’s principle goals for CC2001 was to identify the fundamental 

core of the discipline that everyone earning a degree in computer science should have 

knowledge of.  The designation of this core material is given at the knowledge-unit level.  

The report is careful to point out that simply teaching the core material does not suffice as 

a full curriculum and must be supplemented by other knowledge units that are identified 

as elective, as well as other material deemed appropriate by a particular institution. 

The report also gives recommendations for the number of hours needed to cover a 

particular unit.  These recommended hours correspond to lecture hours or actual 

classroom contact time, and are to be supplemented with outside classroom exercises 

where appropriate; they only represent a minimum recommendation for coverage. 

3.1.4 Chapter  7: Introductory Courses 

Chapter 7 of CC2001 discusses the proposed approaches to the introductory 

curriculum.  CC2001 is careful not to make any recommendations about which approach 

is the best for the introductory curriculum, but rather to point out relative strengths and 



46 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

weaknesses in each of the approaches.  In this way, institutions can decide which 

approach will work best.   

Several questions are raised and answered by this chapter, including:  

• Exactly where does programming fit into the introductory curriculum? 

• How long should the introductory sequence be? 

• How should we integrate discrete mathematics into the introductory 
curriculum? 

• What should be our expectations of the introductory curriculum? 

In an effort to address these questions, the report gives six models for the introductory 

curriculum: imperative-first, objects-first, functional-first, breadth-first, algorithms-first, 

and hardware-first.   

3.1.4.1 Programming-first Approaches 

The imperative-first, objects-first, and functional-first approaches are characterized as 

programming-first approaches to the introductory sequence.  At the end of the 

introductory sequence using any of these three models, students are expected to be fairly 

proficient in programming, and the focus of their entire introductory sequence has been 

programming.  The difference between the three programming-first approaches is what 

type of introductory material is presented earliest and what type of programming 

language is used for the introductory sequence.   



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 47 

 

Imperative-first is arguably the most traditional of the six introductory models 

presented.  A version of this model was first proposed in Curriculum ’78 (Committee on 

Computer Science Curriculum 1978).  In this model, the focus at the beginning of the 

introductory sequence is placed on the “ imperative aspects of a language: expressions, 

control structures, procedures and functions, and other central elements of the traditional 

procedural model”  (Joint Task Force on Computing Curricula 2001: 29).  The language 

used for this type of introductory sequence is not specified, but it should be one that 

enables students to explore these imperative aspects of a language before other language 

features.  Some examples of this type of language could be Pascal, C, or the part of C++ 

that does not use classes. 

For objects-first, the principles of object-oriented programming and design are 

emphasized from the beginning, with objects and inheritance introduced before the more 

traditional control structures (if-statements and loops).  An object-oriented language is 

most appropriate in this model, with common choices being C++ and Java. 

In functional-first, a functional language (such as Scheme or Lisp) is used.  This type 

of course focuses on using functions as the primary unit of computation.  Recursion and 

the use of lists as data structures are introduced early when using this approach. 

3.1.4.2 Advantages and Disadvantages of Programming-First Approaches 

The programming-first approaches to the introductory curriculum have benefits to the 

students.  Since programming is such an essential skill for a computer scientist, 



48 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

emphasizing it as early as possible gives students plenty of exposure and experience.  A 

programming-first approach is also an artifact of history:  Many institutions adopted 

programming courses before having an entire computer science curriculum, and the 

earlier curriculum reports (Curriculum ’68 (Committee on Computer Science Curriculum 

1968) and ’78 (Committee on Computer Science Curriculum 1978)) endorsed this type of 

introductory course. 

However, CC2001’s Chapter 7 also notes that there are several shortcomings to using 

a programming-first approach.  Limiting the focus to programming in the first year gives 

a rather limited view of the discipline of computer science and tends to focus on the 

syntax and use of a particular programming language.  This focus on syntax comes at the 

price of the development of algorithmic skills.  In order to make programming accessible 

to students at a basic level, many courses oversimplify the programming process and do 

not place enough emphasis on design, analysis, and testing of programs.     

Another possible criticism of the current categorization of programming-first 

approaches is that it may not seem entirely clear where every programming language fits.  

For example, Prolog is not clearly an imperative, object-oriented, or functional language.  

Most would categorize Prolog as a declarative or a logic-programming language.  

Therefore, Prolog does not fit nicely into these categorizations.   

When dealing with programming languages, one must also be cognizant of the 

constant evolution of programming languages and the changes in the attitude of the 

computing community toward one language or another at a particular time. Hayes (2006) 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 49 

 

paints an interesting picture of this in his article about how programming languages have 

changed over time.  Even though Hayes lumps the discussion of all the languages in his 

discussion into the three main categories CC2001 covers (as well as Prolog in the logic 

category), he misses an opportunity to discuss the possibility of new paradigms being 

created.  Hayes also does not adequately address the fact that some languages could be 

classified into many different categories.   

This idea of a language crossing multiple paradigms impacts the CC2001 

categorization of a school’s curriculum as well.  Many languages could be taught in 

different ways to illustrate different paradigms.  A popular example of this is C++.  One 

could teach C++ as a strictly imperative language or a strictly object-oriented language.  

A third alternative would be to teach C++ as a little of both.  LISP is another language 

that could be taught in different ways.  Although fundamentally functional, there are 

object-oriented extensions to LISP as well as imperative constructs available in LISP that 

would enable someone to teach the language using many paradigms.     

However, one must remember that CC2001 only provides recommendations and 

details only some of the possible approaches to the curriculum.  There are certainly other 

approaches that are valid, but the focus of CC2001 seems to be on the most popular 

approaches in use at institutions today. 



50 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

3.1.4.3 Non-programming-first Approaches 

An alternative to the programming-first approaches are the non-programming-first 

approaches: Breadth-first, Algorithms-first, and Hardware-first.  Each of these 

approaches has a slightly different emphasis in the first few courses of the curriculum.  

Programming is certainly a part of each of these approaches, but it is not as central as it is 

in the programming-first approaches.  

Breadth-first approaches focus on the breadth of the field of computer science, 

exposing students early to the many interesting facets of the field, and then introducing 

programming only after the first semester.  This approach seeks to better integrate both 

programming and discrete mathematics into the introductory sequence.  With this 

approach, students have a greater appreciation for the diversity of the field of computer 

science and are better prepared to decide if computer science is the field for them.  The 

downside is that the breadth course is an additional course required at the beginning of 

the curriculum. 

Algorithms-first approaches introduce the ideas of the introductory sequence using a 

non-executable pseudo-code rather than an actual programming language and 

environment.  Students are expected to write and analyze algorithms that perform certain 

operations, but they will not run them on a machine to verify their results.  Students move 

on to using an actual programming language in the second semester of study under this 

approach.  The reported benefit of this approach is that students are not caught up with 

syntactic detail right from the beginning of the curriculum; rather, they build up 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 51 

 

algorithmic thinking and problem-solving skills.  However, even with a pseudo-code, 

there is syntax that one must learn, albeit probably simpler than that of some of the 

modern programming languages.  A disadvantage to this approach is that students do not 

get to see exactly what the computer can do for them, because they are focusing for the 

first semester on hand-tracing code and writing out programs never to be run on a 

computer. 

Hardware-first approaches begin with students learning about computation at the 

machine level, using circuits, and eventually working up to registers and a working von 

Neumann machine.  After an introduction to computing at the machine level, the second 

course in this sequence considers programming in a higher-level language.  This course 

benefits those students that prefer to understand the entire process of computing down to 

the machine-level details up front.  However, with the increased emphasis in the 

computing discipline on software and the detachment of programming from hardware 

through the use of more sophisticated virtual machines, this type of course might be 

better suited for a computer engineering program. 

I have mentioned how the non-programming-first approaches address some of the 

shortcomings of the programming-first approaches.  Even though these benefits are 

recognized in the non-programming-first approaches to the introductory curriculum, it is 

still more common to see institutions that follow a programming-first introductory 

sequence.  It is for this reason that I will be focusing on the programming-first 

approaches for the work of this dissertation. 



52 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

3.1.4.4 Concepts across All Approaches 

Chapter 7 of CC2001 also summarizes the set of concepts that should be included in 

each introductory curriculum.  These concepts are given in this chapter in Table 3-1.  

Also included in this chapter is Table 3-2 that shows the knowledge units that should be 

covered in an introductory curriculum.   

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 53 

 

Algor ithmic Thinking  
Concept Description Associated  activities 

Algorithmic 
computation 

Algorithms as models of computational 
processes; examples of important algorithms 

Read and explain algorithms; reason about 
algorithmic correctness; use, apply, and adapt 
standard algorithms; write algorithms 

Algorithmic 
efficiency and 
resource usage 

Simple analysis of algorithmic complexity; 
evaluation of tradeoff considerations; 
techniques for estimation and measurement 

Estimate time and space usage; conduct 
laboratory experiments to evaluate 
algorithmic efficiency 

      

Programming Fundamentals 
Concept Description Associated  activities 

Data models Standard structures for representing data; 
abstract (described by a model) and concrete 
(described by an implementation) description 

Read and explain values of program objects; 
create, implement, use, and modify programs 
that manipulate standard data structures 

Control 
structures 

Effects of applying operations to program 
objects; what an operation does (described by 
a model); how an operation does it (described 
by an implementation) 

Read and explain the effects of operations; 
construct programs to implement a range of 
standard algorithms 

Order of 
execution 

Standard control structures: sequence, 
selection, iteration; function calls and 
parameter passing 

Make appropriate use of control structures in 
the design of algorithms and then implement 
those structures in executable programs 

Encapsulation Indivisible bundling of related entities; client 
view based on abstraction and information-
hiding; implementer view based on internal 
detail 

Use existing encapsulated components in 
programs; design, implement, and document 
encapsulated components 

Relationships 
among 
encapsulated 
components 

The role of interfaces in mediating 
information exchange;  responsibilities of 
encapsulated components to their clients; the 
value of inheritance 

Explain and make use of inheritance and 
interface relationships; incorporate 
inheritance and interfaces into the design and 
implementation of programs 

Testing and 
Debugging 

The importance of testing; debugging 
strategies 

Design effective tests; identify and correct 
coding and logic errors 

      

Computing environments 
Concept Description Associated  activities 

Layers of 
abstraction 

Computer systems as a hierarchy of virtual 
machines 

Describe the roles of the various layers in the 
virtual machine hierarchy 

Programming 
languages and 
paradigms 

Role of programming languages; the 
translation process; the existence of multiple 
programming paradigms 

Outline the program translation process; 
identify at least two programming paradigms 
and describe their differences 

Basic hardware 
and data 
representation 

Rudiments of machine organization; 
machine-level representation of data 

Explain basic machine structure; show how 
different kinds of information can be 
represented using bits 

Tools Compilers, editors, debuggers, and other 
components of programming environments 

Use tools successfully to develop software 

Table 3-1: Figure 7-1 of CC2001 descr ibing the concepts that should be covered in an introductory 
cur r iculum 



54 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

Units for  which all topics must be covered: 
DS1. Functions, relations, and sets 
DS2. Basic logic 
DS4. Basics of counting 
DS6. Discrete probability 
PF1. Fundamental programming constructs 
PF4. Recursion 
PL1. Overview of programming languages 
PL2. Virtual machines 
PL4. Declarations and types 
PL5. Abstraction mechanisms 
SP1. History of computing 

Units for  which only a subset of the topics must be covered: 

DS3. Proof techniques - The following topics should be covered: The structure of formal proofs; proof 
techniques: direct, counterexample, contraposition, contradiction; mathematical induction 

PF2. Algorithms and problem-solving – The following topics should be covered:  Problem solving 
strategies; the role of algorithms in the problem-solving process; the concept and properties of algorithms; 
debugging strategies 

PF3. Fundamental data structures – The following topics should be covered:  Primitive types; arrays; 
records; strings and string processing; data representation in memory; static, stack, and heap allocation; 
runtime storage management; pointers and references; linked structures 

AL1. Basic algorithmic analysis – The following topics should be covered:  Big O notation; standard 
complexity classes; empirical measurements of performance; time and space tradeoffs in algorithms 

AL3. Fundamental computing algorithms – The following topics should be covered:  Simple numerical 
algorithms; sequential and binary search algorithms; quadratic and O(N log N) sorting algorithms; hashing; 
binary search trees 

AR1. Digital logic and digital systems – The following topics should be covered:  Logic gates; logic 
expressions 

PL6. Object-oriented programming – The following topics should be covered:  Object-oriented design; 
encapsulation and information-hiding; separation of behavior and implementation; classes, subclasses, and 
inheritance; polymorphism; class hierarchies 

SE1. Software design – The following topics should be covered:  Fundamental design concepts and 
principles; object-oriented analysis and design; design for reuse 

SE2. Using APIs – The following topics should be covered:  API programming; class browsers and related 
tools; programming by example; debugging in the API environment 

SE3. Software tools and environments – The following topics should be covered:  Programming 
environments; testing tools 

SE5. Software requirements and specifications – The following topics should be covered:  Importance of 
specification in the software process 

SE6. Software validation – The following topics should be covered:  Testing fundamentals; test case 
generation 

Table 3-2: Figure 7-2 from CC2001 knowledge units and topics that are covered by all six 
introductory tracks 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 55 

 

For each of the approaches presented in Chapter 7 of CC2001, details are given about 

their relative strengths and weaknesses.  Sample course syllabi are available for all of the 

approaches in Appendix B of CC2001. 

3.1.5 Appendix A: CS Body of Knowledge and Appendix B: Course 
Descr iptions 

Appendix A of CC2001 starts out by reiterating the ideas behind the knowledge areas 

given previously in the report.  Each knowledge area is then broken down into its 

knowledge units, and each knowledge unit is broken further into topics.  For each 

knowledge area, a general description is given for what the area is and why it is 

considered important to the field.  

For each knowledge unit, it is indicated whether they are core knowledge units and 

how much time (in hours) is needed to cover the core material.  The topics are listed that 

make up the knowledge unit.  Also given are a set of learning objectives that correspond 

with the knowledge unit’ s topics.  In this chapter of this dissertation, §3.2, discusses how 

this time information and topics were used to create a set of core topics that was used as 

the set of core topics for the exam.  Chapter 5 of this dissertation discusses the how the 

learning objectives given in Appendix A of CC2001 map onto the final set of topics used 

to create the exam.  

Appendix B of CC2001 gives the sample syllabi for courses described in the 

introductory, intermediate, and advanced courses chapters.  Each course is given a 



56 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

number and title.  Within each course description there is a brief explanation of the 

course and its prerequisites.  Then the sample syllabus for the course is given followed by 

the knowledge units that are covered and the number of hours that the course should use 

to cover those knowledge units.  

3.1.6 The rest of CC2001: Chapters 1 – 4, 6, and 8 – 13 

Chapter 1 of CC2001 describes the mission of the CC2001 committee and explains 

that the document is the first in a series of curricular models for computing.  The 

Computer Science volume serves as a model curriculum for computer science degree 

programs.  Three other curricular models have been developed: computer engineering, 

information systems, and software engineering.  An information technology curriculum is 

currently in draft form.  As stated earlier, for the purposes of this dissertation, “CC2001” 

refers only to the computer science volume of the curriculum document. 

This chapter also describes the process that was undertaken to revise the curriculum.  

The task force felt it important and necessary to involve many from the computer science 

community to gain perspective and expertise from a large range of individuals.  This 

involvement from the larger community was facilitated by the creation of fourteen 

knowledge focus-groups, one for each of the knowledge units contained in the final 

version of CC2001.  These were each charged with the creation of a document that would 

help the task force prepare the complete computer science body of knowledge.  There 

was also a pedagogy focus group (PFG), whose responsibility was to “consider curricular 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 57 

 

issues across computer science as a whole”  (Joint Task Force on Computing Curricula 

2001: 3).   

Chapter 2 discusses the history of past curriculum efforts and how the task force used 

community reaction to the last curriculum (CC1991) to update and create the new 

curriculum.  The three main reactions were:  

• Knowledge units are not as useful as course or curriculum designs. 

• There is strong support for a more concrete definition of a minimal core. 

• Curriculum reports should pay greater attention to accreditation criteria for 

computer science programs. 

Chapter 3 examines how changes in the world and in technology since the last 

curriculum report impact this curriculum.  The chapter points out that such things as the 

growth of the World Wide Web and applications associated with it require changes to the 

curriculum.  Also included is how cultural changes across the world, such as the increase 

in the number of homes using computers and having Internet access, have made 

computing a much different discipline now than when CC1991 was created. 

Chapter 4 of CC2001 discusses the principles that guided the work of the task force.  

These principles, reprinted here from pages 12-13 of CC2001 are: 

1. Computing is a broad field that extends well beyond the boundaries of 
computer science. 

2. Computer science draws its foundations from a wide variety of disciplines. 



58 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

3. The rapid evolution of computer science requires an ongoing review of the 
corresponding curriculum. 

4. Development of a computer science curriculum must be sensitive to changes 
in technology, new developments in pedagogy, and the importance of lifelong 
learning. 

5. CC2001 must go beyond knowledge units to offer significant guidance in 
terms of individual course design. 

6. CC2001 should seek to identify the fundamental skills and knowledge that all 
computing students must possess. 

7. The required body of knowledge must be made as small as possible. 

8. CC2001 must strive to be international in scope. 

9. The development of CC2001 must be broadly based. 

10. CC2001 must include professional practice as an integral component of the 
undergraduate curriculum. 

11. CC2001 must include discussions of strategies and tactics for implementation 
along with high-level recommendations. 

 

Chapter 6 of CC2001 introduces the implementation strategies for model curricula.  

The curriculum is divided into three course levels: introductory, intermediate, and 

advanced.  For the introductory level, six different implementation strategies are 

proposed and discussed later in the report (but earlier in this dissertation; see §3.1.4).   

For the intermediate level, four different approaches are proposed: topic-based, 

compressed, systems-based, and web-based.  The advanced level consists of courses that 

are designed to complete the curriculum.  

The CC2001 report proposes that a curriculum can be developed using any of the 

introductory course models, followed by any of the intermediate course models, and 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 59 

 

finishing with the advanced courses.  Chapter 6 of CC2001 ends with two examples of 

selecting an introductory and intermediate approach and how those approaches will help 

cover the computer science core. 

Chapter 8 of CC2001 discusses approaches to the intermediate curriculum and also 

gives sample course syllabi (in Appendix B of CC2001) for the different approaches.  

These approaches are: 

• A traditional approach in which each course addresses a single topic 

• A compressed approach that organizes courses around broader themes 

• An intensive systems-based approach 

• A web-based approach that uses networking as its organizing principle 

Chapter 9 of CC2001 discusses additions to the base curriculum presented in 

Chapters 7 and 8 to complete the curriculum.  Topics that are discussed to “ fill out”  a 

curriculum are mathematical rigor, the scientific method, familiarity with applications, 

communications skills, and working in teams.  Several sample courses are presented that 

help to “ fill out”  the topics given above that also fit into the knowledge areas and cover 

some of the elective knowledge units.  Another type of course that is discussed and 

recommended here is a project course that forces students to complete a large-scale 

computing project, usually working in teams.  

 Chapter 9 of CC2001 also gives a few complete sample curricula.  The first 

example is for a research university in the United States.  The second is a discipline-

based model, used primarily in countries outside of the United States and Canada, where 



60 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

students do not take a large portion of their coursework at the university-level as general 

education requirements, but rather focus almost entirely on their field of study.  The third 

is a model for a small department, one that has less than five or six faculty.  The last is a 

model for two-year colleges, whose students are expected to transfer to a four-year 

institution for completion of a bachelor’s degree. 

Chapter 10 of CC2001 discusses the integration of professional practice into the 

curriculum.  It has become increasingly evident that employers need and want certain 

skills out of recent college and university graduates, and it is necessary to try to 

incorporate some of these skills into the educational process.  Some current models for 

incorporating these ideas into the curriculum are presented in Chapter 10, as well as 

discussion of how a department can support professional practice within the curriculum, 

and assess whether its students are incorporating these ideas appropriately in their work. 

Chapter 11 of CC2001 discusses the general characteristics that students with a 

computer science degree should possess.  This includes their capabilities and skills, as 

well as their ability to cope with this ever-changing field.  The last element presented in 

this chapter is a set of standards for benchmarking a student’s level of achievement with 

the curricular goals.  These standards give minimum standards (called threshold 

standards) that all graduates should meet as well as more advanced standards (called 

modal standards) to encourage achievement beyond the minimum.  For example, a 

threshold standard is “Demonstrate a requisite understanding of the main body of 

knowledge and theories of computer science” , while a modal standard is “Demonstrate a 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 61 

 

sound understanding of the main areas of the body of knowledge and the theories of 

computer science, with an ability to exercise critical judgment across a range of issues” . 

Chapter 12 of CC2001 seeks to give suggestions for how computing and computing 

ideas can be presented to students across all academic disciplines as well as computer 

science’s place in the field of academics. 

Chapter 13 of CC2001 is a concluding chapter about how this report should be used 

by a local institution and gives suggestions for what types of resources (both machinery 

and personnel) are needed to make any implementation a success. 

3.2 Analysis of the Programming-First Approaches to the 
Introductory Cur r iculum 

This section shows the intersection of topics of the three programming-first 

approaches to the introductory curriculum.  First examined are the sample syllabi for the 

programming-first CS1 courses and then the syllabi for both CS1 and CS2.  The CS1 

courses have a small overlap; there is a larger overlap in topics when both CS1 and CS2 

are considered.  As a consequence, our assessment instrument addresses both CS1 and 

CS2. 

I conclude with a discussion of inconsistencies between the wording of the course 

descriptions and the descriptions of the topical coverage contained elsewhere in CC2001. 



62 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

3.2.1 Two- or  Three-Semester  Sequence 

Appendix B of CC2001 gives course descriptions for both two-semester and three-

semester versions of introductory courses in both the programming-first and non-

programming-first approaches.  There are both two- and three-semester models for 

imperative-first and objects-first.  However, for functional-first, there is only a two-

semester model.  Therefore, my efforts focused only on two-semester course models. 

3.2.2 Justification for  Programming-First 

Of the six approaches to the introductory curriculum endorsed by CC2001 (three 

programming-first approaches (imperative-first, objects-first, functional-first) and three 

non-programming-first approaches (breadth-first, algorithms-first, and hardware-first)),  I 

have chosen to look for commonalities among only the programming-first approaches 

and create an assessment for these types of courses.  There are two main reasons for this. 

The first reason is that many institutions use the programming-first model for their 

introductory sequence of courses and will continue to do so for the foreseeable future.  

This model has proven extremely durable and long-lasting as a model for the introductory 

curriculum.   

The second reason is the difference in emphasis of the programming-first approaches 

from the non-programming-first approaches.  The non-programming-first approaches 

each emphasize a different aspect of the computing discipline (hardware, algorithms, or 

breadth coverage).  These three approaches are discussed in depth in CC2001 and 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 63 

 

summarized in §3.1.4.3.  The three foci of the non-programming-first approaches do not 

overlap with each other and none have a significant programming component.  Focusing 

only on the programming-first approaches yields a better intersection of topic coverage 

and, with the popularity of the programming-first approaches, an assessment that will be 

widely applicable at various institutions. 

Lastly, the programming-first approach is the approach used at the University at 

Buffalo for CS1 and CS2.  Since the University at Buffalo is the most readily accessible 

population to serve as test subjects for the exam, it makes the most sense to create an 

exam that can be administered to those students. 

3.2.3 Intersection of Topics for  CS1 

The intersection of topics among the CS1 courses described by CC2001 is small and 

does not yield the amount of coverage that should be present in a true assessment of a 

semester’s worth of work. 

This is an unfortunate result because an assessment of strictly CS1 could be useful in 

a number of contexts.  First, those seeking to look at changes made to a particular CS1 

course could tell if the changes had an impact on student performance.  Second, those 

interested in predictors of success often focus strictly on CS1.  A validated assessment for 

the end of a CS1 course provides a metric by which to measure success.  However, as 

will be discussed in this section, a CS1 assessment is simply not possible with amount of 

topic coverage common to all three programming-first approaches. 



64 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

3.2.3.1 Knowledge Area Analysis 

Let us first look at the knowledge areas covered by each of the three programming-

first CS1 courses.  The knowledge areas covered by a specific course are given in 

Appendix B’s course descriptions labeled Units covered.  These findings are summarized 

in Table 3-3.  An X in a row indicates that the knowledge area is covered in that course.   

Knowledge Area8 
Imperative-
first9 CS1 

Objects-
first CS1 

Functional-
first CS1 

Algorithms and Complexity (AL) X X X 

Programming Fundamentals (PF) X X X 

Programming Languages (PL) X X X 

Social and Professional Issues (SP) X X X 

Software Engineering (SE) X X X 

Graphics and Visual Computing (GV) X X  

Architecture and Organization (AR) X   

Discrete Structures (DS)   X 

Operating Systems (OS)   X 
Computational Science (CN)    
Human-Computer Interaction (HC)    
Information Management (IM)    
Intelligent Systems (IS)    
Net-Centric Computing (NC)    

Table 3-3: Knowledge Area Coverage for  Programming-first CS1 courses 

 
It is interesting to note that the knowledge area for Architecture and Organization is 

present in the imperative-first approach and no others, while the knowledge area for 

                                                 
8 Any information contained in this chapter that refers to CC2001 has been taken verbatim from the 
document.  However, the order has been changed so that topics covered by all three approaches are listed 
first, followed by topics covered in only two approaches, etc.  All spellings, abbreviations, titles, and 
capitalization have been copied from that document. 
9 Note that for the remainder of the tables in this chapter, Imperative-first, Objects-first, and Functional-first  
will be abbreviated as IF, OF, and FF respectively. 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 65 

 

Operating Systems is present for functional-first and no others.  The reasons come right 

from the course descriptions given in Appendix B.  The imperative-first approach puts 

emphasis on the machine representation of data as part of CS1, as well as discussion of 

the von Neumann architecture.  The other two approaches do not include such topics.  

The functional-first approach includes information about concurrency, because many 

functional languages have built-in mechanisms for handling concurrency that can 

therefore easily be discussed early. 

Table 3-3 shows us that the common knowledge areas in CS1 across all three 

approaches are: Programming Fundamentals, Algorithms and Complexity, Programming 

Languages, Social and Professional Issues, and Software Engineering. 

3.2.3.2 Knowledge Unit Analysis 

Each knowledge area is divided into more detailed knowledge units.  Table 3-4 

through Table 3-8 summarize, for each knowledge area, which knowledge units are 

covered by the CS1 courses.  Once again, this information is in the Units covered section 

of each sample syllabus in Appendix B of CC2001. 

Knowledge Unit IF CS1 OF CS1 FF CS1 

PF1. Fundamental programming constructs X X X 

PF2. Algorithms and problem-solving X X X 

PF3. Fundamental data structures X X X 

PF4. Recursion  X X 

PF5. Event-driven programming    

Table 3-4: Programming Fundamentals Knowledge Unit Coverage for  CS1 



66 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

 
Knowledge Unit IF CS1 OF CS1 FF CS1 

AL3. Fundamental computing algorithms X X X 
AL5. Basic computability X X X 
AL1. Basic algorithmic analysis   X 
AL2. Algorithmic strategies   X 
AL4. Distributed Algorithms    
AL6. The complexity classes P and NP    
AL7. Automata theory    
AL8. Advanced arithmetic analysis    
AL9. Cryptographic algorithms    
AL10. Geometric algorithms    
AL11. Parallel algorithms    

Table 3-5: Algor ithms and Complexity Knowledge Unit Coverage in CS1 

 
 

Knowledge Unit IF CS1 OF CS1 FF CS1 

PL4. Declarations and types X X X 
PL5. Abstraction mechanisms X X X 
PL1. Overview of programming languages X  X 
PL6. Object-oriented programming X X  
PL7. Functional programming   X 
PL2. Virtual machines    
PL3. Introduction to language translation    
PL8. Language translation systems    
PL9. Type systems    
PL10. Programming language semantics    
PL11. Programming language design    

Table 3-6: Programming Languages Knowledge Unit Coverage in CS1 

 
 

Knowledge Unit IF CS1 OF CS1 FF CS1 

SP1. History of computing X X X 
SP5. Risks and liabilities of computer-based systems  X  
SP2. Social context of computing    
SP3. Methods and tools of analysis    
SP4. Professional and ethical responsibilities    
SP6. Intellectual property    
SP7. Privacy and civil liberties    
SP8. Computer crime    
SP9. Economic issues in computing    
SP10. Philosophical frameworks    

Table 3-7: Social and Professional Issues Knowledge Unit Coverage in CS1 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 67 

 

 
Knowledge Unit IF CS1 OF CS1 FF CS1 

SE1. Software design X X X 

SE3. Software tools and environments X X X 

SE2. Using APIs  X  

SE5. Software requirements and specifications X   

SE6. Software validation X   

SE4. Software processes    

SE7. Software evolution    

SE8. Software project management    

SE9. Component-based computing    

SE10. Formal methods    

SE11. Software reliability    

SE12. Specialized systems development    

Table 3-8: Software Engineer ing Knowledge Unit Coverage in CS1 

 

3.2.3.3 Analysis of Knowledge Units in Intersection 

Ten knowledge units are covered by all three programming-first approaches:  

• PF1. Fundamental programming constructs 
• PF2. Algorithms and problem-solving 
• PF3. Fundamental data structures 
• AL3. Fundamental computing algorithms 
• AL5. Basic computability 
• PL4. Declarations and types 
• PL5. Abstraction mechanisms 
• SP1. History of computing 
• SE1. Software design 
• SE3. Software tools and environments 
 

Each of these knowledge units is covered in all three course models.  What still needs 

to be investigated is whether these knowledge units are covered to the same degree in 



68 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

each course and whether these topics make up a large enough portion of the courses to be 

considered an appropriate assessment of the topics covered in those courses. 

A first approximation to determining the degree of coverage is to consider the 

percentage of the common knowledge units to the total.  These results are summarized in 

Table 3-9. 

  IF CS1 OF CS1 FF CS1 

Total number of Knowledge Units Covered in CS1 17 15 17 

Number of Knowledge Units in Intersection 10 10 10 

Percentage Covered by Intersection 59% 67% 59% 

Percentage Not Covered by Intersection 41% 33% 41% 

Table 3-9: Percentages of Knowledge Units Covered by Intersection 

 
 We see that there is a range of 59% - 67% of total knowledge-unit coverage for 

the three approaches.  These figures have been computed using only the actual number of 

knowledge units covered, not the time spent on each knowledge unit or the actual sub-

topics from each knowledge unit covered by the courses.  Let us consider these 

percentages next. 

Each course has been designed for forty course-lecture-hours.  The breakdown of 

hours per knowledge unit is given in the Units covered section of the sample course 

syllabi in Appendix B.  Recall from the information given in CC2001 that these lecture 

hours are given to represent actual in-class time in a lecture-style course.  The results of 

this analysis are summarized in the Table 3-10. 

 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 69 

 

  IF CS1 OF CS1 FF CS1 
Total number of lecture hours in CS1 40 40 40 
Number of lecture hours covered by 
knowledge units in Intersection 

28 24 21 

Percentage Covered by Intersection 70% 60% 53% 
Percentage Not Covered by Intersection 30% 40% 47% 

Table 3-10: Percentages of Total Course Lecture Hours Covered by Intersection 

 
The amount of hours varies more widely than the knowledge units.  The intersection 

only makes up a little more than half of the lecture time for functional-first, while it is 

more than two-thirds of the lecture time for imperatives-first. 

3.2.3.4 Conclusions about CS1 intersection 

If we focus only on the intersection in CS1, as much as 41% of the knowledge units 

presented in a course can be missing and as much as 47% of the course lecture hours can 

be missing from both the intersection of topics and an exam built from that intersection.  

Analysis did not proceed down to the topic level for CS1.  Given the percentage of 

knowledge units missing from the intersection and the fact that the topics are simply 

refinements of a knowledge unit, such an analysis would not have yielded any better 

results for an intersection.  An assessment instrument that tests for only a little more than 

half of the course content does not seem to be an appropriate test of a student’s abilities 

with the course material.   



70 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

3.2.4 Intersection of Topics for  CS1 and CS2 

Given the fact that this intersection is not really large enough to make a meaningful 

assessment for each of these three approaches to the introductory curriculum, let us next 

consider an intersection of topics for the entire first year of introductory material, CS1 

and CS2. 

Since it is important to focus only on implementations that all three programming-

first approaches share, and there is no three-semester implementation for functional-first, 

we will only consider the two-semester sequences of the programming-first approaches 

while looking for the intersection in CS1 and CS2. 

3.2.4.1 Knowledge Area Analysis 

Table 3-11 shows the knowledge areas common to the first two semesters (CS1 & 

CS2) of all three programming-first approaches. 

Knowledge Area IF CS1 & CS2 OF CS1 & CS2 FF CS1 & CS2 
Algorithms and Complexity (AL) X X X 
Programming Fundamentals (PF) X X X 
Programming Languages (PL) X X X 
Social and Professional Issues (SP) X X X 
Software Engineering (SE) X X X 
Discrete Structures (DS) X  X 
Graphics and Visual Computing (GV) X X  
Architecture and Organization (AR) X   
Human-Computer Interaction (HC)  X  
Operating Systems (OS)   X 
Computational Science (CN)    
Information Management (IM)    
Intelligent Systems (IS)    
Net-Centric Computing (NC)    

Table 3-11: Knowledge Area Coverage for  Programming-first CS1 &  CS2 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 71 

 

Although a few new knowledge areas are now included, the intersection is identical to 

that of CS1 above.  

3.2.4.2 Knowledge Unit Analysis 

Since the knowledge area intersection was the same, it is important to determine 

which knowledge units are covered by all three approaches in both CS1 and CS2.  These 

results can be seen in Table 3-12 through Table 3-16. 

Knowledge Unit IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

PF1. Fundamental programming constructs X X X 
PF2. Algorithms and problem-solving X X X 
PF3. Fundamental data structures X X X 
PF4. Recursion X X X 
PF5. Event-driven programming  X X 

Table 3-12: Programming Fundamentals Knowledge Unit Coverage for  CS1 and CS2 

 
 

Knowledge Unit IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

AL1. Basic algorithmic analysis X X X 
AL3. Fundamental computing algorithms X X X 
AL5. Basic computability X X X 
AL2. Algorithmic strategies  X X 
AL4. Distributed Algorithms    
AL6. The complexity classes P and NP    

AL7. Automata theory    

AL8. Advanced arithmetic analysis    

AL9. Cryptographic algorithms    

AL10. Geometric algorithms    

AL11. Parallel algorithms    

Table 3-13: Algor ithms and Complexity Knowledge Unit Coverage in CS1 and CS2 

 
 
 
 



72 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

Knowledge Unit IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

PL1. Overview of programming languages X X X 
PL2. Virtual machines X X X 
PL4. Declarations and types X X X 
PL5. Abstraction mechanisms X X X 
PL6. Object-oriented programming X X X 
PL3. Introduction to language translation X   
PL7. Functional programming   X 
PL8. Language translation systems    

PL9. Type systems    

PL10. Programming language semantics    

PL11. Programming language design    

Table 3-14: Programming Languages Knowledge Unit Coverage in CS1 and CS2 

 
Knowledge Unit IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

SP1. History of computing X X X 
SP5. Risks and liabilities of computer-based systems  X  
SP2. Social context of computing    
SP3. Methods and tools of analysis    
SP4. Professional and ethical responsibilities    
SP6. Intellectual property    

SP7. Privacy and civil liberties    

SP8. Computer crime    

SP9. Economic issues in computing    

SP10. Philosophical frameworks    

Table 3-15: Social and Professional Issues Knowledge Unit Coverage in CS1 and CS2 

 
Knowledge Unit IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
SE1. Software design X X X 
SE2. Using APIs X X X 
SE3. Software tools and environments X X X 
SE5. Software requirements and specifications X X X 
SE6. Software validation X X X 
SE4. Software processes    
SE7. Software evolution    
SE8. Software project management    
SE9. Component-based computing    
SE10. Formal methods    
SE11. Software reliability    
SE12. Specialized systems development    

Table 3-16: Software Engineer ing Knowledge Unit Coverage in CS1 and CS2 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 73 

 

Notice that there are now 18 instead of only 10 knowledge units common to all three 

programming-first approaches.  The new knowledge units included for the CS1-CS2 

intersection are: 

• PF4. Recursion 
• AL1. Basic algorithmic analysis 
• PL1. Overview of programming languages 
• PL2. Virtual machines 
• PL6. Object-oriented programming 
• SE2. Using APIs 
• SE5. Software requirements and specifications 
• SE6. Software validation 

3.2.4.3 Analysis of Knowledge Units in the Intersection 

Once again, it is important to consider the percentage of coverage these knowledge 

units represent.  These results are summarized in the Table 3-17. 

  IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Total number of Knowledge Units Covered in CS1 23 23 23 

Number of Knowledge Units in Intersection 18 18 18 

Percentage Covered by Intersection 78% 78% 78% 

Percentage Not Covered by Intersection 22% 22% 22% 

Table 3-17: Percentages of Knowledge Units Covered by Intersection 

These results are promising, showing that in fact there are an equal number of 

knowledge units covered by each of the three programming-first CS1s and CS2s.  

Furthermore, the intersection comprises over three-quarters of the knowledge units 

covered in the courses. 

The analysis of how many lecture hours are covered by the knowledge units in the 

intersection is even more promising.  The results of this analysis are presented in Table 3-

18. 



74 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

 IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Total number of lecture hours in CS1 80 80 80 
Number of lecture hours covered by knowledge 
units in Intersection 

69 70 65 

Percentage Covered by Intersection 86% 88% 81% 

Percentage Not Covered by Intersection 14% 12% 19% 

Table 3-18: Percentages of Total Course Lecture Hours Covered by Intersection 

 
With this new intersection of knowledge units from CS1 and CS2, there is very little 

lecture time for each course that is devoted to topics outside of the intersection.  In fact, 

for all three approaches, over 80% of the lecture time is spent on material in the 

intersection.  This intersection seems to be a much stronger basis from which to extract 

topics for the assessment instrument.   

In fact, one notices that objects-first leads in the amount of course coverage devoted 

to the intersection of topics that are common to all three approaches.  This could be used 

as an argument in favor of objects-first, because it appears to have the most time devoted 

to topics that CC2001 deems to be the core of CS1-CS2. 

3.2.4.4 Analysis of Topics from the Knowledge Unit Intersection 

There is one more level of description that defines a knowledge area:  the topics 

included in each knowledge unit.  It is important to look at these topics to ensure that the 

three approaches are not covering vastly different topics within the same knowledge unit.  

Appendix A of CC2001 gives the listing of topics that should be covered for each of the 

knowledge units.  



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 75 

 

The first attempt to identify the topics covered in each of the courses involved 

looking at the section labeled Syllabus in the sample course descriptions given in 

Appendix B of CC2001.  The syllabus is described as a “bulleted list providing an outline 

of the topics covered”  (Joint Task Force on Computing Curricula 2001: 159).  Quickly 

browsing these topics, they seem to correspond with the topics listed for each of the 

knowledge units.  

For each knowledge unit in the intersection, I show which topics from the knowledge 

unit are covered by each of the three programming-first CS1-CS2 sequences (see Table 

3-19 through Table 3-36).10  As an alternative view, the next set of tables (Table 3-37 

through Table 3-42) show which topics are covered by all three approaches, which topics 

are covered by only two of the three approaches, which topics are covered by only one of 

the approaches, and which topics are covered by none of the approaches. 

PF1. Fundamental Programming Constructs Topics IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Basic syntax and semantics of a higher-level language X X X 
Conditional and iterative control structures X X X 
Functions and parameter passing X X X 
Variables, types, expressions, and assignment X X X 
Simple I/O X  X 
Structured decomposition X  X 

Table 3-19: PF1. Fundamental Programming Constructs topics covered in programming-first CS1-
CS2 

 
 
 
 

                                                 
10 Please note that since these tables were created using this technique of skimming the syllabus sections of 
CC2001, several of the tables may seem to be missing topics.  The discussion of this fact and resolutions of 
some of the apparent ambiguities are discussed in §3.2.5 – 3.2.8. 



76 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

PF2. Algorithms and problem-solving Topics IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

The concept and properties of algorithms X X X 
Implementation strategies for algorithms X X X 
Problem-solving strategies X X X 
Debugging strategies X  X 
The role of algorithms in the problem-solving process   X 

Table 3-20: PF2. Algor ithms and Problem-Solving topics covered in programming-first CS1-CS2 

 
 

PF3. Fundamental Data Structures IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Arrays X X X 

Linked structures X 
X (use of, not 

implementation) 
X 

Strings and string processing X X X 
Implementation strategies for graphs and trees X X (introduction)  
Implementation strategies for stacks, queues, and 
hash tables X 

X (use of, not 
implementation) 

 

Pointers and references X  X 
Primitive types X  X 
Records X  X 
Strategies for choosing the right data structure X  X 
Data representation in memory X   
Static, stack, and heap allocation X   
Runtime storage management X   

Table 3-21: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2 

 
 
 

PF4. Recursion IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

The concept of recursion X X X 
Implementation of recursion X X  
Divide-and-conquer strategies X  X 
Recursive backtracking X  X 
Recursive mathematical functions X  X 
Simple recursive procedures X  X 

Table 3-22: PF4. Recursion topics covered in programming-first CS1-CS2 

 
 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 77 

 

AL1. Basic algorithmic analysis IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Asymptotic analysis of upper and average 
complexity bounds X  X 

Big O, little o, omega, and theta notation X (Big O 
only) 

 
X (Big O 

only) 
Empirical measurements of performance X  X 
Standard complexity classes X  X 
Identifying differences among best, average, and 
worst case behaviors    

Time and space tradeoffs in algorithms    

Using recurrence relations to analyze recursive 
algorithms    

Table 3-23:AL1. Basic Algor ithmic Analysis topics covered in programming-first CS1-CS2 

 

AL3. Fundamental computing algorithms 
IF CS1-

CS2 
OF CS1-

CS2 
FF CS1-

CS2 

Sequential and binary search algorithms X  X 
Binary search trees X   
Hash tables, including collision-avoidance strategies X   
O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) X   
Quadratic sorting algorithms (selection, insertion) X   
Simple numerical algorithms   X 
Depth- and breadth-first traversals    
Minimum spanning tree (Prim’s and Kruskal’s algorithms)    
Representations of graphs (adjacency list, adjacency matrix)    
Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)    
Topological sort    
Transitive closure (Floyd’s algorithm)    

Table 3-24: AL3. Fundamental Computing Algor ithms topics covered in programming-first CS1-
CS2 

 
 

AL5. Basic computability IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Tractable and intractable problems X  X 
Uncomputable functions X  X 
Context-free grammars    
Finite-state machines    
The halting problem    
Implications of uncomputability    

Table 3-25: AL5. Basic Computability topics covered in programming-first CS1-CS2 



78 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

 

PL1. Overview of programming languages 
IF CS1-

CS2 
OF CS1-

CS2 
FF CS1-

CS2 
Brief survey of programming paradigms: Procedural 
languages, Object-oriented languages, Functional languages, 
Declarative, non-algorithmic languages, Scripting languages 

X  X 

History of programming languages X  X 
The effects of scale on programming methodology    

Table 3-26: PL1. Overview of Programming Languages topics covered in programming-first CS1-
CS2 

 

 
PL2. Virtual machines IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

The concept of a virtual machine X  X 
Hierarchy of virtual machines X  X 
Intermediate languages X  X 
Security issues arising from running code on 
an alien machine   X 

Table 3-27: PL2. Vir tual Machines topics covered in programming-first CS1-CS2 

 

PL4. Declarations and types IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
The conception of types as a set of values with 
together a set of operations    

Declaration models (binding, visibility, scope, and 
lifetime)    

Overview of type-checking    
Garbage collection    

Table 3-28: PL4. Declarations and Types topics covered in programming-first CS1-CS2 

 

PL5. Abstraction mechanisms 
IF CS1-

CS2 
OF CS1-

CS2 
FF CS1-

CS2 

Procedures, functions, and iterators as abstraction mechanisms   X 

Parameterization mechanisms (reference vs. value)    

Activation records and storage management    

Type parameters and parameterized types    

Modules in programming languages    

Table 3-29: PL5. Abstraction Mechanisms topics covered in programming-first CS1-CS2 

 

 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 79 

 

PL6. Object-oriented programming IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Classes and subclasses X X X 
Collection classes and iteration protocols X X X 
Inheritance (overriding, dynamic dispatch) X X X 
Object-oriented design X X X 
Class hierarchies X  X 
 Encapsulation and information-hiding X  X 
Polymorphism (subtype polymorphism vs. inheritance) X  X 
Separation of behavior and implementation X  X 
Internal representations of objects and method tables    

Table 3-30: PL6. Object-or iented Programming topics covered in programming-first CS1-CS2 

 

SP1. History of computing IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Prehistory – the world before 1946    
History of computer hardware, software, networking    
Pioneers of computing    

Table 3-31: SP1. History of Computing topics covered in programming-first CS1-CS2 

 
 

SE1. Software design IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Design patterns X X X 
Fundamental design concepts and principles X X X 
Structured design X  X 
Design for reuse  X  
Object-oriented analysis and design  X  
Component-level design    
Software architecture    

Table 3-32: SE1. Software Design topics covered in programming-first CS1-CS2 

 

 
 

SE2. Using APIs IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

API programming   X 
Class browsers and related tools   X 
Debugging in the API environment   X 
Programming by example   X 
Introduction to component-based computing    

Table 3-33: SE2. Using APIs topics covered in programming-first CS1-CS2 



80 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

 
SE3. Software tools and environments IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Programming environments X  X 
Testing tools   X 
Configuration management tools    
Requirements analysis and design modeling tools    
Tool integration mechanisms    

Table 3-34: SE3. Software Tools and Environments topics covered in programming-first CS1-CS2 

 

 
 
 

SE5. Software requirements and specifications IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Requirements elicitation    
Requirements analysis modeling techniques    
Functional and nonfunctional requirements    
Prototyping    
Basic concepts of formal specification techniques    

Table 3-35: SE5. Software Requirements and Specifications Constructs topics covered in 
programming-first CS1-CS2 

 
 
 

SE6. Software validation 
IF CS1-

CS2 
OF CS1-

CS2 
FF CS1-

CS2 

Testing fundamentals, including test plan creation and test case 
generation   X 

Validation planning    
Black-box and white-box testing techniques    
Unit, integration, validation, and system testing    
Object-oriented testing    
Inspections    

Table 3-36: SE6. Software Validation topics covered in programming-first CS1-CS2 

 
 
 
 
 
 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 81 

 

 Topic 
IF CS1-

CS2 
OF CS1-CS2 

FF CS1-
CS2 

PF1. Basic syntax and semantics of a higher-level language X X X 
PF1. Variables, types, expressions, and assignment X X X 
PF1. Conditional and iterative control structures X X X 
PF1. Functions and parameter passing X X X 
PF2. Problem-solving strategies X X X 
PF2. Implementation strategies for algorithms X X X 
PF2. The concept and properties of algorithms X X X 
PF3. Arrays X X X 
PF3. Strings and string processing X X X 

PF3. Linked structures X 
X (use of, not 

implementation) X 

PF4. The concept of recursion X X X 
PL6. Object-oriented design X X X 
PL6. Classes and subclasses X X X 
PL6. Inheritance (overriding, dynamic dispatch) X X X 

PL6. Collection classes and iteration protocols X X X 

SE1. Fundamental design concepts and principles X X X 

SE1. Design patterns X X X 

Table 3-37: Topics covered by all three approaches to CS1-CS2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



82 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

Topic 
IF CS1–

CS2 
OF CS1-CS2 

FF CS1-
CS2 

PF1. Simple I/O X  X 
PF1. Structured decomposition X  X 
PF2. Debugging strategies X  X 
PF3. Primitive types X  X 
PF3. Records X  X 
PF3. Pointers and references X  X 

PF3. Implementation strategies for stacks, queues, and hash 
tables X 

X (use of, not 
implementation) 

 

PF3. Implementation strategies for graphs and trees X X (introduction)  
PF4. Implementation of recursion X X  
PF3. Strategies for choosing the right data structure X  X 
PF4. Recursive mathematical functions X  X 
PF4. Simple recursive procedures X  X 
PF4. Divide-and-conquer strategies X  X 
PF4. Recursive backtracking X  X 
AL1. Asymptotic analysis of upper and average complexity 
bounds X  X 

AL1. Big O, little o, omega, and theta notation X (Big 
O only) 

 
X  (Big 
O only) 

AL1. Standard complexity classes X  X 

AL1. Empirical measurements of performance X  X 
AL3. Sequential and binary search algorithms X  X 
AL5. Tractable and intractable problems X  X 
AL5. Uncomputable functions X  X 
PL1. History of programming languages X  X 

PL1. Brief survey of programming paradigms:Procedural 
languages, Object-oriented languages, Functional languages, 
Declarative, non-algorithmic languages, Scripting languages 

X  X 

PL2. The concept of a virtual machine X  X 
PL2. Hierarchy of virtual machines X  X 
PL2. Intermediate languages X  X 
PL6. Encapsulation and information-hiding X  X 
PL6. Separation of behavior and implementation X  X 

PL6. Polymorphism (subtype polymorphism vs. inheritance) X  X 

PL6. Class hierarchies X  X 
SE1. Structured design X  X 
SE3. Programming environments X  X 

Table 3-38: Topics covered by two of three approaches to CS1-CS2 

 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 83 

 

Topic 
IF CS1-

CS2 
OF CS1-

CS2 
FF CS1-

CS2 

PF3. Data representation in memory X   
PF3. Static, stack, and heap allocation X   
PF3. Runtime storage management X   
AL3. Quadratic sorting algorithms (selection, insertion) X   
AL3. O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) X   
AL3. Hash tables, including collision-avoidance strategies X   
AL3. Binary search trees X   
SE1. Object-oriented analysis and design  X  
SE1. Design for reuse  X  
PF2. The role of algorithms in the problem-solving process   X 

AL3. Simple numerical algorithms   X 

PL2. Security issues arising from running code on an alien machine   X 
PL5. Procedures, functions, and iterators as abstraction mechanisms   X 
SE2. API programming   X 
SE2. Class browsers and related tools   X 
SE2. Programming by example   X 
SE2. Debugging in the API environment   X 
SE3. Testing tools   X 
SE6. Testing fundamentals, including test plan creation and test case 
generation   X 

Table 3-39: Topics covered by one of three approaches to CS1-CS2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



84 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

Topic 
AL1. Identifying differences among best, average, and worst case behaviors 
AL1. Time and space tradeoffs in algorithms 
AL1. Using recurrence relations to analyze recursive algorithms 
AL3. Representations of graphs (adjacency list, adjacency matrix) 
AL3. Depth- and breadth-first traversals 
AL3. Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms) 
AL3. Transitive closure (Floyd’s algorithm) 
AL3. Minimum spanning tree (Prim’s and Kruskal’s algorithms 
AL3. Topological sort 
AL5. Finite-state machines 
AL5. Context-free grammars 
AL5. The halting problem 
AL5. Implications of uncomputability 
PL1. The effects of scale on programming methodology 
PL4. The conception of types as a set of values with together a set of operations 
PL4. Declaration models (binding, visibility, scope, and lifetime) 
PL4. Overview of type-checking 
PL4. Garbage collection 
PL5. Parameterization mechanisms (reference vs. value) 
PL5. Activation records and storage management 
PL5. Type parameters and parameterized types 
PL5. Modules in programming languages 
PL6. Internal representations of objects and method tables 
SP1. Prehistory – the world before 1946 
SP1. History of computer hardware, software, networking 
SP1. Pioneers of computing 
SE1. Software architecture 
SE1. Component-level design 
SE2. Introduction to component-based computing 
SE3. Requirements analysis and design modeling tools 
SE3. Configuration management tools 
SE3. Tool integration mechanisms 
SE5. Requirements elicitation 
SE5. Requirements analysis modeling techniques 
SE5. Functional and nonfunctional requirements 
SE5. Prototyping 
SE5. Basic concepts of formal specification techniques 
SE6. Validation planning 
SE6. Black-box and white-box testing techniques 
SE6. Unit, integration, validation, and system testing 
SE6. Object-oriented testing 
SE6. Inspections 

Table 3-40: Topics covered by none of the three approaches to CS1-CS2 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 85 

 

3.2.4.5 Analysis of Hours Covered by Each Approach for  each Knowledge Unit 

In each of the sample Syllabus sections for each approach, there is an indication of 

how many core hours should be covered for each knowledge unit presented.  Recall that 

topics that are indicated as core topics in CC2001 are considered the foundational core of 

the discipline.  CC2001 gives a recommendation of classroom time that should be 

devoted to core topics throughout the curriculum.  Therefore, for purposes of this 

dissertation core hours are classroom hours that should be devoted to a particular topic.  

This information is important in giving further indication of how many hours are devoted 

to each knowledge unit by each of the introductory approaches.  Table 3-41 summarizes 

the number of hours covered for each knowledge unit as given Appendix B of CC2001. 

 

 

 

 

 

 

 

 



86 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

Knowledge Unit Total Hours in 
Knowledge Unit 

Imperative-first 
CS1-CS2 
Hours11 

Objects-first CS1-
CS2 Hours 

Functional-first 
CS1-CS2 Hours 

PF1. Fundamental 
Programming 

Constructs 
9 

9 + 0 = 9 
(100%) 

7 + 2 = 9 
(100%) 

3 + 6 = 9 
(100%) 

PF2. Algorithms and 
Problem Solving 

6 
3 + 0 = 3 

(50%) 
2 + 2 = 4 

(67%) 
2 + 1 = 3 

(50%) 
PF3. Fundamental 

Data Structures 
14 

6 + 6 = 12 
(86%) 

3 + 8 = 11 
(79%) 

6 + 5 = 11 
(79%) 

PF4. Recursion 
5 

0 + 5 = 5 
(100%) 

2 + 3 = 5 
(100%) 

5 + 0 = 5 
(100%) 

AL1. Basic 
Algorithmic Analysis 

4 
0 + 2 = 2 

(50%) 
0 + 2 = 2 

(50%) 
2 + 0 = 2 

(50%) 
AL3. Fundamental 

Computing 
Algorithms 

12 
2 + 4 = 6 

(50%) 
3 + 3 = 6 

(50%) 
4 + 2 = 6 

(50%) 

AL5. Basic 
Computability 

6 
1 + 0 = 1 

(17%) 
1 + 0 = 1 
(17%) 

1 + 0 = 1 
(17%) 

PL1. Overview of 
Programming 

Languages 
2 

1 + 1 = 2 
(100%) 

0 + 2 = 2 
(100%) 

1 + 1 = 2 
(100%) 

PL2. Virtual 
Machines 

1 
0 + 1 = 1 
(100%) 

0 + 1 = 1 
(100%) 

0 + 1 = 1 
(100%) 

PL4. Declarations 
and Types 

3 
1 + 2 = 3 
(100%) 

2 + 1 = 3 
(100%) 

1 + 2 = 3 
(100%) 

PL5. Abstraction 
Mechanisms 

3 
2 + 1 = 3 
(100%) 

1 + 2 = 3 
(100%) 

1 + 2 = 3 
(100%) 

PL6. Object-Oriented 
Programming 

10 
3 + 7 = 10 
(100%) 

8 + 4 = 12 
(120%) 

0 + 8 = 8 
(80%) 

SP1. History of 
Computing 

1 
1 + 0 = 1 
(100%) 

1 + 0 = 1 
(100%) 

1 + 0 = 1 
(100%) 

SE1. Software 
Design 

8 
2 + 2 = 4 

(50%) 
2 + 2 = 4 

(50%) 
1 + 3 = 4 

(50%) 
SE2. Using API’s 

5 
0 + 2 = 2 

(40%) 
1 + 1 = 2 

(40%) 
0 + 2 = 2 

(40%) 
SE3. Software Tools 
and Environments 

3 
1 + 2 = 3 
(100%) 

2 + 0 = 2 
(67%) 

1 + 1 = 2 
(67%) 

SE5. Software 
Requirements and 

Specifications 
4 

1 + 0 = 1 
(25%) 

0 + 1 = 1 
(25%) 

0 + 1 = 1 
(25%) 

SE6. Software 
Validation 

3 
1 + 0 = 1 

(33%) 
0 + 1 = 1 
(33%) 

0 + 1 = 1 
(33%) 

Table 3-41: Hours devoted to each knowledge unit for  programming-first CS1-CS2 
                                                 
11 Hours in this table are given in the form CS1Hours + CS2 Hours = Total hours for sequence 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 87 

 

3.2.4.6 Problems with Simply “ Reading”  the Syllabi 

There are numerous problems with this “shallow” reading approach to the topics.  

Simply using the method of “shallow” reading the descriptions of the Syllabus sections of 

the course descriptions does not seem to give proper results for topical coverage.  Taking 

for example just the last table in the analysis (Table 3-36), the only approach that has an 

X in any of the rows is functional-first.  However, according to the table of number of 

hours covered (Table 3-41), each of the three approaches has coverage for this knowledge 

unit.   

The following inconsistencies have been discovered when simply using a “shallow” 

approach to creating the topic intersection and each point to a need for a deeper reading 

of the syllabi and an analysis that is deeper than simply reading terms and topics. 

• The number of hours covered indicates that the knowledge unit is covered in 

its entirety; however, not all of the topics from the knowledge unit are 

indicated in the intersection.  For example, PF4 is supposed to be covered in 

full by all three approaches.  However, Table 3-22 reveals that not all 

knowledge units are included for all three approaches. 

• A knowledge unit is supposed to be covered in the courses, but there are no 

topics marked for that knowledge unit for any of the approaches.  For 

example, SE5 is supposed to have coverage in the intersection, but according 

to Table 3-35, none of the topics are indicated for any of the approaches. 



88 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

• One approach does not have any topics indicated for a particular knowledge 

unit, while the other two approaches have topics that seem to give an accurate 

picture of the coverage of that unit.  For AL1 (Table 3-23), no coverage is 

indicated for objects-first, while the other two approaches have coverage 

indicated that corresponds with the 50% coverage indicated in Table 3-41. 

• Only one approach has topics indicated for a particular knowledge unit, while 

the others have no topics indicated.  For example, in Table 3-29 for PL5, only 

functional-first has knowledge units indicated, but all three need to have 

knowledge units indicated in this knowledge area. 

• There is simply a general mismatch within the topic.  For example, in Table 

3-34 for SE3, two-thirds or more of the topics should be covered for each 

approach.  Only one topic (out of five) is indicated for imperative-first, none 

indicated for objects-first, and two indicated for functional-first. 

Of all of these, the last point is the least bothersome.  It would be reasonable to expect 

that not all of the approaches cover the exact same material in these knowledge units.  

However, it is important to look at this type of mismatch to make sure there are no topics 

that should be included in this analysis. 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 89 

 

3.2.5 Resolution of Discrepancies 

3.2.5.1 Reasons for  Inconsistencies 

While it is difficult to determine the exact causes for the discrepancies between the 

Syllabus and Units covered sections, there is definitely a lack of uniformity between the 

language of the sample syllabi and the language in the knowledge-unit topic descriptions.  

Given how CC2001 was constructed (by various subcommittees), it is easy to postulate 

that while some subcommittees followed the language of the knowledge units while 

creating the syllabi, some did not. 

The biggest offenders appear to be the objects-first syllabi.  The “shallow” reading 

approach leaves many holes in the topical coverage, even in section PL6-Object-oriented 

programming (see Table 3-30), which the objects-first model focuses most heavily upon.   

The other two sets of syllabi suffer from some of the same language issues, but not to 

the extent of the objects-first topics.  For the purposes of creating this assessment 

instrument, the topics included in the intersection using both a “shallow” reading of the 

Syllabus sections of the course descriptions as well as the more in-depth analysis 

presented in §3.2.6 – 3.2.8. 

3.2.5.2 All topics should be covered, not all were indicated 

In some knowledge units, Table 3-41 indicates that all core hours of a topic will be 

covered in the introductory sequence, but, in the “shallow” read of the syllabus topics, 



90 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

not all of the topics in that knowledge area received an X.  This happens for the following 

knowledge units: 

• PF1. Fundamental Programming Constructs 
• PF4. Recursion 
• PL1. Overview of Programming Languages 
• PL2. Virtual Machines 
• PL4. Declarations and Types 
• PL5. Abstraction Mechanisms 
• PL6. Object-oriented Programming 
• SP1. History of Computing 
 

For each of these knowledge units, there is a pattern of incomplete descriptions in the 

syllabus topics.  For example, in SP1, History of Computing, all three syllabi indicate in a 

broad fashion that the history of computing should be covered and that it should be 

covered for one full course hour.  However, there is no indication in the syllabus of the 

specific listing of the topics for SP1 as given in Appendix B.  In this case, we can resolve 

this discrepancy by assuming that there has simply been a lack of attention to detail by 

the CC2001 committee that led to this oversight. 

For PF1, Fundamental Programming Constructs, simple I/O and structured 

decomposition are the topics not indicated in the objects-first approach.  Since the entire 

knowledge unit is supposed to be covered, I again assume the oversight to be a lack of 

attention to detail. 

For PF4, Recursion, again we notice missing topics in the objects-first column.  It is 

unreasonable to think that, if one is talking about the “ implementation of recursion”  in a 

course then “simple recursion”  would not be included in that discussion.  Similar 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 91 

 

arguments can be made for each of the topics in this knowledge unit, so they should all be 

included in the intersection.  The topic “ implementation of recursion”  is also missing for 

functional-first.  This is also unreasonable given that all of the rest of the topics are 

covered.  Also, given the fact that functional languages rely heavily on recursion as a 

base in the language, it is not reasonable to assume that implementation of recursion 

would be ignored in this approach.  Therefore, this topic should be included for the 

functional-first approach. 

For PL1, Overview of Programming Languages, there is a similar situation as with 

SP1, History of Programming:  the syllabi indicate coverage, but there is no mention of 

some of the specific topics.  Since the entire core hours should be covered, these topics 

should be restored to the intersection. 

For PL2, Virtual Machines, the topic “security issues arising from running code on an 

alien machine”  is missing in imperative-first and no indication of coverage of any topic in 

the objects-first approach.  Once again, this seems to be an oversight.  For objects-first, 

many of the newly popular object-oriented languages, especially Java, use virtual 

machines extensively.  Therefore, it would be a natural part of the course to explain how 

the language works.  All topics from this knowledge unit are included in the intersection. 

For PL4, Declarations and Types, and PL5, Abstraction Mechanisms, very few topics 

have been included.  In fact, for PL4, no topics have been included for any of the 

approaches.  However, for both of these sections, this current set of topics does not make 

sense.  For example, in PL4, one of the topics should cover such ideas as binding, 



92 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

visibility, scope, and lifetime.  This is clearly a part of any introductory sequence when 

discussing local variables and should be included in the set of topics.  For these topics, it 

seems to once again to be an oversight and lack of detail in the syllabus topics.  

Therefore, all topics for these two knowledge units will be included. 

3.2.5.3 Topics should be covered, none or  one were indicated 

We can resolve the discrepancies for two of the knowledge units, SE5, Software 

Requirements and Specifications, and SE6, Software Validation.  For each of these 

knowledge units, an amount of coverage greater than zero is indicated for each approach, 

however, no topics are indicated on the grid for SE5 and only one for SE6. 

For SE5, each approach should have 1 course hour devoted to it, which accounts for 

only 25% of the time for that knowledge unit in the curriculum.  Unfortunately, the 

syllabi do not give us a good indicator of what topics should be the focus of the coverage 

for this knowledge area. Therefore, it is important to decide which topics seem to be most 

appropriate for introductory courses and the amount of time that should be spent on these 

topics.  In this case, it is most appropriate to include the topics of requirements elicitation 

and functional and nonfunctional requirements for each of the approaches. 

Each approach should also have 1 course hour devoted to SE6, which will account for 

33% of the time for that knowledge unit in the curriculum.  There is some indication in 

the functional-first approach that the topic of testing fundamentals is covered in that 

approach.  This topic, which also includes test-plan generation and test-case generation, 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 93 

 

seems to be a prime candidate for the other two approaches as well, because it is common 

to see some sort of testing taught during the first year.  Therefore, we include this topic 

for all three approaches.  Also, due to the inclusion of a large portion of the topics of 

PL6, Object Oriented Programming, by each of the approaches, it is logical to include the 

topic of object-oriented testing in the intersection. 

Both SE5 and SE6 are in the knowledge area of Software Engineering.  Since the 

focus for this dissertation is topics that can and should be introduced at the introductory 

level, these topics should be broad in scope and those that are most immediately 

important to students building their first computer programs.  Therefore, the inclusion of 

testing techniques is appropriate.  The topic of requirements elicitation should be viewed 

in its most general sense of “what does this program have to do?”   It is not reasonable to 

include more formal requirements-elicitation techniques, but rather to have the students 

experiment with how to find out what their projects should be capable of by asking 

questions about the assignments given in class.  In regard to the functional and 

nonfunctional requirements, students at this level should be exposed to the general ideas 

about the differences between what a program does and how it looks, sounds, etc. 

3.2.5.4 All approaches should have topics covered, but only two of three do 

From the tables, there are three knowledge units where topics are indicated for only 

two of the three approaches. 



94 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

For AL1, Basic Algorithmic Analysis, no topics are given for objects-first, while the 

other two approaches include the exact same topics.  For each of the three approaches, 

two course hours should be devoted to this knowledge area.  Therefore, it must be 

decided which topics to include for objects-first.  It would stand to reason that quite 

possibly all three approaches should cover the same material in these two hours.  Looking 

at the wording of the syllabus for objects-first, there is an indication that there should be 

an “ Introduction to basic algorithm analysis”  (Joint Task Force on Computing Curricula 

2001: 177).  Therefore, in the intersection, the topics covered for objects-first will be 

made the same as the other two approaches.   

For AL5, Basic Computability, the imperative-first and functional-first approaches 

have the exact same topics indicated, while no topics are indicated for objects-first.  

Objects-first is supposed to cover one course hour of this knowledge unit, which is the 

same amount of time as the other approaches.  The other two approaches cover the topics 

of tractable and intractable problems, as well as uncomputable functions.  These two 

topics are basic introduction-to-computability topics that are appropriate for an 

introductory sequence.  The other topics in this knowledge unit would fit better in a 

slightly more advanced course looking at issues of computability and not necessarily 

focusing on programming.  Therefore, the topics for objects-first will be the same as 

those for the other two approaches. 

For SE3, Software Tools and Environments, no topics are indicated for objects-first.  

The other two approaches indicate the topic of programming environments.  This topic 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 95 

 

makes sense for objects-first as well.  The further description of the objects-first approach 

says that “Many courses that adopt an objects-first approach will do so in an environment 

that supports a rich collection of application programmer interfaces or APIs”  (Joint Task 

Force on Computing Curricula 2001: 176).  Therefore, it would seem reasonable that 

with a large number of APIs, programming environments become important.  Even 

without the APIs, any time one creates a computer program, there is an environment that 

one is working with to create that program.  An introduction to that environment should 

certainly be given in the introductory courses. 

However, one problem for this knowledge unit is the amount of course coverage time 

allotted for it.  For imperatives-first, it is indicated that 100% of the unit should be 

covered.  For the other two approaches, it indicates two-thirds of the hours to be given in 

the introductory sequence.  Therefore, it would be most appropriate for imperative-first to 

have all topics indicated for this knowledge unit.  For functional-first, the topic of testing 

tools is indicated as covered.  It also makes sense that the objects-first approach covers 

testing, because it is just as important in objects-first as the other approaches.  It is also 

reasonable to assume that students are exposed to some sort of design modeling tool (e.g. 

flow charts, CRC cards, UML) in the introductory sequence.  An emphasis is placed on 

design in all of the approaches, and while students are being instructed on design, they 

will be shown some sort of tool that helps them use a particular design technique.  

Therefore, the topic of design modeling tools should be included in the intersection. 



96 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

3.2.5.5 All approaches should have topics covered, but only one of three do 

For SE2, Using APIs, topical coverage is indicated only in the functional-first 

approach.  However, in §3.2.5.4, we concluded that APIs should be included in the 

objects-first model.  This once again seems to be a case of lack of detail, given the 

syllabus’s topics-covered section.  For objects-first, there is a general indication of using 

APIs, but no details are given about which specific topics from that knowledge unit are 

covered (Joint Task Force on Computing Curricula 2001: 175).  Indications are also 

given for imperative-first in the topic section, where it states that one should present 

“Using a graphics API”  (Joint Task Force on Computing Curricula 2001: 166).  

Therefore, there are broad indications that this topic is presented in all three approaches. 

In order to answer which topics are covered by the approaches, let us look at the 

amount of course coverage hours for this knowledge unit.  Two hours are indicated for all 

approaches for this knowledge unit, encompassing 40% of the total coverage for the 

knowledge unit.  The functional-first approach says that four out of the five topics should 

be covered in that time.  It does not seem likely that the four topics could be covered with 

significant depth in that time; however, a general introduction could be given to each of 

the topics.  The only topic not indicated is an introduction to component-based 

computing, which is not appropriate for any of the approaches at this level.  However, a 

general introduction to the other topics is appropriate, and we have included those topics 

in our intersection. 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 97 

 

3.2.5.6 Non-uniform topical coverage across approaches 

With the previous problems in the intersection, there were significant gaps in topical 

coverage that needed to be addressed, such as entire knowledge units that should be 

covered having no topics indicated.  The remaining topics do not have such glaring 

omissions but are not uniform in topic coverage.  However, each topic must be 

considered, to decide if the currently indicated topic coverage is appropriate or if there 

are in fact omissions in the topical coverage that should be included in our final 

intersection. 

For PF2, Algorithms and Problem Solving, some omissions seem to be due to lack of 

attention to detail.  For imperative-first and objects-first, the topic of the role of 

algorithms in the problem-solving process is not indicated.  However, if you are 

implementing algorithms, as indicated by both approaches, you will use them in their role 

in the problem-solving process.  Therefore, this topic should be included.  In objects-first, 

the topic of debugging strategies is also not indicated.  This, too, seems like an oversight.  

It is not reasonable to assume that an introductory course does not talk about debugging.  

Therefore, we will also include that topic.  For this knowledge unit, all approaches 

indicate all topics covered, but the amount of hours of coverage ranges from 50-66.67%.  

This would indicate that further coverage of these topics will also be needed beyond the 

first year of courses. 

For PF3, Fundamental Data Structures, no topics are indicated for objects-first, while 

imperative-first indicates that all topics are covered even though not all of the time 



98 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

allocated for this knowledge unit has been covered.  It should therefore be assumed that 

some of the topics indicated for the imperative-first approach are not covered in their 

entirety or that they are only introduced. 

 For functional-first, some of the omissions of topics do not make sense.  Since 

knowledge unit DS5, Graphs and Trees, is included in CS1 according to the syllabus for 

functional-first in CC2001, implementation of graphs and trees should also be discussed.  

Also, list structures are indicated as being discussed, so it would be natural to assume that 

stacks and queues would be included in that discussion.  Consequently, these topics will 

be included in our intersection. 

For objects-first, primitive types are omitted.  While the focus of objects-first is 

objects, most languages have primitive types and many object-oriented languages use the 

primitive types in the basic control structures, so it is reasonable to assume that this topic 

should be covered.  Since there is an indication of discussions of stacks and queues, 

omitting linked structures seems like an oversight, so it will be included.  Also, the 

syllabus explicitly indicates that implementation of data structures is not covered.  This 

does not seem likely; however, given that the syllabus is so explicit, it will not be 

included12.  Lastly, the omission of the last topic “strategies for choosing the right data 

structure”  is an oversight.  When talking about data structures in any form, it is most 

appropriate to discuss how to choose one data structure; especially given that the objects-

                                                 
12 Look to §3.2.8 for further discussion of this issue. 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 99 

 

first approach does not discuss implementation, the topic of choosing the correct data 

structure should most certainly be discussed. 

For AL3, Fundamental Computing Algorithms, there is once again a case where 

objects-first has no topics indicated.  For this knowledge unit, each approach should 

cover six hours of topics, or 50% of the total time indicated for the knowledge unit.  It 

seems as though the imperative-first approach fulfills this requirement nicely, except for 

what seems to be an oversight of the topic of simple numerical algorithms13.  If the 

courses will contain sorting and searching, simple numerical algorithms will most likely 

be covered.  

For functional-first, the first two topics are indicated.  There is also indication in the 

syllabus for functional-first that sorting algorithms are covered, but it does not provide 

specific details about which ones (Joint Task Force on Computing Curricula 2001: 180).  

However, it seems reasonable to assume that this approach should cover the standard set 

of quadratic and O(N log N) sorting algorithms; consequently, we will include those 

topics.  Also, the syllabus indicates that hierarchical data should be covered in CS1 using 

this approach (Joint Task Force on Computing Curricula 2001: 178).  This would seem to 

indicate coverage of trees and possibly graphs.  This is further supported by the CS1 

coverage of knowledge unit DS5, Graphs and Trees.  Even though no other approach 

seems to cover graphs, it is reasonable to assume that functional-first does in part. 

                                                 
13 See §4.3.1.1 for more discussion of this term. 



100 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

For objects-first, it is slightly more difficult to decide which topics to pick from this 

knowledge unit.  There is just a lack of indication on the syllabi as to which topics are 

covered.  However, there is no indication that graphs are covered in this approach.  Since 

the amount of time is the same as imperative-first, coverage will be given to topics that 

are similar to the imperative-first model for this knowledge unit. 

For PL6, Object-Oriented Programming, there are some shocking omissions from the 

objects-first column.  These omissions must be the result of oversight.  It is unreasonable 

to assume that the objects-first introductory sequence would not include polymorphism or 

class hierarchies, when those topics are foundational to object-oriented programming 

itself.  Also, given that Table 3-41 indicates that 120% of the core hours should be 

covered in this area, it is fairly safe to assume that these topics will be covered.  The only 

topic that is being left off is the last, internal representations of objects and method tables.  

None of the approaches indicate that this topic should be covered; however two of the 

three approaches indicate full coverage of the hours for this knowledge unit.  It seems 

reasonable that with only 80% of coverage time allotted for these topics for functional-

first, this last topic may be left off.  Given that, it will not be included in the intersection. 

Whether the other two approaches cover it is in question, so this topic will be left off 

entirely. 

SE1, Software Design, indicates the same amount of course coverage time for all 

three approaches.  The first two topics are indicated for all approaches.  The third topic, 

software architecture, is indicated for none of the approaches. It seems reasonable to 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 101 

 

postpone this topic for a course that is more focused on software engineering.  The fourth 

topic, structured design, is not indicated for objects-first.  However, since object-oriented 

design may not be viewed as structured design proper, it can remain empty for this 

purpose.  The fifth topic, object-oriented design and analysis, should be included for all 

three approaches, because even the imperative-first and functional-first spend effort in the 

CS2 course on object-oriented concepts.  The coverage in the non-objects-first 

approaches will be less due to their original emphasis on structured design, while there 

will be more of this topic emphasized in objects-first, balancing out the lack of structured 

design coverage.  The sixth topic is component-level design.  Components may not be 

covered by all approaches and should therefore be covered elsewhere in the curriculum.  

The last topic, design for reuse, is indicated for objects-first, but not the other approaches.  

Reuse is an important theme in object-oriented methodology.  Other methodologies do 

not rely as heavily on this idea.  Given the limited exposure to object-oriented 

programming in the other two approaches, this topic will not be included. 

3.2.6 Revised Intersection of Knowledge Unit Topical Coverage 

Table 3-42 through Table 3-63 indicate a more realistic view of the intersection for 

the programming-first approaches. 

 

 

 



102 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

PF1. Fundamental Programming Constructs Topics IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Basic syntax and semantics of a higher-level language X X X 

Conditional and iterative control structures X X X 

Functions and parameter passing X X X 

Simple I/O X X X 

Variables, types, expressions, and assignment X X X 

Structured decomposition X  X 

Table 3-42: PF1. Fundamental Programming Constructs topics covered in programming-first CS1-
CS2 

 
PF2. Algorithms and problem-solving Topics IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Problem-solving strategies X X X 
The role of algorithms in the problem-solving process X X X 
Implementation strategies for algorithms X X X 
Debugging strategies X X X 
The concept and properties of algorithms X X X 

Table 3-43: PF2. Algor ithms and Problem-Solving topics covered in programming-first CS1-CS2 

 
 
 

PF3. Fundamental Data Structures IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Arrays X X X 
Implementation strategies for graphs and trees X X (introduction) X 
Implementation strategies for stacks, queues, and 
hash tables X 

X (use of, not 
implementation) 

X 

Linked structures X 
X (use of, not 

implementation) 
X 

Primitive types X X X 
Strategies for choosing the right data structure X X X 
Strings and string processing X X X 
Pointers and references X  X 
Records X  X 
Data representation in memory X   
Runtime storage management X   
Static, stack, and heap allocation X   

Table 3-44: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2 

 
 
 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 103 

 

PF4. Recursion IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

The concept of recursion X X X 
Recursive mathematical functions X X X 
Simple recursive procedures X X X 
Divide-and-conquer strategies X X X 
Recursive backtracking X X X 
Implementation of recursion X X X 

Table 3-45: PF4. Recursion topics covered in programming-first CS1-CS2 

 
AL1. Basic algorithmic analysis IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
Asymptotic analysis of upper and average 
complexity bounds X X X 

Big O, little o, omega, and theta notation X (Big O 
only) 

X (Big O 
only) 

X (Big O 
only) 

Empirical measurements of performance X X X 
Standard complexity classes X X X 
Identifying differences among best, average, and 
worst case behaviors    

Time and space tradeoffs in algorithms    
Using recurrence relations to analyze recursive 
algorithms    

Table 3-46:AL1. Basic Algor ithmic Analysis topics covered in programming-first CS1-CS2 

AL3. Fundamental computing algorithms IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Binary search trees X X X 
O(N log N) sorting algorithms (Quicksort, heapsort, 
mergesort) X X X 

Quadratic sorting algorithms (selection, insertion) X X X 
Sequential and binary search algorithms X X X 
Simple numerical algorithms X X X 
Hash tables, including collision-avoidance strategies X X  

Representations of graphs (adjacency list, adjacency 
matrix)   X 

Depth- and breadth-first traversals    
Minimum spanning tree (Prim’s and Kruskal’s 
algorithms)    

Shortest-path algorithms (Dijkstra’s and Floyd’s 
algorithms)    

Topological sort    
Transitive closure (Floyd’s algorithm)    

Table 3-47: AL3. Fundamental Computing Algor ithms topics covered in programming-first CS1-
CS2 



104 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

AL5. Basic computability IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Tractable and intractable problems X X X 
Uncomputable functions X X X 
Context-free grammars    
Finite-state machines    
Implications of uncomputability    
The halting problem    

Table 3-48: AL5. Basic Computability topics covered in programming-first CS1-CS2 

 
 

PL1. Overview of programming languages 
IF CS1-

CS2 
OF CS1-

CS2 
FF CS1-

CS2 

History of programming languages X X X 

Brief survey of programming paradigms:Procedural 
languages, Object-oriented languages, Functional languages, 
Declarative, non-algorithmic languages, Scripting languages 

X X X 

The effects of scale on programming methodology X X X 

Table 3-49: PL1. Overview of Programming Languages topics covered in programming-first CS1-CS2 

 
 
 

PL2. Virtual machines IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

The concept of a virtual machine X X X 
Hierarchy of virtual machines X X X 
Intermediate languages X X X 

Security issues arising from running code on an 
alien machine X X X 

Table 3-50: PL2. Vir tual Machines topics covered in programming-first CS1-CS2 

 
 
 
PL4. Declarations and types IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

The conception of types as a set of values with together 
a set of operations X X X 

Declaration models (binding, visibility, scope, and 
lifetime) X X X 

Overview of type-checking X X X 
Garbage collection X X X 

Table 3-51: PL4. Declarations and Types topics covered in programming-first CS1-CS2 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 105 

 

PL5. Abstraction mechanisms IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Procedures, functions, and iterators as abstraction 
mechanisms X X X 

Parameterization mechanisms (reference vs. value) X X X 
Activation records and storage management X X X 
Type parameters and parameterized types X X X 
Modules in programming languages X X X 

Table 3-52: PL5. Abstraction Mechanisms topics covered in programming-first CS1-CS2 

 
 

PL6. Object-oriented programming IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Object-oriented design X X X 
Encapsulation and information-hiding X X X 
Separation of behavior and implementation X X X 
Classes and subclasses X X X 
Inheritance (overriding, dynamic dispatch) X X X 
Polymorphism (subtype polymorphism vs. inheritance) X X X 
Class hierarchies X X X 
Collection classes and iteration protocols X X X 
Internal representations of objects and method tables    

Table 3-53: PL6. Object-or iented Programming topics covered in programming-first CS1-CS2 

 
 

SP1. History of computing IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Prehistory – the world before 1946 X X X 
History of computer hardware, software, networking X X X 
Pioneers of computing X X X 

Table 3-54: SP1. History of Computing topics covered in programming-first CS1-CS2 

 
 

SE1. Software design IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Design patterns X X X 
Fundamental design concepts and principles X X X 
Object-oriented analysis and design X X X 
Structured design X  X 
Design for reuse  X  
Component-level design    
Software architecture    

Table 3-55: SE1. Software Design topics covered in programming-first CS1-CS2 



106 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

 
SE2. Using APIs IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

API programming X X X 
Class browsers and related tools X X X 
Programming by example X X X 
Debugging in the API environment X X X 
Introduction to component-based computing    

Table 3-56: SE2. Using APIs topics covered in programming-first CS1-CS2 

 
 
SE3. Software tools and environments IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Programming environments X X X 

Requirements analysis and design modeling tools X 
X (Modeling 

tools) 
X (Modeling 

tools) 

Testing tools X X X 
Configuration management tools X   
Tool integration mechanisms X   

Table 3-57: SE3. Software Tools and Environments topics covered in programming-first CS1-CS2 

 
 

SE5. Software requirements and specifications IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

Functional and nonfunctional requirements X X X 
Requirements elicitation X X X 
Basic concepts of formal specification techniques    
Prototyping    
Requirements analysis modeling techniques    

Table 3-58: SE5. Software Requirements and Specifications Constructs topics covered in 
programming-first CS1-CS2 

 
 

SE6. Software validation IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
Object-oriented testing X X X 
Testing fundamentals, including test plan creation 
and test case generation X X X 

Black-box and white-box testing techniques    
Inspections    
Unit, integration, validation, and system testing    
Validation planning    

Table 3-59: SE6. Software Validation topics covered in programming-first CS1-CS2 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 107 

 

Topic IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
PF1. Basic syntax and semantics of a higher-level 
language X X X 

PF1. Variables, types, expressions, and assignment X X X 
PF1. Simple I/O X X X 
PF1. Conditional and iterative control structures X X X 
PF1. Functions and parameter passing X X X 
PF2. Problem-solving strategies X X X 
PF2. The role of algorithms in the problem-solving 
process X X X 

PF2. Implementation strategies for algorithms X X X 
PF2. Debugging strategies X X X 
PF2. The concept and properties of algorithms X X X 
PF3. Primitive types X X X 
PF3. Arrays X X X 
PF3. Strings and string processing X X X 

PF3. Linked structures X 
X (use of, not 

implementation) X 

PF3. Implementation strategies for stacks, queues, 
and hash tables X 

X (use of, not 
implementation) X 

PF3. Implementation strategies for graphs and 
trees X X (introduction) X 

PF3. Strategies for choosing the right data 
structure X X X 

PF4. The concept of recursion X X X 
PF4. Recursive mathematical functions X X X 
PF4. Simple recursive procedures X X X 
PF4. Divide-and-conquer strategies X X X 
PF4. Recursive backtracking X X X 
PF4. Implementation of recursion X X X 
AL1. Asymptotic analysis of upper and average 
complexity bounds X X X 

AL1. Big O, little o, omega, and theta notation X (Big O 
only) X (Big O only) 

X (Big O 
only) 

AL1. Standard complexity classes X X X 
AL1. Empirical measurements of performance X X X 
AL3. Simple numerical algorithms X X X 
AL3. Sequential and binary search algorithms X X X 

AL3. Quadratic sorting algorithms (selection, 
insertion) X X X 

AL3. O(N log N) sorting algorithms (Quicksort, 
heapsort, mergesort) X X X 

AL3. Binary search trees X X X 
AL5. Tractable and intractable problems X X X 
AL5. Uncomputable functions X X X 



108 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

PL1. History of programming languages X X X 

PL1. The effects of scale on programming 
methodology X X X 

PL2. The concept of a virtual machine X X X 
PL2. Hierarchy of virtual machines X X X 
PL2. Intermediate languages X X X 

PL2. Security issues arising from running code on 
an alien machine X X X 

PL4. The conception of types as a set of values 
with together a set of operations X X X 

PL4. Declaration models (binding, visibility, 
scope, and lifetime) X X X 

PL4. Overview of type-checking X X X 
PL4. Garbage collection X X X 

PL5. Procedures, functions, and iterators as 
abstraction mechanisms X X X 

PL5. Parameterization mechanisms (reference vs. 
value) X X X 

PL5. Activation records and storage management X X X 
PL5. Type parameters and parameterized types X X X 
PL5. Modules in programming languages X X X 
PL6. Object-oriented design X X X 
PL6. Encapsulation and information-hiding X X X 
PL6. Separation of behavior and implementation X X X 
PL6. Classes and subclasses X X X 
PL6. Inheritance (overriding, dynamic dispatch) X X X 

PL6. Polymorphism (subtype polymorphism vs. 
inheritance) X X X 

PL6. Class hierarchies X X X 
PL6. Collection classes and iteration protocols X X X 
SP1. Prehistory – the world before 1946 X X X 

SP1. History of computer hardware, software, 
networking X X X 

SP1. Pioneers of computing X X X 
SE1. Fundamental design concepts and principles X X X 
SE1. Design patterns X X X 
SE1. Object-oriented analysis and design X X X 
SE2. API programming X X X 
SE2. Class browsers and related tools X X X 
SE2. Programming by example X X X 
SE2. Debugging in the API environment X X X 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 109 

 

SE3. Programming environments X X X 

SE3. Requirements analysis and design modeling 
tools X 

X (Modeling 
tools) 

X (Modeling 
tools) 

SE3. Testing tools X X X 
SE5. Requirements elicitation X X X 
SE5. Functional and nonfunctional requirements X X X 

SE6. Testing fundamentals, including test plan 
creation and test case generation X X X 

SE6. Object-oriented testing X X X 

Table 3-60: Topics covered by all three programming-first approaches to CS1-CS2 

 
 
 

Topic IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 

PF1. Structured decomposition X  X 
PF3. Records X  X 
PF3. Pointers and references X  X 
AL3. Hash tables, including collision-avoidance 
strategies X X  

SE1. Structured design X  X 

Table 3-61: Topics covered by all two of three programming-first approaches to CS1-CS2 

 
 
 

Topic IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
PF3. Data representation in memory X   
PF3. Static, stack, and heap allocation X   
PF3. Runtime storage management X   
SE3. Configuration management tools X   

SE3. Tool integration mechanisms X   

SE1. Design for reuse  X  
AL3. Representations of graphs (adjacency list, 
adjacency matrix)   X 

Table 3-62: Topics covered by one of the three programming-first approaches to CS1-CS2 

 
 
 
 
 
 



110 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

Topic 
AL1. Identifying differences among best, average, and worst case behaviors 
AL1. Time and space tradeoffs in algorithms 
AL1. Using recurrence relations to analyze recursive algorithms 
AL3. Depth- and breadth-first traversals 
AL3. Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms) 
AL3. Transitive closure (Floyd’s algorithm) 
AL3. Minimum spanning tree (Prim’s and Kruskal’s algorithms 
AL3. Topological sort 
AL5. Finite-state machines 
AL5. Context-free grammars 
AL5. The halting problem 
AL5. Implications of uncomputability 
PL6. Internal representations of objects and method tables 
SE1. Software architecture 
SE1. Component-level design 
SE2. Introduction to component-based computing 
SE5. Requirements analysis modeling techniques 
SE5. Prototyping 
SE5. Basic concepts of formal specification techniques 
SE6. Validation planning 
SE6. Black-box and white-box testing techniques 
SE6. Unit, integration, validation, and system testing 
SE6. Inspections 

Table 3-63: Topics covered by none of the three programming-first approaches to CS1-CS2 

 

3.2.7 Compar ison of the Current Intersection to CC2001 Chapter  7 

One more comparison must be made in order to ensure that the intersection is 

complete and aligned with the goals of CC2001.  Consider again Table 3-2, which 

describes the knowledge units and topics that are covered by all six of the introductory 

tracks.  It is important for us to compare the results just achieved with the guidelines 

presented in this table.  This will help uncover any omissions and also may help to 

confirm some of the decisions made during the more in-depth analysis of the intersection 

topics described in §3.2.5 – 3.2.6. 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 111 

 

It is important to remember that because Table 3-2 from CC2001 represents 

knowledge units covered by all six introductory tracks, both programming-first and non-

programming-first, there will most likely be topics included in the intersection presented 

in the previous section that are not included in the table.  Topics that are inherently more 

programmatic in nature may be covered extensively in the programming-first approaches, 

but may not be covered at all in the non-programming-first approaches.  One such 

example of this is discussion of data structures such as stacks, queues, trees, and graphs.  

These topics are not included in the table, but are included in the intersection as part of 

the topical coverage. 

First, Table 3-2 presents knowledge units for which all topics must be covered.  These 

include: 

• DS1. Functions, relations, and sets 
• DS2. Basic logic 
• DS4. Basics of counting 
• DS6. Discrete probability 
• PF1. Fundamental programming constructs 
• PF4. Recursion 
• PL1. Overview of programming languages 
• PL2. Virtual machines 
• PL4. Declarations and types 
• PL5. Abstraction mechanisms 
• SP1. History of computing 
 

One notices right away that DS1, DS2, DS4, and DS6 do not appear anywhere in the 

analysis of the programming-first approaches.  This would at first seem to indicate that 

the intersection just created is totally incorrect.  However, looking at all three of the 

introductory tracks and their suggested syllabi, none mention any of DS1, DS2, DS4, or 



112 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

DS6.  Therefore, the question that comes to mind is, how can these topics be included by 

CC2001 as covered by all six of the introductory tracks?  Looking back to Chapter 7 of 

CC2001, the answer can be found in section 7.4, Integrating discrete mathematics into the 

introductory curriculum.   

CC2001 advocates exposure to the concepts of discrete mathematics early, possibly in 

the first year of study.  CC2001 indicates two possible ways to achieve this goal.  The 

first is a separate discrete mathematics course taken concurrently with the introductory 

sequence of courses.  The second is integrating the discrete mathematics into the 

introductory sequence, which is demonstrated in the three-semester model for the 

Breadth-first approach. 

The analysis performed was on programming-first courses that must be 

complemented by a separate discrete mathematics course during the first year.  The topics 

indicated in Table 3-2 from the discrete structures knowledge area would be covered in 

that course.  The rest of the knowledge units indicated are covered in their entirety by the 

intersection that was created.   

Table 3-2 also presents knowledge units for which only certain topics should be 

covered.  Considering each one individually, notice that the intersection presented gives 

proper coverage to these areas. 

• DS3. Proof techniques: The structure of formal proofs; proof techniques; 
direct, counterexample, contraposition, contradiction; mathematical induction 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 113 

 

For DS3, there is the same problem as with the other knowledge units from the 

Discrete Structures area.  Since these topics would also be a part of a first-year discrete 

mathematics course, they will not be included in the intersection. 

• PF2. Algorithms and problem-solving: Problem solving strategies; the role of 
algorithms in the problem-solving process; the concept and properties of 
algorithms; debugging strategies 

In Table 3-43, all of these topics are indicated as part of the intersection.  This subset 

of topics also includes the topic of the role of algorithms in the problem-solving process, 

which was initially omitted from some of the approaches.  This comparison of our current 

intersection with CC2001 further validates the decision to make that topic part of the 

intersection. 

• PF3. Fundamental data structures: Primitive types; arrays; records; strings 
and string processing; data representation in memory; static, stack, and heap 
allocation; runtime storage management; pointers and references; linked 
structures 

In Table 3-44, the topics that are indicated as part of the intersection do not coincide 

with the list of topics given here.  Missing from objects-first are the topics of: records; 

data representation in memory; static, stack, and heap allocation; runtime storage 

management; pointers and references.  Missing from functional-first are the topics of: 

data representation in memory; static, stack, and heap allocation; runtime storage 

management.  It is not unusual for these topics to be found in an introductory sequence, 

and in fact are indicated to be a part of the imperative-first courses.  This comparison 

with CC2001 Chapter 7 indicates that these topics should be included.  



114 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

With this list of topics for this knowledge unit, support is given for the decisions that 

were made in §3.2.5.6 about the inclusion of primitive types and linked structures in the 

intersection. 

Table 3-64 gives the finalized picture of the topics that should be included in the 

intersection for the PF3 knowledge unit based upon all of the information available to us. 

PF3. Fundamental Data Structures IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
Primitive types X X X 
Arrays X X X 
Records X X X 
Strings and string processing X X X 
Data representation in memory X X X 
Static, stack, and heap allocation X X X 
Runtime storage management X X X 
Pointers and references X X X 

Linked structures X 
X (use of, not 

implementation) 
X 

Implementation strategies for stacks, queues, 
and hash tables X 

X (use of, not 
implementation) 

X 

Implementation strategies for graphs and trees X X (introduction) X 
Strategies for choosing the right data structure X X X 

Table 3-64: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2 

 
• AL1. Basic algorithmic analysis: Big O notation; standard complexity 

classes; empirical measurements of performance; time and space tradeoffs in 
algorithms 

In Table 3-46, all but the topic of time and space tradeoffs in algorithms are indicated 

as included in the intersection.  In §3.2.5.4, it was argued that all three approaches should 

have the same coverage for this knowledge unit and the topic list from Table 3-2 supports 

this idea.  However, it has also included the topic of time and space tradeoffs in 

algorithms, which was not originally included in the intersection.  For completeness and 

in following with the suggested guidelines given in this figure, that topic will be included. 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 115 

 

Table 3-65 shows the updated listing of topics for this knowledge unit based upon all 

of the analysis of the CC2001 document. 

AL1. Basic algorithmic analysis IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
Asymptotic analysis of upper and average 
complexity bounds X X X 

Big O, little o, omega, and theta notation X (Big O 
only) 

X (Big O 
only) 

X (Big O 
only) 

Empirical measurements of performance X X X 
Standard complexity classes X X X 
Time and space tradeoffs in algorithms X X X 
Identifying differences among best, average, and 
worst case behaviors    

Using recurrence relations to analyze recursive 
algorithms    

Table 3-65:AL1. Basic Algor ithmic Analysis topics covered in programming-first CS1-CS2 

 
• AL3. Fundamental computing algorithms; Simple numerical algorithms; 

sequential and binary search algorithms; quadratic and O(N log N) sorting 
algorithms; hashing; binary search trees 

In Table 3-47, all of these topics are indicated as being part of the intersection except 

for hashing, which is not indicated in the functional-first approach.  This helps once again 

strengthen the arguments presented in §3.2.5.6 for the inclusion of additional topics that 

were not clear from the initial “shallow” reading of the syllabus descriptions.  Originally, 

hashing was not included in the functional-first topics because there is no indication of 

hashing in the sample syllabi.   

However, given the intent of the introductory courses to discuss hashing, it will be 

included in the intersection and Table 3-66 shows the finished intersection for this 

knowledge unit. 

 



116 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

AL3. Fundamental computing algorithms 
IF CS1-

CS2 
OF CS1-

CS2 
FF CS1-

CS2 
Simple numerical algorithms X X X 
Sequential and binary search algorithms X X X 
Quadratic sorting algorithms (selection, insertion) X X X 
O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) X X X 
Hash tables, including collision-avoidance strategies X X X 
Binary search trees X X X 
Representations of graphs (adjacency list, adjacency matrix)   X 
Depth- and breadth-first traversals    
Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)    
Transitive closure (Floyd’s algorithm)    
Minimum spanning tree (Prim’s and Kruskal’s algorithms)    
Topological sort    

Table 3-66: AL3. Fundamental Computing Algor ithms topics covered in programming-first CS1-
CS2 

 
• AR1. Digital logic and digital systems: Logic gates; logic expressions 

This knowledge unit is not covered at all in any of the programming-first introductory 

sequences.  It is not part of the Discrete Structures knowledge area; however, sample 

syllabi for the discrete mathematics course, found in Appendix B of CC2001, shows this 

knowledge unit as part of the coverage.  Therefore, these topics will not be included in 

the intersection, but left for inclusion in such a discrete mathematics course. 

• PL6. Object-oriented programming: Object-oriented design; encapsulation 
and information-hiding; separation of behavior and implementation; classes, 
subclasses, and inheritance; polymorphism; class hierarchies 

Table 3-53 shows that all of the topics presented for this knowledge unit are included 

in the intersection.  Also note that the topic of internal representations of class and 

method tables is not presented in this listing.  This supports the decision to leave it out of 

the intersection.  No changes are required of the topic list for this knowledge unit. 

• SE1. Software design: Fundamental design concepts and principles; object-
oriented analysis and design; design for reuse 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 117 

 

In Table 3-55, the topics indicated for the intersection do not include design for reuse.  

It was argued in §3.2.5.6 that perhaps the reason this topic is not given as part of some of 

the approaches is because it is not as important to non-object-oriented programming.  

Clearly, the inclusion of this topic for all introductory sequences weakens this point, and 

gives the indication that this topic should be in the intersection.  This change in topic 

inclusion is given in Table 3-67. 

SE1. Software design IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
Design for reuse X X X 
Design patterns X X X 
Fundamental design concepts and principles X X X 
Object-oriented analysis and design X X X 
Structured design X  X 
Component-level design    
Software architecture    

Table 3-67: SE1. Software Design topics covered in programming-first CS1-CS2 

 
• SE2. Using APIs: API programming; class browsers and related tools; 

programming by example; debugging in the API environment 

Table 3-56 indicates that all of the topics presented for this knowledge unit are 

included in the intersection.  The inclusion of all of these topics was argued for in 

§3.2.5.5 and this comparison reaffirms that inclusion. 

• SE3. Software tools and environments: Programming environments; testing 
tools 

Table 3-56 shows that these topics are included in the intersection.  In §3.2.5.4, it was 

argued that testing tools as well as modeling tools should be included.  While modeling 

tools are not included in this list, they still seem appropriate for the programming-first 



118 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

approaches to the introductory sequence and there is no need to change the topics for this 

knowledge unit. 

• SE5. Software requirements and specifications: Importance of specification in 
the software process 

This topic is not one that is listed as a topic for this knowledge unit.  However, this 

explanation does seem to coincide with the argument for how the topics in this section 

should be presented that was given in section 1.2.3.7.  This discrepancy in language 

makes it hard to determine the exact topics, but since it does not indicate an absence of an 

important topic to the introductory sequence, the current topics will remain as listed in 

Table 3-57. 

• SE6. Software validation: Testing fundamentals; test case generation 
 

Table 3-58, shows an inclusion of these topics as well as the additional topic of 

object-oriented testing.  These topics will remain unchanged. 

3.2.8 Topics Included in some, but not All Programming-first 
Approaches 

Only a few topics are covered by only one or two of the introductory sequences.  

Table 3-68 presents three topics that are covered by imperative-first and functional-first, 

but not objects-first.  No topics are covered by imperative-first and objects-first only, or 

by objects-first and functional-first only. 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 119 

 

PF3. Fundamental Data Structures 
• Implementation of stacks, queues, and hash tables 
• Implementation of trees and graphs 

 
SE1. Software Design 

• Structured design 

Table 3-68: Topics covered only by imperative-first and functional-first CS1 &  CS2 

 
Based on these findings, it is necessary to re-examine these two units to see if these 

topics should actually be included in the final intersection of topics. 

For PF3, it seems logical that implementation of data structures would be presented in 

a CS2 course, even in the objects-first style.  In the discussion of these data structures in a 

course, the implementation will be discussed at some level.   

Perhaps it is the case that for objects-first, the focus of programming assignments for 

the course is not to implement the data structures, but rather use them in the large-scale 

programming projects that the sample curriculum suggests.  However, this does not 

preclude an instructor from introducing the implementation and discussing the 

implementation issues with the students.  Therefore, this topic will be included in the 

final intersection of topics, and these changes are reflected in Table 3-69. 

 

 

 

 



120 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

PF3. Fundamental Data Structures 
IF CS1-

CS2 
OF CS1-

CS2 
FF CS1-

CS2 
Primitive types X X X 
Arrays X X X 
Records X X X 
Strings and string processing X X X 
Data representation in memory X X X 
Static, stack, and heap allocation X X X 
Runtime storage management X X X 
Pointers and references X X X 
Linked structures X X X 
Implementation strategies for stacks, queues, and hash tables X X X 
Implementation strategies for graphs and trees X X X 
Strategies for choosing the right data structure X X X 

Table 3-69: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2 

 
For SE1, the topic of structured design is included in two of the three courses.  Since 

the focus of the objects-first curriculum is object-oriented design, it is reasonable to 

assume that any other types of design would not be discussed.  However, one could view 

object-oriented design as a type of structured design.  It certainly provides the student 

with a structure for their programs and prevents the so-called “spaghetti code”  problem.  

Therefore, it will be included in the final intersection of topics; this change is reflected in 

Table 3-70. 

SE1. Software design IF CS1-CS2 OF CS1-CS2 FF CS1-CS2 
Design for reuse X X X 
Design patterns X X X 
Fundamental design concepts and principles X X X 
Object-oriented analysis and design X X X 
Structured design X X X 
Component-level design    
Software architecture    

Table 3-70: SE1. Software Design topics covered in programming-first CS1-CS2 

 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 121 

 

Table 3-71 presents a single topic that is only covered in imperatives-first and Table 

3-72 presents a single topic that is only covered in functional-first.  There are no topics 

that are only covered by the objects-first approach.  Since these topics are not represented 

in all three introductory sequences, they are not included in the final set of topics of the 

intersection of the three programming-first approaches. 

 SE3. Software Tools and Environments 
• Requirements analysis 

Table 3-71: Topics covered only by imperative-first CS1 &  CS2 

 
AL3. Fundamental Computing Algor ithms 

• Representations of graphs (adjacency list, adjacency matrix) 

Table 3-72: Topics covered only by functional-first CS1 &  CS2 

3.3 Conclusion 

This chapter began by discussing the overall structure and content of the CC2001 

document and has finished by creating a formal intersection of topics for the 

programming-first approaches to the introductory curriculum.  This list of topics is made 

up from the topics in eighteen knowledge units.  These knowledge units are presented in 

§3.2.3.1.  The formal listing of topics is presented in Tables 3-42, 3-43, 3-45, 3-48, 3-49, 

3-50, 3-51, 3-52, 3-53, 3-54, 3-56, 3-57, 3-58, 3-59, 3-65, 3-66, 3-69, and 3-70. 

Several observations can be made about the consistency of the language of the 

CC2001 document.  The names of knowledge areas and knowledge units are consistently 

used throughout the document.  However, when one reaches the topic coverage level, the 

consistency begins to break down.  This is especially evident when reading the sample 



122 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

syllabi for the introductory courses that are given in CC2001’s Appendix B.  Most 

notably, the objects-first syllabi did not use the correct names of the topics for the 

knowledge units.  This made it difficult to decide which topic areas to include.  Also, in 

some cases, entire sets of topics were not given a sufficient level of detail, but simply 

lumped under the category of the knowledge unit name.  One was left to assume that this 

meant all of the topics would be covered.  There were also several instances where entire 

sets of topics were simply left out of the course descriptions. 

The list of common topics that was created forms the basis for the work on the 

assessment instrument.  This list of topics covered in the CS1-CS2 sequence by all three 

programming-first approaches is presented in Table 3-73.  This list represents the results 

of combining information gathered from the syllabus topic descriptions, the number of 

knowledge units covered, the amount of time devoted to each knowledge unit, the 

information in Chapter 7 of CC2001, and topics that were included in two of the three 

approaches. 

PF1. Fundamental Programming Constructs 
• Basic syntax and semantics of a higher-level language 
• Variables, types, expressions, and assignment 
• Simple I/O 
• Conditional and iterative control structures 
• Functions and parameter passing 
• Structured decomposition 

PF2. Algor ithms and Problem-Solving 
• Problem-solving strategies 
• The role of algorithms in the problem-solving process 
• Implementation strategies for algorithms 
• Debugging strategies 
• The concept and properties of algorithms 

PF3. Fundamental Data Structures 



CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME 123 

 

• Primitive types 
• Arrays 
• Records 
• Strings and string processing 
• Data representation in memory 
• Static, stack, and heap allocation 
• Runtime storage management 
• Pointers and references 
• Linked structures 
• Stacks, queues, and hash maps 
• Graphs and trees 
• Strategies for choosing the right data structure 

PF4. Recursion 
• The concept of recursion 
• Recursive mathematical functions 
• Simple recursive procedures 
• Divide-and-conquer strategies 
• Recursive backtracking 
• Implementation of recursion 

AL1. Basic Algor ithmic Analysis 
• Asymptotic analysis of upper and average complexity bounds 
• Big O notation 
• Standard complexity classes 
• Empirical measurements of performance 
• Time and space tradeoffs in algorithms 

AL3. Fundamental Computing Algor ithms 
• Simple numerical algorithms 
• Sequential and binary search algorithms 
• Quadratic sorting algorithms (selection, insertion) 
• O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) 
• Hash tables, including collision avoidance strategies 
• Binary search trees 

AL5. Basic Computability 
• Tractable and intractable problems 
• Uncomputable functions 

PL1. Overview of programming languages 
• History of programming languages 
• Brief survey of programming paradigms: Procedural languages, Object-oriented languages, 

Functional languages, Declarative, non-algorithmic languages, Scripting languages 
• The effects of scale on programming methodology 

PL2. Vir tual Machines 
• The concept of a virtual machine 
• Hierarchy of virtual machines 
• Intermediate languages 
• Security issues arising from running code on alien machine 

PL4. Declarations and Types 



124 CHAPTER 3 ANALYSIS OF THE CC2001 COMPUTER SCIENCE VOLUME   
 

• The conception of types as a set of values together with a set of operations 
• Declaration models (binding, visibility, scope, and lifetime) 
• Overview of type checking 
• Garbage collection 

PL5. Abstraction Mechanisms 
• Procedures, functions, and iterators as abstraction mechanisms 
• Parameterization mechanisms (reference vs. value) 
• Activation records and storage management 
• Type parameters and parameterized types 
• Modules in programming languages 

PL6. Object-or iented Programming 
• Object-oriented design 
• Encapsulation and information-hiding 
• Separation of behavior and implementation 
• Classes and subclasses 
• Inheritance (overriding, dynamic dispatch) 
• Polymorphism (subtype polymorphism vs. inheritance) 
• Class hierarchies 
• Collection classes and iteration protocols 

SP1. History of Computing 
• Prehistory – the world before 1946 
• History of computer hardware, software, networking 
• Pioneers of computing 

SE1. Software design 
• Fundamental design concepts and principles 
• Design patterns 
• Structured design 
• Object-oriented analysis and design 
• Design for reuse 

SE2. Using APIs 
• API programming 
• Class browsers and related tools 
• Programming by example 
• Debugging in the API environment 

SE3. Software Tools and Environments 
• Programming environments 
• Design modeling tools 
• Testing tools 

SE5. Software Requirements and Specifications 
• Requirements elicitation 
• Functional and nonfunctional requirements 

SE6. Software Validation 
• Testing fundamentals, including test plan creation and test case generation 
• Object-oriented testing 

Table 3-73: Final L ist of Intersection Topics



 125 

Chapter  4 

Refining the Topic L ist 

4.1 Introduction 

Looking at Table 3-73 showing the topics included in the intersection, one sees that 

the amount of material covered by the introductory sequence is quite substantial.  More 

than 75 topics are in the intersection, several of them encompassing multiple sub-topics.  

This number is too large for careful evaluation by one examination.   

In this chapter, we will eliminate some of the topics in order to create a more 

manageable assessment instrument.  During this analysis, if a topic is covered extensively 

in the introductory sequence, we keep it as part of the topics to be used to create the 

assessment instrument.  If a topic is covered in the introductory sequence, but also 

covered, possibly in more depth, in an upper-level course, it is eliminated.  Because this 

assessment focuses on the programming-first approaches to the introductory sequence, 

topics that are more closely related to programming and program design issues are given 

higher priority than those issues that are not as closely related.  The result is a smaller set 

of topics that is more manageable for testing by an assessment instrument. 



126 CHAPTER 4 REFINING THE TOPIC LIST   
 

Learning objectives were also considered among criteria for eliminating topics.  They 

will be discussed in more detail in Chapter 5.  

4.2 Topics Removed 

The topics discussed in this section are those that were removed from the topic list for 

the assessment instrument.  It is important that those interested in the introductory 

computer science sequence understand that these topics are not irrelevant to the 

curriculum nor should they be removed from the course content in the first year; rather, 

student’s abilities in these areas will not be assessed by this instrument.  If assessment of 

these issues is needed, it must be gathered using other methods.  Knowledge units that 

did not have topics removed are not discussed in this section. 

For some of the topics, the decision to remove them from the assessment was not an 

easy one.  All of the topics in the intersection are topics that should be covered in any 

introductory sequence.  However, some of the topics present challenges to assessment by 

exam.  Among them are topics that deal with the process of design or debugging.  These 

topics are not easy to assess with a traditional time-limited paper-and-pencil exam (which 

this exam is).  Therefore, topics that fell into this category were generally eliminated, 

even though their importance to student understanding cannot be overstated.  This exam 

does not assess every possible topic in an introductory sequence, so instructors will need 

to supplement this exam with assessment throughout the introductory sequence that will 

show student proficiency with some of the missing topics.  In the next sections, we will 



CHAPTER 4 REFINING THE TOPIC LIST 127 

 

look at the knowledge unit topics that will not be assessed by our exam organized by 

reason for their elimination from this assessment instrument. 

4.2.1 Topics Eliminated because of Time Constraints 

There are many topics in the original intersection list that require a significant amount 

of questions to be asked in order to discern a student’s understanding or would require 

questions that can take a considerable amount of thinking and preparation before a 

student can effectively answer.  The proper amount of time that needs to be given for 

exploration of a topic as well as synthesis of a solution can be achieved in many ways.  

Some suggestions and ideas are given in §4.2.1.1 – 4.2.1.3. 

These topics are further broken down into three categories:  topics assessing the 

process of programming and program development, topics assessing student 

understanding of concepts underlying programming and program development, and 

topics concerned with students exploring programming through the use of advanced 

programming techniques, algorithm analysis, or development tools and environments. 

4.2.1.1 Programming process 

These topics deal primarily with the process of creating a program or the process of 

designing a solution to a particular problem: 

• Structured decomposition (from PF1) 
• Problem-solving strategies (from PF2) 
• Implementation strategies for algorithms (from PF2) 
• Debugging strategies (from PF2) 



128 CHAPTER 4 REFINING THE TOPIC LIST   
 

• Object-oriented design (from PL6) 
• Fundamental design concepts and principles (from SE1) 
• Design patterns (from SE1) 
• Object-oriented analysis and design (from SE1) 
• API programming (from SE2) 
• Programming by example (from SE2) 
• Debugging in the API environment (from SE2) 
• Testing fundamentals, including test plan creation and test case generation    

(from SE6) 
• Object-oriented testing (from SE6) 
 
Assessing student knowledge in any of the above areas can be done in a laboratory 

setting.  Students can obviously demonstrate their abilities in these areas through the 

completion of programming projects requiring them to design and implement a solution.  

These programs then can be assessed on design characteristics as well as correct 

functionality so that a student can demonstrate understanding of design techniques and 

strategies.  This will also allow problems of sufficient complexity to be given to the 

student to allow them to use more sophisticated design techniques without the time 

constraints this exam will have. 

Another possible way to assess the design abilities of a student is assessment through 

controlled observation.  An assessor could be brought in to watch a student construct a 

solution to a problem.  The student could be asked to describe the process they are using, 

or the assessor could ask questions about the design decisions the student has made while 

they have developed the solution to the problem.  The assessor can then assign a grade to 

the student based on techniques used for solving a problem, rather than the actual 

solution. 



CHAPTER 4 REFINING THE TOPIC LIST 129 

 

One could argue, however, that these ideas will be tested in the assessment any time 

that a student is asked to generate a piece of code.  This in many ways is true.  However, 

the questions that ask the student to create code to solve a particular problem also assess 

their ability to create a solution for that problem, not their general problem-solving or 

design abilities.  Therefore, it will not be claimed that this assessment demonstrates a 

student’s ability to problem solve in general, or that a student is competent in any 

particular design technique, but rather that the student has demonstrated the ability to 

solve problems within a specific topic area in this discipline. 

Another argument that could be raised about the exclusion of these topics is that when 

one is dealing with languages as complex as many of the popular CS1 languages, the idea 

of the API (Application Programmers Interface14) and its place in learning a new 

language cannot be overemphasized.  Since it would be unreasonable to assume that 

students memorize all the methods from the multitude of classes that could be referenced 

by this exam, it is possible that an API will be used as a means to provide students 

supporting information about code examples used in the exam. 

However, the API is only being used as a tool to help the students in solving some 

other problem.  The notable example from the exam that was created for this dissertation 

is the use of the API for the String class in Java.  This class is fairly large and provides 

many useful methods that can be used by a student for string processing tasks.  String 

                                                 
14 Similar to the idea of a language reference manual, an API provides a developer with information about a 
language and the libraries and library methods contained within it.  APIs can also be provided for libraries 
and packages developed as external projects in a language to help developers learn about its features. 



130 CHAPTER 4 REFINING THE TOPIC LIST   
 

processing is a topic that is included on the assessment, and giving the student access to 

the API for the String class is a way to ensure that the student has access to methods that 

will help them process strings and not have to be concerned with memorizing names of 

methods before the exam.  See Chapter 6 for an in-depth discussion of specific exam 

questions.  This use of APIs is not clearly indicated by the topics given in the SE2 

knowledge unit, so the topics are not included as formal topics for exam creation.     

Last, an argument could be raised against the exclusion of software testing from the 

exam.  Testing can obviously be assessed using laboratory exercises where students are 

asked to test code or create test cases for code they have written.  However, students 

could be asked to do the same thing on an exam as well, even if the testing can never be 

executed.  There are two reasons that this method of assessment was not used in this 

exam.  The first is a time concern.  Asking students to create proper test cases for a 

problem will require that they have studied a problem for at least some time.  The second 

is a concern over coverage of testing methodology.  There are several testing 

methodologies available, and an instructor is free to choose whatever methodology fits 

more appropriately into their course.  Therefore, it could be the case that test cases or test 

plans were never formally discussed, and asking the student to write one would not be 

feasible due to lack of experience with that type of testing.  It is for both of these reasons 

that the topics have not been included on this assessment. 



CHAPTER 4 REFINING THE TOPIC LIST 131 

 

4.2.1.2 Concepts under lying the programming process 

These topics are still concerned with the process of creating a program or designing a 

solution, but are not necessarily issues of process, rather, they are concepts and ideas that 

underlie the actual process of programming.  These topics are: 

• The role of algorithms in the problem-solving process (from PF2) 
• The concept and properties of algorithms (from PF2) 
• Time and space tradeoffs in algorithms (from AL1) 
• The effects of scale on programming methodology (from PL1) 
• Procedures, functions, and iterators as abstraction mechanisms (from PL5) 
• Separation of behavior and implementation (from PL6) 
• Design for reuse (from SE1) 
 

These topics require a student to possess not only an understanding of the process of 

programming and design, but also to understand the “why”  of those processes.  Asking a 

question about a “why”  forces an explanation.  Explanations must be given in the form of 

natural language and usually involve one or more sentences and time for the answerer to 

prepare their thoughts about the subject.  This pushes questions of “why”  into a category 

of discussion topics or essays. All of this requires an amount of time not available in this 

exam. 

Assessment of these topics could be achieved through a graded and guided in-class 

discussion or debate about practices of good design and design ideas, or even through 

assigned essays or position papers about these ideas.  Both methods would allow students 



132 CHAPTER 4 REFINING THE TOPIC LIST   
 

to express themselves free of the time pressure this particular exam and would also allow 

students time to reflect on these ideas and their importance. 

4.2.1.3 Explor ing different aspects of programming 

These topics are topics that are related to programming activities, most specifically 

certain kinds of algorithms or algorithm analysis that could be performed at the 

introductory level.  Also included are topics dealing with programming environments or 

tools.  These topics are: 

• Recursive backtracking (from PF4) 
• Empirical measurements of performance (from AL1) 
• Collision avoidance strategies for hash tables (from AL3) 
• Class browsers and related tools (from SE2) 
• Programming environments (from SE3) 
• Design modeling tools (from SE3) 
• Testing tools (from SE3) 
 
The first three topics are topics that deal with specific algorithms or techniques.  For a 

student to demonstrate an understanding of recursive backtracking, a problem of 

sufficient size must be given to the student for them to solve using this method.  

However, problems of this size will require much time in the design stage of the problem-

solving process.  The topic of empirical measurements could be better assessed as a 

laboratory exercise that engages the students in determining the empirical measurement 

of the runtime of algorithms and asks them to compare that to their knowledge of the Big-

O running time.  The topic of collision avoidance strategies for hash tables contains 

within it numerous strategies for collision avoidance not all of which would be covered 



CHAPTER 4 REFINING THE TOPIC LIST 133 

 

by all instructors.  Therefore, instructors are encouraged to expose the students to various 

collision avoidance strategies and compare them in some form of laboratory or other 

programming exercise. 

The final four topics deal with tools and environments.  Since all instructors are free 

to use whatever environment and tools they wish, it is impractical to try to assess students 

on their abilities with these tools in a uniform way.  Assessment of these skills must once 

again be done via laboratory exercises in individual courses. 

4.2.2 Topics Eliminated because of Deeper  Coverage in Advanced 
Courses  

Many topics in the original intersection list will be discussed at the introductory level 

to some degree, but will be discussed to a greater degree in subsequent courses in the 

curriculum.  Due to institutional differences, the depth at which many of these topics are 

covered can vary.  Therefore, finding an adequate level to assess these topics poses a 

great challenge.  Therefore, it is left to individual instructors to assess these topics in 

homework, problem sets, or in-class examinations to the level at which the topics were 

covered and to subsequent courses to assess when a more thorough treatment of the topic 

is undertaken.  These topics are either more advanced programming languages topics, 

systems topics, theory of computation topics, or more advanced software engineering 

topics.  These topics are: 

• Static, stack, and heap allocation (from PF3) 
• Runtime storage management (from PF3) 



134 CHAPTER 4 REFINING THE TOPIC LIST   
 

• Recursive mathematical functions (from PF4) 
• Tractable and intractable problems (from AL5) 
• Uncomputable functions (from AL5) 
• The concept of a virtual machine (from PL2) 
• Hierarchy of virtual machines (from PL2) 
• Intermediate languages (from PL2) 
• Security issues arising from running code on alien machine (from PL2) 
• Garbage collection (from PL4) 
• Activation records and storage management (from PL5) 
• Modules in programming languages (from PL5) 
• Requirements elicitation (from SE5) 
• Functional and nonfunctional requirements (from SE5) 
 

4.2.3 Topics Eliminated because of Difficulty in Determining 
Mater ial Coverage  

Many topics in the original intersection list are very broad overviews of topics or 

topics that involve history of the discipline.  These topics allow an instructor to have a 

large amount of freedom in what will be covered within particular topic and thus pose a 

serious problem for this assessment instrument.  Since there are no explicitly given 

standards within these areas, it is almost impossible to ensure uniform coverage across 

institutions.  Therefore, these topics will not be included in the assessment.  These topics 

are: 

• History of programming languages (from PL1) 
• Brief survey of programming paradigms:  Procedural languages, Object-oriented 

languages, Functional languages, Declarative, non-algorithmic languages, 
Scripting languages (from PL1) 

• Prehistory – the world before 1946 (from SP1) 
• History of computer hardware, software, networking (from SP1) 
• Pioneers of computing (from SP1) 
 



CHAPTER 4 REFINING THE TOPIC LIST 135 

 

The type of assessment of these topics will need to be determined in a large part by 

the individual instructors based on what depth and type of coverage these topics are 

given.  Because of their general, broad nature, it is even difficult to give good 

suggestions.  However, the idea of essays or exploratory research in the areas of history is 

an option that instructors may wish to pursue. 

4.2.4 Records 

The topic of records has presented a unique set of challenges.  Records are a clear 

programming-language-specific construct, and, because not all languages support 

records, choice of language would greatly determine how assessment could proceed with 

this topic.   

However, records also represent the idea of composite types in a more general sense, 

without the compulsion to delve into object-oriented ideas.  Therefore, imperatives-first 

courses would most definitely discuss them in the introductory sequence.  Since objects 

are simply another type of composite type, the concept of composite types is present in 

all of the introductory approaches being studied.  Due to this fact and our time 

constraints, the topic of records proper is not being included in this assessment; however, 

the notion of composite types will be present with any question that involves objects. 



136 CHAPTER 4 REFINING THE TOPIC LIST   
 

4.3 Topics Remaining 

After the elimination of the topics discussed above, the topics that are left present a 

tighter picture of topical coverage of this assessment instrument.  This new list of topics 

is presented in Table 4-1: Revised List of Topics. 

4.4 Conclusion 

It is most important to reiterate that the intent of this chapter is to make the 

assessment instrument easier to construct and to provide a picture of the common core 

material to all programming-first CS1-CS1 courses, not to imply that the topics 

eliminated should not be covered or assessed in the introductory sequence.  For many of 

the eliminated topics, alternative suggestions for assessment were given.  As stated 

before, it is most important not to consider this assessment instrument as the only form of 

assessment applicable to students in the introductory sequence.  Students should be 

assessed in multiple ways to have a complete picture of student performance in the 

introductory sequence 

 

 

 

 



CHAPTER 4 REFINING THE TOPIC LIST 137 

 

PF1. Fundamental Programming Constructs 
• Basic syntax and semantics of a higher-level language 
• Variables, types, expressions, and assignment 
• Simple I/O 
• Conditional and iterative control structures 
• Functions and parameter passing 

PF3. Fundamental Data Structures 
• Primitive types 
• Arrays 
• Strings and string processing 
• Data representation in memory 
• Pointers and references 
• Linked structures 
• Stacks, queues, and hash maps 
• Graphs and trees 
• Strategies for choosing the right data structure 

PF4. Recursion 
• The concept of recursion 
• Simple recursive procedures 
• Divide-and-conquer strategies 
• Implementation of recursion 

AL1. Basic Algor ithmic Analysis 
• Asymptotic analysis of upper and average complexity bounds 
• Big O notation 
• Standard complexity classes 

AL3. Fundamental Computing Algor ithms 
• Simple numerical algorithms 
• Sequential and binary search algorithms 
• Quadratic sorting algorithms (selection, insertion) 
• O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) 
• Hash tables 
• Binary search trees 

PL4. Declarations and Types 
• Overview of type checking 
• The conception of types as a set of values together with a set of operations 
• Declaration models (binding, visibility, scope, and lifetime) 

PL5. Abstraction Mechanisms 
• Parameterization mechanisms (reference vs. value) 
• Type parameters and parameterized types 

PL6. Object-or iented Programming 
• Encapsulation and information-hiding 
• Classes and subclasses 
• Inheritance (overriding, dynamic dispatch) 
• Polymorphism (subtype polymorphism vs. inheritance) 
• Class hierarchies 
• Collection classes and iteration protocols 

Table 4-1: Revised L ist of Topics



 138 



 139 

Chapter  5 

Learning Objectives 

5.1 Mining CC2001 for  Learning Objectives 

The previous two chapters analyzed the CC2001 document to produce a set of topics 

satisfying two constraints:  each topic is covered by all three programming-first 

approaches to the introductory curriculum, and each lends itself to assessment by a paper 

and pencil time-limited exam.  We now turn to an examination of the learning objectives 

that incorporate the topics from the intersection and that provide a context for what skills 

students should have after completing instruction in one of the topics from the knowledge 

units.   

To some, this could seem to be the reverse of what is typically done to create a 

course, where learning objectives are usually outlined before the course is created.  While 

this is certainly true, the unique structure of the CC2001 led to some problems with 

approaching the creation of the assessment in this way.  The sample syllabi and other 

course materials are given with topical coverage, but not learning objective coverage.  

Furthermore, the learning objectives are not given explicit associations with topics.  



140 CHAPTER 5 LEARNING OBJECTIVES   
 

Therefore, looking at the list of learning objectives gives all learning objectives for that 

knowledge unit, not learning objectives for each topic.   

Hence, to avoid looking at learning objectives for knowledge units that would not be 

included in the assessment at all and to further focus only for the appropriate learning 

objectives for the topics that would actually appear on the exam, the learning objectives 

were assembled after the list of topics was finalized. 

Appendix A of CC2001, which includes the knowledge units and topics for each 

knowledge unit, also lists learning objectives for each knowledge unit.  This chapter will 

show which of these learning objectives correlate with topics in the intersection 

previously defined.  Learning objectives that correlate with topics that are not included in 

the intersection are eliminated.  Topics that are in the intersection that do not correlate 

with a specific learning objective are noted, and new learning objectives are 

recommended to fill these gaps. 

5.2 Learning Objectives from Programming Fundamentals 

5.2.1 PF1. Fundamental Programming Constructs Learning 
Objectives 

The following topics from this knowledge unit are included in the intersection: 

• Basic syntax and semantics of a higher-level language 
• Variables, types, expressions, and assignment 
• Simple I/O 
• Conditional and iterative control structures 



CHAPTER 5 LEARNING OBJECTIVES 141 

 

• Functions and parameter passing 
 

The learning objectives given for this knowledge unit in Appendix A of CC2001 are 

shown in left column of Table 5-1.  All of the learning objectives for this knowledge unit 

are included in our list of learning objectives for the assessment, except for 5, because 

structured decomposition is not being included in the assessment. 

The meaning of the phrase analyze and explain given in learning objective 1 above 

and elsewhere is not clearly defined either in the learning objective or elsewhere in 

CC2001 itself.  Therefore, the terms will be defined for our purposes as the ability to 

describe the inputs, outputs, and the procedures used to compute the output from the 

input.  For example, given a program and an input, students should be able to state what 

output would be produced, and articulate in words the functionality of a particular piece 

of code.  It is important to note that if the program contains more than one method or 

function, students should be able to state what the responsibilities for each method or 

function are. 

In the second learning objective, the phrase modify and expand is also vague.  The 

definition of this phrase will be considered to be the ability of students, when given a 

simple program, to add elements to it, to change its functionality based on directions 

given, or to generalize it in some way. 

Table 5-1 shows the original learning objectives for this knowledge unit and the 

newly revised learning objectives for this knowledge unit; changes are indicated in 

boldface. 



142 CHAPTER 5 LEARNING OBJECTIVES   
 

Original Learning Objectives Revised Learning Objectives 

1. Analyze and explain the behavior of simple 
programs involving the fundamental 
programming constructs covered by this unit. 

2. Modify and expand short programs that use 
standard conditional and iterative control 
structures and functions. 

3. Design, implement, test, and debug a program 
that uses each of the following fundamental 
programming constructs: basic computation, 
simple I/O, standard conditional and iterative 
structures, and the definition of functions. 

4. Choose appropriate conditional and iteration 
constructs for a given programming task. 

5. Apply the techniques of structured (functional) 
decomposition to break a program into smaller 
pieces. 

6. Describe the mechanics of parameter passing. 

1. For simple programs involving the fundamental 
programming constructs covered by this unit, 
describe the inputs, outputs, and the procedures 
used to compute the output from the input. 

2. When given a short program that uses standard 
conditional and iterative control structures and 
functions, demonstrate the ability to add 
elements to it, to change its functionality based 
on directions given, or to generalize in a way 
described by the directives. 

3. Design, implement, test, and debug a program 
that uses each of the following fundamental 
programming constructs: basic computation, 
simple I/O, standard conditional and iterative 
structures, and the definition of functions. 

4. Choose appropriate conditional and iteration 
constructs for a given programming task. 

5. Describe the mechanics of parameter passing. 

Table 5-1: Compar ison of old and revised learning objectives for  PF1. Fundamental Programming 
Constructs 

5.2.2 PF3. Fundamental Data Structures Learning Objectives 

The following topics from this knowledge unit are included in the intersection: 

• Primitive types 
• Arrays 
• Strings and string processing 
• Data representation in memory 
• Pointers and references 
• Linked structures 
• Stacks, queues, and hash tables 
• Graphs and trees 
• Strategies for choosing the right data structure 
 

The learning objectives given for this knowledge unit in Appendix A of CC2001 are 

shown in the left column of Table 5-2.  The only learning objective that will not be 



CHAPTER 5 LEARNING OBJECTIVES 143 

 

included in the final list of learning objectives is 2 because the topics about allocation and 

runtime storage management are not included in our intersection for the exam. 

Again, there are imprecise terms that I propose definitions for.  In learning objective 

4, we see the use of the word implementation.  It is being used in the computer science 

sense of the student’s ability to create source code that when run, will instruct the 

computer to perform some task.  In this case, we want the student to be able to create 

source code that defines data structures. 

In learning objective 5, the definition of compare will be similar to the definitions of 

describe and discuss; that is, when students are asked about the different implementations 

of data structures, they should be able to articulate in words the similarities and 

differences between them. 

In learning objective 7, we see the terms compare and contrast.  The ability to 

compare and contrast is an extension of a student’s ability to compare, so the student 

should be able to articulate in words similarities as well as differences among the two 

ways to implement data structures. 

Two topics from PF3 are not explicitly covered by the learning objectives: string 

processing and the data structures graphs and trees (see learning objective 6). 

An intuitive definition of string processing would be any computation that involves 

strings, i.e. sequences of characters.  However, exactly which computations are we most 

concerned with in CS1 and CS2?  This question is not answered by this knowledge unit.   



144 CHAPTER 5 LEARNING OBJECTIVES   
 

Therefore, let us consider the string processing topics covered in a number of the 

more popular texts for CS1.  The texts we will look at are not an exhaustive sample; 

however, they do represent all three of the programming-first approaches (Harvey and 

Wright 1999; Hanly and Koffman 2003; Dietel and Dietel 2004; Dietel and Dietel 2005; 

Dietel and Dietel 2005; Horstmann 2006; Savitch 2006; Lewis and Loftus 2007).  These 

texts were chosen based on their popularity as evidenced by discussion of them at 

conferences, promotion on various publisher’s websites, and sales rankings.  Searching 

the table of contents, indexes, and chapters that deal with strings in these texts leads to a 

commonality in the string processing topics that are covered.  There is always a part of 

the chapters explaining what a string is, how to create a string, and how assignment 

works with strings, which for the purposes of this topic and learning objective are already 

covered by learning objectives 1 and 2 of this section.  

The other common operations consist of creating substrings (which can also be 

categorized as parsing), using substrings, string concatenation (combining or joining end-

to-end two or more separate strings together to create one larger string), and string 

comparison.  Also, each text makes note of string operations that are built into the 

specific programming language.  Therefore, the new learning objective for this section 

will consist of those common operations (see item 9 in the right column of Table 5-2). 

Resolving the omission of graphs and trees from learning objective 6 is fairly trivial.  

We can simply add these two other data structures to the list, and remove records, which 

are not covered in our intersection. 



CHAPTER 5 LEARNING OBJECTIVES 145 

 

Table 5-2 shows the original learning objectives for this knowledge unit and the 

newly revised learning objectives for this knowledge unit; changes are indicated in 

boldface. 

Original Learning Objectives Revised Learning Objectives 
1. Discuss the representation and use of primitive 

data types and built-in data structures. 

2. Describe how the data structures in the topic list 
are allocated and used in memory. 

3. Describe common applications for each data 
structure in the topic list. 

4. Implement the user-defined data structures in a 
high-level language. 

5. Compare alternative implementations of data 
structures with respect to performance. 

6. Write programs that use each of the following 
data structures: arrays, records, strings, linked 
lists, stacks, queues, and hash tables. 

7. Compare and contrast the cost and benefits of 
dynamic and static data structure 
implementations. 

8. Choose the appropriate data structure for 
modeling a given problem. 

1. Discuss the representation and use of primitive 
data types and built-in data structures. 

2. Describe common applications for each data 
structure in the topic list. 

3. Create executable source code for the user-
defined data structures in a high-level language. 

4. Articulate the similarities and differences among 
alternative implementations of data structures 
with respect to performance.. 

5. Write programs that use each of the following 
data structures: ar rays, str ings, linked lists, 
stacks, queues, hash tables, trees, and graphs. 

6. Articulate the similarities and differences 
between dynamic and static data structure 
implementations, focusing especially on the 
costs and benefits of each. 

7. Choose the appropriate data structure for 
modeling a given problem. 

8. Demonstrate ability to parse, concatenate, 
and compare str ings, use substr ings, and 
descr ibe the var ious types of operations that 
are built into a high-level programming 
language for  use with str ings. 

Table 5-2: Compar ison of old and revised learning objectives for  PF3. Fundamental Data Structures 

 
 
 
 
 
 



146 CHAPTER 5 LEARNING OBJECTIVES   
 

5.2.3 PF4. Recursion Learning Objectives 

The following topics from this knowledge unit are included in the intersection: 

• The concept of recursion 
• Simple recursive procedures 
• Divide-and-conquer strategies 
• Implementation of recursion 
 

The learning objectives given for this knowledge unit in Appendix A of CC2001 are 

shown in the left column Table 5-3.  For this knowledge unit, the topics of recursive 

mathematical functions and recursive backtracking are not included in our intersection 

but are part of this knowledge unit in CC2001.  None of the learning objectives for this 

section address the topic of recursive mathematical functions.  The only learning 

objective that talks about recursive backtracking is 7 and will be removed.   

Table 5-3 shows the original learning objectives for this knowledge unit and the 

newly revised learning objectives for this knowledge unit; changes are indicated in 

boldface. 

 

 

 

 

 



CHAPTER 5 LEARNING OBJECTIVES 147 

 

Original Learning Objectives Revised Learning Objectives 

1. Describe the concept of recursion and give 
examples of its use. 

2. Identify the base case and the general case of a 
recursively defined problem. 

3. Compare iterative and recursive solutions for 
elementary problems such as factorial. 

4. Describe the divide-and-conquer approach. 

5. Implement, test, and debug simple recursive 
functions and procedures. 

6. Describe how recursion can be implemented 
using a stack. 

7. Discuss problems for which backtracking is an 
appropriate solution. 

8. Determine when a recursive solution is 
appropriate for a problem. 

1. Describe the concept of recursion and give 
examples of its use. 

2. Identify the base case and the general case of a 
recursively defined problem. 

3. Compare iterative and recursive solutions for 
elementary problems such as factorial. 

4. Describe the divide-and-conquer approach. 

5. Implement, test, and debug simple recursive 
functions and procedures. 

6. Describe how recursion can be implemented 
using a stack. 

7. Determine when a recursive solution is 
appropriate for a problem. 

Table 5-3: Compar ison of old and revised learning objectives for  PF1. Fundamental Programming 
Constructs 

 

5.3 Learning Objectives from Algor ithms and Complexity 

5.3.1 AL1. Basic Algor ithm Analysis Learning Objectives 

The following topics from this knowledge unit are included in the intersection: 

• Asymptotic analysis of upper and average complexity bounds 
• Big O notation 
• Standard complexity classes 
 

The learning objectives given for this knowledge unit in Appendix A of CC2001 are 

shown in the left column Table 5-4.  Learning objectives 1 and 2 will be modified to only 

discuss Big O notation because the only notation included in our intersection is Big O. 



148 CHAPTER 5 LEARNING OBJECTIVES   
 

Learning objective 4 and learning objective 5 will be eliminated, because both are 

concerned with the topic of recurrence relations, which is not included in the intersection 

of topics used to create our exam.   

The only topic that does not seem to be adequately covered by the learning objectives 

is standard complexity classes, so a learning objective will be added for recognition of 

the standard complexity classes.   

Table 5-4 shows the original learning objectives for this knowledge unit and the 

newly revised learning objectives for this knowledge unit; changes are indicated in 

boldface. 

Original Learning Objectives Revised Learning Objectives 

1. Explain the use of Big O, omega, and theta 
notation to describe the amount of work done 
by an algorithm. 

2. Use Big O, omega, and theta notation to give 
asymptotic upper, lower, and tight bounds on 
time and space complexity of algorithms. 

3. Determine the time and space complexity of 
simple algorithms. 

4. Deduce recurrence relations that describe the 
time complexity of recursively defined 
algorithms. 

5. Solve elementary recurrence relations. 

1. Explain the use of Big O notation to descr ibe 
the amount of work done by an algor ithm.  

2. Use Big O notation to give asymptotic upper  
bounds on time and space complexity of 
algor ithms.  

3. Determine the time and space complexity of 
simple algorithms.   

4.  Identify the standard complexity classes and 
ar range them in order  of growth rate. 

Table 5-4: Compar ison of old and revised learning objectives for  AL1. Basic Algor ithmic Analysis 

 
 
 



CHAPTER 5 LEARNING OBJECTIVES 149 

 

5.3.2 AL3. Fundamental Computing Algor ithms Learning 
Objectives 

The following topics from this knowledge unit are included in the intersection: 

• Simple numerical algorithms 
• Sequential and binary search algorithms 
• Quadratic sorting algorithms (selection, insertion) 
• O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) 
• Hash tables 
• Binary search trees 
 

The learning objectives given for this knowledge unit in Appendix A of CC2001 are 

shown in the left column of Table 5-5.  Learning objectives 3 and 4 concern hash tables 

and collision avoidance strategies, which do not appear in the intersection of topics and 

are not needed for this list of learning objectives.  Learning objective 6 should be 

eliminated, because it includes the topics on graphs and graph algorithms that are not 

included in the intersection of topics for our exam.   

Topics that are not covered by these learning objectives that are included in the 

intersection are: simple numerical algorithms, sequential and binary search algorithms, 

and binary search trees.   

“Simple numerical algorithms” does not have a clear definition in this knowledge 

unit.  Cormen, Leiserson, and Rivest (1990), one of the leading books in the area of 

algorithms, has no chapter titles or section headings for “simple numerical algorithms”,  

nor does the index provide an entry for “simple numerical algorithms”  The first chapter 

of the text does not provide a definition for this term, either.  A search of the texts for 



150 CHAPTER 5 LEARNING OBJECTIVES   
 

CS1 that were used in section 5.2.2 to define string processing did not bring forth any 

definition of this term, either. 

A Google search of “simple numerical algorithms” (including quotes) brought several 

references back to the posting of the CC2001 document on the web!  Also included in the 

result set were course web pages that have that exact term in them.  Unfortunately, these 

courses simply use the term and the other topics from this knowledge unit as part of their 

syllabus with no further definition of it.   

It would appear that most instructors have an intuitive notion of what this term means 

without a clear definition.  Two course websites, elaborate on the term a bit more.  The 

first site, a curriculum document for the Programming I course in a high school, gives as 

examples of “simple numerical algorithms” counting, summing, averaging, and rounding 

(Dade Computer Programming I Description 2001).    The second gives an assignment, in 

a class entitled “Object-Oriented Programming”, whose stated purpose is  “To program a 

simple numerical algorithm in a C++ class”  (Bond 2004).  This assignment asks the 

student to implement equations for linear regression.  It seems reasonable to include not 

only counting, summing, averaging, and rounding, but also the ability to translate into 

code any simple mathematical formula, such as simple subtraction, multiplication, 

division, and modulus, as well as slightly more complicated formulae like geometric area 

or computation of the discriminant, and even more complicated formulae like linear 

regression, Newton’s method, or Simpson’s rule.  This topic might well be described by 

the blanket statement of simply translating formulae into programs. 



CHAPTER 5 LEARNING OBJECTIVES 151 

 

A combination of all of these will be considered “simple numeric algorithms.”   One 

other consideration that needs to be made is that, in some languages, many simple 

mathematical functions are already implemented, and the students should be able to use 

those in their computation as well.  The learning objective that will encompass this idea 

will include the ability to implement these simple numeric algorithms in code.  Therefore, 

we will add learning objective 8 to this section (see Table 5-5). 

There is a brief mention of searching algorithms in one of the learning objectives, but 

it is also important to include the ability to implement these algorithms, which is not 

included in any of the learning objectives.  To rectify this situation, searching has been 

added to learning objective 1. 

Binary search trees are mentioned as a topic in this knowledge unit and appear in the 

intersection of topics created, but are not given any mention in the learning objectives.  

This knowledge unit is not concerned with implementation of a binary search tree, 

because that topic is included in PF3, Fundamental data structures.  Because this is the 

algorithms and complexity knowledge unit, binary search trees should not be considered 

in an implementation in source code way, but rather how a binary search tree is useful in 

many of the algorithms discussed in this section, such as searching and sorting.  It is 

important to note that learning objective 5 mentions “application-specific patterns in the 

input data.”   Patterns in data directly affect how a binary search tree is constructed and 

could therefore affect its efficiency.  Therefore, we will include a more specific mention 



152 CHAPTER 5 LEARNING OBJECTIVES   
 

of binary search trees in learning objective 4 and expect that issues with binary search 

trees will also be discussed for learning objective 5. 

Table 5-5 shows the original learning objectives for this knowledge unit and the 

newly revised learning objectives for this knowledge unit; changes are indicated in 

boldface. 

 

Original Learning Objectives Revised Learning Objectives 

1. Implement the most common quadratic and 
O(N log N) sorting algorithms. 

2. Design and implement an appropriate hashing 
function for an application. 

3. Design and implement a collision-resolution 
algorithm for a hash table. 

4. Discuss the computational efficiency of the 
principle algorithms for sorting, searching, 
hashing. 

5. Discuss factors other than computational 
efficiency that influence the choice of 
algorithms, such as programming time, 
maintainability, and the use of application-
specific patterns in the input data. 

6. Solve problems using the fundamental graph 
algorithms, including depth-first and breadth-
first search, single-source and all-pairs shortest 
paths, transitive closure, topological sort, and at 
least one minimum spanning tree algorithm. 

7. Demonstrate the following capabilities: to 
evaluate algorithms, select from a range of 
possible options, to provide justification for that 
selection, and to implement the algorithm in 
programming context. 

1. Implement the most common searching 
algor ithms as well as the most common 
quadratic and O(N log N) sorting algorithms. 

2. Discuss the computational efficiency of the 
principle algorithms for sorting, searching 
(including binary search trees), and hashing. 

3. Discuss factors other than computational 
efficiency that influence the choice of 
algorithms, such as programming time, 
maintainability, and the use of application-
specific patterns in the input data.  

4. Demonstrate the following capabilities: to 
evaluate algorithms, to select from a range of 
possible options, to provide justification for 
that selection, and to implement the algorithm 
in programming context. 

5. Implement simple numer ical algor ithms, 
such simple ar ithmetic (addition, 
subtraction, multiplication, division, 
modulus), as well as known mathematical 
formulae (geometr ic area, discr iminant, 
linear  regression, Simpson’s rule, etc.) in 
programs, using both user-defined and any 
language-provided mathematical functions 
needed. 

Table 5-5: Compar ison of old and revised learning objectives for  AL3. Fundamental Computing 
Algor ithms 



CHAPTER 5 LEARNING OBJECTIVES 153 

 

5.4 Learning Objectives from Programming Languages 

5.4.1 PL4. Declarations and Types Learning Objectives 

The following topics from this knowledge unit are included in the intersection: 

• The conception of types as a set of values together with a set of 
operations 

• Declaration models (binding, visibility, scope, lifetime) 
• Overview of type checking 
 

The learning objectives given for this knowledge unit in Appendix A of CC2001 are 

shown in the left column of Table 5-6.  We omit, learning objective 1, which touches on 

the concept of declaration models but also includes the topic of programming-in-the-

large, because those topics are not included in our intersection.  Learning objectives 5 and 

6 are also eliminated for the same reason.   

The only topic in our intersection that appears to be missing from the learning 

objectives is the idea that a type is a set of values together with a set of operations.  The 

idea of value is mentioned in learning objective 2, but only in the context of a variable, 

not a type specifically.  The problem with this topic is that it is basically a definition, 

which is applied in the ideas tested by learning objectives 2 and 3.  More specifically, one 

of the main reasons that type compatibility issues arise is because the values and 

operations that can be performed on one type may not be the same as another.  Even 

though not explicit, this definition of type is incorporated into the learning objectives. 



154 CHAPTER 5 LEARNING OBJECTIVES   
 

Table 5-6 shows the original learning objectives for this knowledge unit and the 

newly revised learning objectives for this knowledge unit; changes are indicated in 

boldface. 

Original Learning Objectives Revised Learning Objectives 

1. Explain the value of declaration models, 
especially with respect to programming-in-the-
large. 

2. Identify and describe the properties of a 
variable such as associated address, value, 
scope, persistence, and size. 

3. Discuss type incompatibility. 
4. Demonstrate different forms of binding, 

visibility, scoping, and lifetime management. 
5. Defend the importance of type-checking in 

providing abstraction and safety. 

1. Identify and describe the properties of a 
variable such as associated address, value, 
scope, persistence, and size. 

2. Discuss type incompatibility. 
3. Demonstrate different forms of binding, 

visibility, scoping, and lifetime 
management. 

Table 5-6: Compar ison of old and revised learning objectives for  PF1. Fundamental Programming 
Constructs 

5.4.2 PL5. Abstraction Mechanisms Learning Objectives 

The following topics from this knowledge unit are included in the intersection: 

• Parameterization mechanisms (reference vs. value) 
• Type parameters and parameterized types 
 

The learning objectives given for this knowledge unit in Appendix A of CC2001 are 

shown in the left column of Table 5-7.  Learning objectives 1, 3, and 4 are all concerned 

with topics that are not included in our intersection and will be omitted. 

The only intersection topics that seems to be missing from the learning objectives are 

type parameters and parameterized types.  These are concerned with parametric 



CHAPTER 5 LEARNING OBJECTIVES 155 

 

polymorphism, which can be characterized as “a special type of polymorphism15 in which 

type expressions are parameterized”  (Sethi, 1996: 359).  This type of polymorphism 

refers to the ability of a function to have parameters which are given generic types.  The 

type given in the function definition is simply a named place holder.  When the function 

is actually run, the type of the actual parameter passed in will become the type of the 

parameter for that function call.   

This type of polymorphism is available in many languages.  C/C++ calls this ability 

“ templates” ; Java 1.5 has just added this ability in the form of generics;  ML supports this 

feature internally through the typing mechanism built into the language.  Parameterized 

type expressions can be used for many parts of a program, including: the types for the 

parameters of functions, return types, and the type of elements stored in abstract data 

types.  For this knowledge unit, it is important to add a learning objective requiring that 

students be familiar with the use of parameterized types in their introductory language 

(see objective 5 in Table 5-7). 

Table 5-7 shows the original learning objectives for this knowledge unit and the 

newly revised learning objectives for this knowledge unit; changes are indicated in 

boldface. 

                                                 
15 Polymorphism can be defined as the “ability of subclasses to respond differently to the same messages”  
(vanDam et al., 1997:67).  An example of polymorphism is the following.  Many things in this world can 
fly (helicopters, 747s, ducks, and robins, to name a few).  However, each of these objects flies in decidedly 
different ways.  Each of these objects could derive from a common superclass (or interface) and inherit (or 
implement) the ability to fly.  A program could be written that helps simulate air traffic conditions.  This 
program only deals with elements that can fly (i.e. have that capability), so all of the objects mentioned 
qualify.  During the course of the execution of the program, each object is told to fly.  The program does 
not know which object it is speaking to, but each object will receive the message and “ fly”  appropriately.  



156 CHAPTER 5 LEARNING OBJECTIVES   
 

Original Learning Objectives Revised Learning Objectives 

1. Explain how abstraction mechanisms support 
the creation of reusable software components. 

2. Demonstrate the difference between call-by-
value and call-by-reference parameter passing. 
 

3. Defend the importance of abstractions, 
especially with respect to programming-in-the-
large. 

4. Describe how the computer system uses 
activation records to manage program modules 
and their data. 

1. Demonstrate the difference between call-by-
value and call-by-reference parameter passing. 

2. Demonstrate the ability to use 
parameter ized types in programs. 

Table 5-7: Compar ison of old and revised learning objectives for  PL5. Abstractions Mechanisms 

 

5.4.3 PL6. Object-or iented Programming Learning Objectives 

The following topics from this knowledge unit are included in the intersection: 

• Encapsulation and information-hiding 
• Classes and subclasses 
• Inheritance (overriding, dynamic dispatch) 
• Polymorphism (subtype polymorphism vs. inheritance) 
• Class hierarchies 
• Collection classes and iteration protocols 
 

The learning objectives given for this knowledge unit in Appendix A of CC2001 are 

shown in the left column of Table 5-8.  Learning objective 1 will be not be included 

because object-oriented design is not included in our intersection.  

However, the topics of classes and subclasses, polymorphism, and collection classes 

do not seem to be covered in any of the learning objectives.  Classes and subclasses are 

part of the discussion of inheritance, but do not specifically appear in any learning 



CHAPTER 5 LEARNING OBJECTIVES 157 

 

objective discussing inheritance. Therefore, these terms will be added to learning 

objective 4.  Also, it is more common to see that relationships occur between classes, not 

objects.  In fact, the specification for UML, the design tool used most commonly by 

object-oriented developers illustrates this fact (Rumbaugh, Jacobson, and Booch 1999).  

Therefore, the learning objective will be changed to reflect this usage. 

Polymorphism is a topic that is alluded to in learning objective 6, but is not explicitly 

stated.  Also, the difference between subtype polymorphism and inheritance is an idea 

presented in the topic list that is not given in any learning objective.  Two new learning 

objectives will be created to incorporate these ideas. 

Collection classes are alluded to in learning objective 7 but, once again, not explicitly 

stated.  A new learning objective will be inserted to ensure that students are able to create 

and use collections.   

Table 5-8 shows the original learning objectives for this knowledge unit and the 

newly revised learning objectives for this knowledge unit; changes are indicated in 

boldface. 

 

 

 

 



158 CHAPTER 5 LEARNING OBJECTIVES   
 

Original Learning Objectives Revised Learning Objectives 

1. Justify the philosophy of object-oriented design 
and the concepts of encapsulation, abstraction, 
inheritance, and polymorphism. 

2. Design, implement, test, and debug simple 
programs in an object-oriented programming 
language. 

3. Describe how the class mechanism supports 
encapsulation and information-hiding. 

4. Design, implement, and test the implementation 
of the “ is-a”  relationship among objects using a 
class hierarchy and inheritance. 

5. Compare and contrast the notions of 
overloading and overriding methods in an 
object-oriented language. 

6. Explain the relationship between the static 
structure of the class and the dynamic structure 
of the instances of the class. 

7. Describe how iterators access the elements of a 
container. 

1. Design, implement, test, and debug simple 
programs in an object-oriented programming 
language. 

2. Describe how the class mechanism supports 
encapsulation and information hiding. 

3. Design, implement, and test the implementation 
of “ is-a”  relationships among classes using a 
class hierarchy and inheritance.  Distinguish 
between the superclass and the subclasses in 
these relationships. 

4. Compare and contrast the notions of 
overloading and overriding methods in an 
object-oriented language. 

5. Explain the relationship between the static 
structure of the class and dynamic structure of 
the instances of the class, especially in the 
context of how dynamic dispatch is involved 
in subtype polymorphism. 

6. Describe how iterators access the elements of 
the collection. 

7. Descr ibe the difference between subtype 
polymorphism and inher itance. 

8. Create a collection, inser t elements into a 
collection, and iterate over  elements in a 
collection. 

Table 5-8: Compar ison of old and revised learning objectives for  PL6. Object-or iented Programming 

 

5.5 Conclusion 

After compiling the list of topics for the intersection of programming-first CS1-CS2 

and looking at the learning objectives that are given in Appendix A of CC2001 for each 

of the knowledge units described in CC2001, a final list of learning objectives for the 

topics in the intersection has been created.  Learning objectives that do not deal with 

topics in the intersection have been eliminated, and the search has discovered that some 



CHAPTER 5 LEARNING OBJECTIVES 159 

 

learning objectives needed to be re-worded or added to fit all of the topics in the 

intersection.  Table 5-9 gives the final list of all learning objectives for the topics in the 

intersection of programming-first CS1-CS2. 

PF1. Fundamental Programming Constructs Learning Objectives 

1. Analyze and explain the behavior of simple programs involving the fundamental 
programming constructs covered by this unit. 

2. Modify and expand short programs that use standard conditional and iterative control 
structures and functions. 

3. Design, implement, test, and debug a program that uses each of the following fundamental 
programming constructs: basic computation, simple I/O, standard conditional and iterative 
structures, and the definition of functions. 

4. Choose appropriate conditional and iteration constructs for a given programming task. 

5. Describe the mechanics of parameter passing. 

 

PF3. Fundamental Data Structures Learning Objectives 

1. Discuss the representation and use of primitive data types and built-in data structures. 

2. Describe common applications for each data structure in the topic list. 

3. Implement the user-defined data structures in a high-level language. 

4. Compare alternative implementations of data structures with respect to performance. 

5. Write programs that use each of the following data structures: arrays, strings, linked lists, 
stacks, queues, hash tables, trees, and graphs. 

6. Compare and contrast the cost and benefits of dynamic and static data structure 
implementations. 

7. Choose the appropriate data structure for modeling a given problem. 

8. Demonstrate ability to parse, concatenate, and compare strings, use substrings, and describe 
the various types of operations that are built into a high-level programming language for use 
with strings. 

PF4. Recursion Learning Objectives 

1. Describe the concept of recursion and give examples of its use. 

2. Identify the base case and the general case of a recursively defined problem. 

3. Compare iterative and recursive solutions for elementary problems such as factorial. 



160 CHAPTER 5 LEARNING OBJECTIVES   
 

4. Describe the divide-and-conquer approach. 

5. Implement, test, and debug simple recursive functions and procedures. 

6. Describe how recursion can be implemented using a stack. 

7. Determine when a recursive solution is appropriate for a problem. 

8. Express a recursive mathematical function in terms of a base case and a recursive case. 

AL1. Basic Algor ithm Analysis Learning Objectives 

1. Explain the use of Big O notation to describe the amount of work done by an algorithm. 

2. Use Big O notation to give asymptotic upper bounds on time and space complexity of 
algorithms. 

3. Determine the time and space complexity of simple algorithms.  

4. Identify the standard complexity classes and arrange them in order of growth rate. 

AL3. Fundamental Computing Algor ithms Learning Objectives 

1. Implement the most common searching algorithms as well as the most common quadratic and 
O(N log N) sorting algorithms. 

2. Discuss the computational efficiency of the principle algorithms for sorting, searching 
(including binary search trees), and hashing. 

3. Discuss factors other than computational efficiency that influence the choice of algorithms, 
such as programming time, maintainability, and the use of application-specific patterns in the 
input data. 

4. Demonstrate the following capabilities: to evaluate algorithms, to select from a range of 
possible options, to provide justification for that selection, and to implement the algorithm in 
programming context. 

5. Implement simple numerical algorithms, such simple arithmetic (addition, subtraction, 
multiplication, division, modulus), as well as known mathematical formulae (geometric area, 
discriminant, linear regression, Simpson’s rule, etc.) in programs, using both user-defined and 
any language-provided mathematical functions needed. 

PL4. Declarations and Types Learning Objectives 

1. Identify and describe the properties of a variable such as associated address, value, scope, 
persistence, and size. 

2. Discuss type incompatibility. 

3. Demonstrate different forms of binding, visibility, scoping, and lifetime management. 

PL5. Abstraction Mechanisms Learning Objectives 

1. Demonstrate the difference between call-by-value and call-by-reference parameter passing. 

2. Demonstrate the ability to use parameterized types in programs. 



CHAPTER 5 LEARNING OBJECTIVES 161 

 

PL6. Object-or iented Programming Learning Objectives 

1. Design, implement, test, and debug simple programs in an object-oriented programming 
language. 

2. Describe how the class mechanism supports encapsulation and information hiding. 

3. Design, implement, and test the implementation of “ is-a”  relationships among classes using a 
class hierarchy and inheritance.  Distinguish between the superclass and the subclasses in 
these relationships. 

4. Compare and contrast the notions of overloading and overriding methods in an object-
oriented language. 

5. Explain the relationship between the static structure of the class and dynamic structure of the 
instances of the class, especially in the context of how dynamic dispatch is involved in 
subtype polymorphism. 

6. Describe how iterators access the elements of the collection. 

7. Describe the difference between subtype polymorphism and inheritance. 

8. Create a collection, insert elements into a collection, and iterate over elements in a collection. 

Table 5-9: Final L ist of Learning Objectives



 162 



 163 

Chapter  6 

Creation and Cr itique of Exam 

6.1 Introduction 

The questions on our exam are designed to reflect the refined list of topics and 

learning objectives.  The initial drafts of the test were given a fine-grained critique by 

three instructors of introductory courses at two different institutions.  Both were 4-year 

undergraduate and graduate universities, one public, one private.  Other faculty members 

at those same institutions also commented on and critiqued the exam.  The final version 

incorporates these comments and criticisms; it is presented in full as Appendix A of this 

dissertation.  The construction of the exam is discussed in this chapter.  Questions 

presented are shown with point weightings.  These weightings and discussion of grading 

the exam are given in Chapter 7.  The results of administrating and grading it are 

discussed in Chapter 8.  

6.2 Creating Questions 

To paraphrase Lewis Carroll, “begin at the beginning.”   This is much easier said than 

done with a list of about 50 topics to be covered.  The starting point in the process of 



164 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

creating an exam of this type was not immediately obvious.  Therefore, the exam was 

essentially created in pieces, each roughly corresponding to the knowledge units to be 

included in the exam.  The topics motivated the various questions, and the learning 

objectives provided their foundation.  

One problem was that many topics needed a code-based question to really assess the 

student’s mastery of it.  One of the original goals of the assessment was language-

independence.  However, this conflicts with the decision to make the assessment based 

on programming-first approaches.  A good deal of the time in a programming-first 

sequence is spent on the language and on programming.   

In an effort to keep this exam from being an exam about language X, an effort was 

made to make every question that had a coding component focus on topics that are 

independent of language-specifics.  The lack of emphasis on an actual language also 

makes its way into the grading guideline for the exam.  Chapter 7 discusses how the 

exam should be graded; it will be seen that syntactic goals are secondary to other ideas 

presented in the questions. 

However, a language needed to be chosen for the creation of the exam.  The language 

decision was made in deference to the test subjects for the exam: students in CSE 116 

(CS2) at the University at Buffalo, SUNY.  The CS1-CS2 introductory sequence at UB 

(CSE115-CSE116) is taught in Java, so Java was chosen for the language of 

implementation for all code-based questions.  Instructors at other institutions can easily 

substitute other programming languages for Java. 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 165 

 

The questions will be discussed in thematic units (primarily corresponding to 

knowledge unit, and grouped together for reference by number, as indicated in Table 6-1, 

6-2, and 6-3 showing which topics are covered in which group).  At the end of this 

chapter, each question on the exam is given a group coding that refers back to the groups 

discussed.  In the exam itself, questions mostly appear grouped together in this way.  The 

only notable exception is in a set of true-false questions that were grouped together by 

type of question rather than coverage (questions 46 – 50).   

The groupings that are presented here are based primarily on the way the questions 

were developed.  Topics from knowledge units that naturally went together had questions 

developed together.  The numbering of the groups has no significance other than roughly 

corresponding to the order in which the first topic in that group appears in the overall list 

of topics in the intersection created for this exam.  

 

 

 

 

 

 



166 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

G
ro

up
 7

 

    

G
ro

up
 6

 

   * 
A

sy
m

pt
ot

ic
 a

na
ly

si
s 

of
  

   
up

pe
r 

an
d 

av
er

ag
e 

 
   

co
m

pl
ex

it
y 

bo
un

ds
 

* 
B

ig
 O

 n
ot

at
io

n 
* 

S
ta

nd
ar

d 
co

m
pl

ex
ity

  
  c

la
ss

es
 

G
ro

up
 5

 

  * 
T

he
 c

on
ce

pt
 o

f 
 

  r
ec

ur
si

on
 

* 
S

im
pl

e 
re

cu
rs

iv
e 

 
  p

ro
ce

du
re

s 
* 

D
iv

id
e-

an
d-

 
  c

on
qu

er
 s

tr
at

eg
ie

s 
* 

Im
pl

em
en

ta
ti

on
 o

f 
 

  r
ec

ur
si

on
 

 

G
ro

up
 4

 

 * 
A

rr
ay

s 
* 

L
in

ke
d 

st
ru

ct
ur

es
 

* 
S

ta
ck

s,
 q

ue
ue

s,
  

   
an

d 
ha

sh
 m

ap
s 

* 
G

ra
ph

s 
an

d 
tr

ee
s 

* 
S

tr
at

eg
ie

s 
fo

r 
 

  c
ho

os
in

g 
th

e 
ri

gh
t 

 d
at

a 
st

ru
ct

ur
e 

  

G
ro

up
 3

 

 * 
P

ri
m

it
iv

e 
 

  t
yp

es
 

* 
Po

in
te

rs
  

  a
nd

   
 

  r
ef

er
en

ce
s 

  

G
ro

up
 2

 

* 
V

ar
ia

bl
es

, t
yp

es
,  

 
  e

xp
re

ss
io

ns
, a

nd
   

  a
ss

ig
nm

en
t 

* 
S

im
pl

e 
I/

O
 

* 
C

on
di

ti
on

al
 a

nd
   

  i
te

ra
ti

ve
 c

on
tr

ol
  

  s
tr

uc
tu

re
s 

* 
Fu

nc
tio

ns
 a

nd
  

  p
ar

am
et

er
 p

as
si

ng
 

* 
S

tr
in

gs
 a

nd
 s

tr
in

g 
 

  p
ro

ce
ss

in
g 

  

G
ro

up
 1

 

* 
B

as
ic

 s
yn

ta
x 

an
d 

se
m

an
ti

cs
 

of
 a

 h
ig

he
r-

le
ve

l l
an

gu
ag

e 

   

K
U

16
 

P
F

1 

P
F

3 

P
F

4 

A
L

1 

 
 

                                                 
16 KU is knowledge unit.  The knowledge unit names have been eliminated from this chart because of space 
constraints. 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 167 

 

G
ro

up
 7

 

   * 
E

nc
ap

su
la

ti
on

 a
nd

   
   

in
fo

rm
at

io
n-

hi
di

ng
 

* 
C

la
ss

es
 a

nd
   

   
su

bc
la

ss
es

 
* 

In
he

ri
ta

nc
e 

  
  (

ov
er

id
di

ng
, d

yn
am

ic
  

  d
is

pa
tc

h)
 

* 
Po

ly
m

or
ph

is
m

  
  (

su
bt

yp
e 

  
  p

ol
ym

or
ph

is
m

 v
s.

  
  i

nh
er

it
an

ce
) 

* 
C

la
ss

 h
ie

ra
rc

hi
es

 

G
ro

up
 6

 

* 
S

eq
ue

nt
ia

l a
nd

 b
in

ar
y 

 
   

se
ar

ch
 a

lg
or

ith
m

s 
* 

Q
ua

dr
at

ic
 s

or
ti

ng
  

   
al

go
ri

th
m

s 
(s

el
ec

ti
on

,  
   

in
se

rt
io

n)
 

* 
O

(N
 lo

g 
N

) 
so

rt
in

g 
 

   
al

go
ri

th
m

s 
(Q

ui
ck

so
rt

,  
  

   
he

ap
so

rt
, m

er
ge

so
rt

) 

   

G
ro

up
 

5 

    

G
ro

up
 4

 

* 
H

as
h 

ta
bl

es
 

* 
B

in
ar

y 
 

  s
ea

rc
h 

tr
ee

s 

  * 
C

ol
le

ct
io

n 
cl

as
se

s 
 

   
an

d 
it

er
at

io
n 

  
  p

ro
to

co
ls

 

G
ro

up
 3

 

 * 
O

ve
rv

ie
w

 o
f 

ty
pe

   
  c

he
ck

in
g 

* 
T

he
 c

on
ce

pt
io

n 
of

  
   

ty
pe

s 
as

 a
 s

et
 o

f 
 

   
va

lu
es

 to
ge

th
er

 w
ith

  
  a

 s
et

 o
f 

op
er

at
io

ns
 

* 
D

ec
la

ra
ti

on
 m

od
el

s 
 

  (
bi

nd
in

g,
 v

is
ib

il
ity

,  
  s

co
pe

, a
nd

 li
fe

ti
m

e)
 

* 
P

ar
am

et
er

iz
at

io
n 

 
  m

ec
ha

ni
sm

s 
   

 (
re

fe
re

nc
e 

vs
. v

al
ue

) 
* 

T
yp

e 
pa

ra
m

et
er

s 
 

  a
nd

 p
ar

am
et

er
iz

ed
   

  t
yp

es
 

 

G
ro

up
 2

 

* 
S

im
pl

e 
 

  n
um

er
ic

al
   

 
  a

lg
or

it
hm

s 

   

G
ro

up
 

1 

    

K
U

 

A
L

3 

P
L

4 

P
L

5 

P
L

6 

Table 6-1: Topics from knowledge units included in each group 

 
 
 
 



168 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

6.3 Structure of Exam Question Groups 

The following sections discuss the questions that were created for each group.  

Originally, the questions on the exam were in the basic order of these groups.  However, 

the grouping of questions within the group was essentially random, in that they were 

organized in the order that they were written, which was determined essentially by 

chance and the particular inspiration I had on a particular day.  The ordering was changed 

during the critique process.   Therefore, no particular emphasis should be given to the 

ordering of the questions, or the order in which they appear in the exam in relation to 

other questions.  There is no particularly well-defined structure for the placement of the 

questions.  The question numbers referred to in each section refer to the number(s) of the 

questions on the exam in its completed form.  

6.3.1 Basic Syntax Questions (Group 1) 

This group is made up of questions that cover only one learning objective from PF1 

Fundamental Programming Constructs: basic syntax and semantics of a higher-level 

language.  While this objective is tested in every question that involves code, there is a 

facet of this topic that involves the vocabulary of programming.  For example, 

understanding syntax assumes not only the creation of a declaration for a variable but 

knowledge of what a variable is.   



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 169 

 

Therefore, the questions for this section ask the students to look at a piece of code and 

identify various programming elements in it.  Questions 60 – 78 ask the students to 

identify 19 different parts of code from a code example provided. 

Given the following list of 19 parts of code, you should identify one example of each of 
the items in the code provided for this section (in the answer sheet) by precisely circling 
and clearly identifying by number the element in the code segment.  Make sure that your 
circles are clearly identified with numbers that are clearly written.  If the markings are not 
clear, the question will simply be marked incorrect and given no credit.  If there is no 
example of the item in the code, you should write the words “Does not exist”  on the line 
next to the element in the answer sheet.   
 
60) Class name [1 point] 
61) Constructor definition [1 point] 
62) Assignment statement [1 point] 
63) Comment [1 point] 
64) Instance variable declaration [1 point] 
65) Actual parameter (argument) [1 point] 
66) Formal parameter [1 point] 
67) Statement that displays information [1 point] 
68) Access (Visibility) control modifier [1 point] 
69) Accessor method definition [1 point] 
70) Mutator method definition [1 point] 
71) Creation/instantiation of an object [1 point] 
72) Method call/invocation [1 point] 
73) Method return type specification [1 point] 
74) Superclass name [1 point] 
75) Subclass name [1 point] 
76) Interface name [1 point] 
77) Name of a class that implements an interface [1 point] 
78) Method overloading (identify one of the methods that is overloaded) [1 point] 
 
/ *  The c l asses gi ven bel ow wer e wr i t t en f or  t he pur poses of       
 *  t hi s exam.  I n r eal i t y ,  t hey woul d each be i n t hei r  own  
 *  separ at e f i l e,  but  ar e r epr i nt ed her e as one l ong f i l e  
 *  f or  ease of  r eadi ng.  Thi s “ pr i nt - out ”  spans t wo pages,   
 *  so pl ease l ook at  bot h pages whi l e answer i ng t he  
 *  f ol l owi ng quest i ons.  
 * /  
 
publ i c  c l ass App {  
    pr i vat e Puppy _puppy;  
    pr i vat e I D _i d;  
    publ i c  App ( ) {  
 Syst em. out . pr i nt l n( " App const r uct or  cal l ed. " ) ;  
 _puppy = new Puppy( new Toy( ) ) ;  
 t hi s. set I D( new I D( t hi s,  _puppy) ) ;  



170 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

 Syst em. out . pr i nt l n( " App const r uct or  end. " ) ;  
    }  
    publ i c  voi d set I D( I D i d)  {  
 _i d = i d;  
    }  
    publ i c  st at i c  voi d mai n ( St r i ng[ ]  ar gs)  {  
 App app = new App( ) ;  
    }  / /  end of  mai n ( )      
} / /  App 
 
publ i c  i nt er f ace Col or abl e {  
   j ava. awt . Col or  get Col or ( ) ;  
   voi d set Col or ( j ava. awt . Col or  col or ) ;  
} / /  Col or abl e 
 
publ i c  c l ass I D i mpl ement s Col or abl e{  
   pr i vat e Ani mal  _ani mal ;  
   pr i vat e j ava. awt . Col or  _col or ;  
   publ i c  I D ( App app,  Ani mal  ani mal ) {  
      _ani mal  = ani mal ;  
      _col or  = j ava. awt . Col or . BLACK;  
   }  
   publ i c  j ava. awt . Col or  get Col or ( )  {  
      r et ur n _col or ;  
   }  
   publ i c  voi d set Col or ( j ava. awt . Col or  col or )  {  
      _col or  = col or ;  
   }  
} / /  I D 
 
publ i c  c l ass Ani mal  {  
   pr i vat e Toy _t oy;  
   publ i c  Ani mal  ( ) {  _t oy = new Toy( ) ;  }  
   publ i c  Ani mal  ( Toy t oy)  {  _t oy = t oy;  }  
   pr ot ect ed Toy get Toy( )  {  r et ur n _t oy;  }  
   publ i c  voi d somet hi ngShoul dHappen( )  {   
 _t oy. doSomet hi ng( ) ;   
   }  
} / /  Ani mal  
 
publ i c  c l ass Puppy ext ends Ani mal {  
   publ i c  Puppy( )  { }  
   publ i c  Puppy ( Toy t oy) {  
      super ( t oy) ;  
 t hi s. doSomet hi ngWi t hThi sCol or (  
     t hi s. get Toy( ) . get Col or ( ) ) ;  
   }  
   publ i c  voi d doSomet hi ngWi t hThi sCol or  
      ( j ava. awt . Col or  col or ) {  
      t hi s. get Toy( ) . set Col or ( col or . dar ker ( ) ) ;  
   }  
   publ i c  voi d somet hi ngShoul dHappen( )  {  



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 171 

 

      super . somet hi ngShoul dHappen( ) ;  
      t hi s. get Toy( ) . doNot hi ng( ) ;  
   }  
} / /  Puppy 
 
publ i c  c l ass Toy {  
   pr i vat e j ava. awt . Col or  _col or ;  
   pr i vat e St r i ng[ ]  _sounds;  
   publ i c  Toy ( ) {  _col or  = j ava. awt . Col or . RED;  }  
   publ i c  voi d set Col or ( j ava. awt . Col or  col or )  {   
 _col or  = col or ;   
   }  
   publ i c  j ava. awt . Col or  get Col or ( )  {  r et ur n _col or ;  }  
   publ i c  voi d doSomet hi ng( )  {  
      _sounds = new St r i ng[ 20] ;  
      f or  ( i nt  count  = 0;  count  < _sounds. l engt h;  count ++) {  
  _sounds[ count ]  = " Squeak" ;  
      }  / /  end of  f or  ( )  
      Syst em. out . pr i nt l n( _sounds) ;  
   }  
   publ i c  voi d doNot hi ng( )  {  
      / / Thi s met hod r eal l y  does not hi ng.  
   }  
} / /  Toy 
 

To adapt these questions for different languages, not only must the code be changed, 

but the vocabulary terms should also be reviewed.  For example, if an introductory 

sequence uses a language that does not support method overloading, that question should 

be removed from the assessment, because students would most likely not have ever used 

the term, and it would simply cause confusion while taking the exam.  It is possible that 

another programming construct implemented in the language could be substituted for the 

removed term. 



172 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

6.3.2 Fundamentals  and API  Programming (Group 2) 

The questions in this group cover the rest of the PF1 knowledge unit, Strings from 

PF3, and simple numerical algorithms from AL3.  The topic of API17 programming is 

included in this group because the question that asks students to use an API also involves 

the use of strings.  

6.3.2.1 Functions and parameter  passing 

Questions 79 – 82 of the exam test the basic concept of functions and parameter 

passing.  They ask students to look at a definition of a class with several methods defined 

inside it, each taking different parameters.  The questions ask the students what values 

will be returned or output when calling the methods with values for the parameters.  Note 

that even though the question contains a class definition, the focus of this question is the 

methods and the values returned or output.  Rewriting these questions in most languages 

would simply involve syntactic manipulations and possible removal of the outer class (if 

the language does not support classes). 

Use the class Si mpl ePar ams  and Si mpl ePar amsApp defined below to answer 
questions 79–82. 
 
publ i c  c l ass Si mpl ePar ams ( )  {  

pr i vat e doubl e _dat a;  
publ i c  Si mpl ePar ams( )  {  

_dat a = 5. 75;  

                                                 
17 API stands for Application Programmers Interface.  An entire knowledge unit devoted to this topic was 
eliminated from the intersection of topics for this exam (see Chapter 4). As noted in Chapter 4, sometimes 
it becomes necessary to include an API when asking students to write code so as not to test their ability to 
memorize library functions, but rather to use them effectively to perform some other task. In this case, the 
students are asked to perform some string processing and are given a set of library functions to assist in that 
task. 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 173 

 

}  
publ i c  St r i ng met hod1( St r i ng s)  {  

r et ur n s + “ addi t i onal  st uf f ”;  
}  
publ i c  voi d met hod2( i nt  i nput )  {  

i nt  t emp = i nput  + 1;  
Syst em. out . pr i nt l n( “I nput  was:  “ + i nput   

+ “ and t emp i s:  “ + t emp) ;  
}  
publ i c  voi d met hod3( doubl e i nput )  {  

_dat a = i nput ;  
}  
publ i c  doubl e get Dat a( )  {  

r et ur n _dat a;  
}  

} / / Si mpl ePar ams 
 
publ i c  c l ass Si mpl ePar amsApp {  

publ i c  Si mpl ePar amsApp( )  {  
  Si mpl ePar ams sp = new Si mpl ePar ams( ) ;  
  doubl e answer 79 = sp. get Dat a( ) ;  
  St r i ng answer 80 = sp. met hod1( “ Si mpl e st uf f . ” ) ;  
  sp. met hod2( 6) ;   / / Needed f or  quest i on 81 
  sp. met hod3( 3. 8) ;  
  doubl e answer 82 = sp. get Dat a( ) ;  
 }  

publ i c  st at i c  voi d mai n( St r i ng[ ]  ar gs)  {  
  Si mpl ePar amsApp spa = new Si mpl ePar amsApp( ) ;  
 }  
} / / Si mpl ePar amsApp 
 
79) When the code for Si mpl ePar amsApp is executed, what value will answer79 be 
assigned? [1 point] 
 
80) When the code for Si mpl ePar amsApp is executed, what value will answer80 be 
assigned? [1 point] 
 
81) When the code for Si mpl ePar amsApp is executed, and met hod2 is called with 
the value 6, as indicated in the code with a comment, what text will be outputted? [1 
point] 
 
82) When the code for Si mpl ePar amsApp is executed, what value will answer82                                                                                                                                                                                                                                     
be assigned? [1 point] 

 



174 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

6.3.2.2 Arithmetic and logical expressions 

Questions 83 – 87 test basic expression evaluation of some, but not all, arithmetic and 

logical expressions.  They give the students a set of numerical and Boolean variables that 

have been assigned values.  Students are then presented with a number of arithmetic and 

logic expressions and asked to evaluate them.  These expressions do not cover all of the 

arithmetic operators in Java, only the common ones (including modulus) for which there 

are analogous operations in most languages.  Some of the unary operators (like plus), the 

bitwise operators on integers, the bit-shift operators, and the logical operators that do not 

support short-circuit Boolean evaluation were not included in these questions. 

Use the following variables and their values to evaluate the expressions given in 
questions 83 - 91.  Suppose each expression is executed independently (ie – no later 
expression depends on a result of a previous expression). 
  
i nt  a = 4;     doubl e d = 4. 5;  
i nt  b = 6;     doubl e e = 3. 3;  
i nt  c = - 3;     doubl e f  = 0. 5;  
 
bool ean g = t r ue;  
bool ean h = f al se;  
bool ean i  = t r ue;  

 
83) ( a + b)  *  ( c – c)  [1 point] 

 
84) ( d /  f )  + ( a % b)  [1 point] 
 
85) b < c [1 point] 

 
86) d ! = f  [1 point] 
 
87) ( g && h)  | |  ( ! i  && h)  [1 point] 

 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 175 

 

6.3.2.3 Expressions and Assignment 

Questions 88 – 90 use the idea of evaluating expressions, but assign the values of the 

expressions back to a variable and ask the students for the value that the variable will be 

assigned in the expression.  These three questions differ from the previous questions only 

in this way.  However, the concept of assignment to a variable is just as important as 

evaluation of expressions, and that idea is tested with these questions. 

Now suppose the following lines of code have been executed.  The variables a and c  
refer back to the previous page. 
 

i nt  x  = a;  
i nt  y = c++;  

 
88) What is the value of x? [1 point] 
 
89) What is the value of y? [1 point] 
 
90) What is the value of c? [1 point] 
 

Questions 92 – 9318 test the ability to analyze the results of the execution of multiple 

expressions that make up a numerical algorithm.  Students are given a method that 

computes the distance between two points and are asked to evaluate variables and 

determine what values are returned.  This tests their ability to look at a numerical 

algorithm in code and analyze its results.  Even though this function is familiar to most 

students, the way it is expressed inside the code is not in the form that would be presented 

in a mathematics text, so a certain amount of analysis is needed to discern what is being 

computed by the function.    

Use the code for the method exp1 given below to answer questions 92 - 93. 

                                                 
18 Question 91 is a question in this section that actually falls into Group 3 (§6.3.3). 



176 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

 
publ i c  doubl e exp1 ( i nt  x1,  i nt  x2,  i nt  y1,  i nt  y2)  {  
 i nt  t empX = ( x2 – x1)  *  ( x2 – x1) ;  
 i nt  t empY = ( y2 – y1)  *  ( y2 – y1) ;  
 
 r et ur n Mat h. sqr t ( t empX + t empY) ;  
}  
 
Suppose that the exp1 method is called in the following way: 
 

exp1( 12,  16,  24,  27) ;  
 
92) What is the value that will be computed for t empX while the method is running? [1 
point] 
 
93) What value is returned from the method call? [1 point] 

 

Questions 94 - 96 test the ability to understand conditional statements.  Students are 

presented with a single method whose body is a multiple-branch conditional statement.    

The students are given method calls with values for the parameters and asked to give the 

return value, which tests their ability to understand conditional statements.  In these 

questions, the students are given a nested if-then-else because the code involves ranges of 

numbers, so a case statement is not appropriate. 

Use the code for the class Condi t i onal  given below to answer questions 94 – 96.  For 
questions 94 – 96, you are presented with a method call.  In the space provided, you 
should give the value that is returned from the method call. 
 
publ i c  c l ass Condi t i onal  {  
 

publ i c  St r i ng cond2 ( doubl e i nput )  {  
i f  ( i nput  <= 5. 0 && i nput  >= 0. 0)  {  
 r et ur n “ Fi r st  Br anch” ;  
}  
el se i f  ( i nput  > 5. 0 | |  i nput  <= - 2. 0)  {  

r et ur n “ Second Br anch” ;  
}  
el se {  

r et ur n “ Thi r d Br anch” ;  
}  

}  



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 177 

 

}  
 
94) cond2( 3. 5) ;  [1 point] 
95) cond2( 7. 345) ;  [1 point] 
96) cond2( - 1. 9) ;  [1 point] 

 
 

Questions 97 – 100 test the ability to understand looping constructs.  The students are 

presented with a class that has three methods, where each method’s body is a loop.  The 

students are given method calls and values for parameters and asked to state what values 

are returned from the method.  One of the methods prints out information in addition to 

returning a value.  Asking for the return value also tests the student’s ability to 

understand that printing information is not the same as returning a value.  This could be 

viewed by some as a “ trick”  question.  It is not designed to be.  It is designed to test the 

ability of the student to understand that printing out information is not the same as 

returning a value from a method. 

Use the code for the class Looper  given below to answer questions 97 – 100.  For 
questions 97 – 100, you are presented with a method call.  In the space provided, you 
should give the value that is returned from the method call. 
 
publ i c  c l ass Looper  {  
 
   publ i c  i nt  l oop1( i nt  i nput )  {  
      f or  ( i nt  i  = 1;  i  <= 20;  i ++)  {  

   i nput ++;  
}  
r et ur n i nput ;  

   }  
  
   publ i c  i nt  l oop2( )  {  
 f or  ( i nt  count er =10;  count er >0;  count er =count er –2)  {  
    Syst em. out . pr i nt l n( “count er  = “ + count er ) ;  
 }  
 r et ur n 0;  
   }  
 
   publ i c  i nt  l oop3( i nt  i nput )  {  



178 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

 whi l e ( i nput  < 10)  {  
    i nput  = i nput  *  2;  
 }  
 r et ur n i nput ;  
   }  
}  
 
97) l oop1( 20) ;  [1 point] 
 
98) l oop2( ) ;  [1 point] 
 
99) l oop3( 3) ;  [1 point] 
 
100) l oop3( 32) ;  [1 point] 

 

Questions 101 – 103 test string processing and reading from a file.  Since many string 

manipulation functions are built into Java, this question also overlaps API programming, 

because the API for the class to help with the reading of files and the St r i ng class are 

given as reference. 

For questions 101 – 103, you will be filling in the methods for the class St r i ngFun as 
described in each question.  The empty skeleton for this class is given below for 
reference.  You will fill in the areas with the ellipses (…).  Please also note the 
abbreviated API given for both the j ava. i o. Buf f er edReader  class as well as the 
St r i ng class as these could be of help to you while answering these questions. 
 
i mpor t  j ava. i o. * ;  
 
publ i c  c l ass St r i ngFun {  
   pr i vat e j ava. ut i l . Ar r ayLi st <St r i ng> _st r i ngs;  
   publ i c  St r i ngFun( )  {  

_st r i ngs = new j ava. ut i l . Ar r ayLi st <St r i ng>( ) ;  
 }  
 / / Loads t he st r i ngs f r om t he f i l e speci f i ed i nt o t he    
 / / Ar r ayLi st  
 publ i c  voi d l oadFi l e( St r i ng f i l ename)  { [  

 . . .  
     }  

   / / I ndi cat es t he number  of  St r i ngs i n t he Ar r ayLi st  t hat   
   / / ar e t he r i ght  s i ze 
   publ i c  i nt  r i ght Si ze( )  {  
 . . .   
   }  



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 179 

 

   / / Count s t he t ot al  number  of  l et t er  Ps i n al l  t he  
   / / s t r i ngs i n t he Ar r ayLi st  
   publ i c  i nt  count Ps( )  {  
 . . .  
   }  
}  
 

Abbreviated API  for  java.io.BufferedReader  (from Sun’s Java API  docs) 
 

Constructor  Summary 

BufferedReader( Reader  i n)   
          Create a buffering character-input stream that uses a default-sized input buffer. 

 

Method Summary 

 voi d close( )   
          Close the stream. 

 i nt  read( )   
          Read a single character. 

 i nt  read( char [ ]  cbuf ,  i nt  of f ,  i nt  l en)   
          Read characters into a portion of an array. 

 St r i ng readLine( )   
          Read a line of text. 

Abbreviated API  for  java.lang.Str ing (from Sun’s Java API  docs) 
 

  Method Summary 

 char  charAt( i nt  i ndex)   
          Returns the char  value at the specified index. 

 i nt  compareTo( St r i ng anot her St r i ng)   
          Compares two strings lexicographically. 

 i nt  compareToIgnoreCase( St r i ng st r )   
          Compares two strings lexicographically, ignoring 
case differences. 

 bool ean endsWith( St r i ng suf f i x)   
          Tests if this string ends with the specified suffix. 

 bool ean equals( Obj ect  anObj ect )   
          Compares this string to the specified object. 

 bool ean equalsIgnoreCase( St r i ng anot her St r i ng)   
          Compares this St r i ng to another St r i ng, 
ignoring case considerations. 

 i nt  length( )   
          Returns the length of this string. 



180 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

 St r i ng replace( char  ol dChar ,  char  newChar )   
          Returns a new string resulting from replacing all 
occurrences of ol dChar  in this string with newChar . 

 bool ean startsWith( St r i ng pr ef i x)   
          Tests if this string starts with the specified prefix. 

 St r i ng substring( i nt  begi nI ndex)   
          Returns a new string that is a substring of this 
string. 

 St r i ng substring( i nt  begi nI ndex,  i nt  endI ndex)   
          Returns a new string that is a substring of this string. 

 St r i ng toLowerCase( )   
          Converts all of the characters in this St r i ng to 
lower case using the rules of the default locale. 

 St r i ng toUpperCase( )   
          Converts all of the characters in this St r i ng to 
upper case using the rules of the default locale. 

 St r i ng toUpperCase( Local e l ocal e)   
          Converts all of the characters in this St r i ng to 
upper case using the rules of the given Local e. 

 St r i ng trim( )   
          Returns a copy of the string, with leading and 
trailing whitespace omitted. 

 
 
101) In your answer booklet, you will finish writing the code for the method l oadFi l e.  
Note that some of the code is already written for you.  The file is already loaded into the 
Buf f er edReader .  Your task is to read each line of the file and input each one into 
the Ar r ayLi st .  Please note that we are also assuming that some other object will 
handle the exceptions that might be thrown. [8 points] 
 

publ i c  voi d l oadFi l e( St r i ng f i l ename)  t hr ows  
Fi l eNot FoundExcept i on,  I OExcept i on{  

 
     Buf f er edReader  i n = new Buf f er edReader ( new  
          Fi l eReader ( f i l ename) ) ;  
   
     / / Your  code begi ns her e.  
     / / Wr i t e your  code i n t he answer  bookl et .  
    }  
 
102) Write the code for the method r i ght Si ze so that it returns the number of strings 
in _st r i ngs  whose length is between 3 and 10 characters inclusive. [8 points] 
 
 publ i c  i nt  r i ght Si ze( )  {  
 / / Wr i t e t he code f or  t hi s met hod i n your  answer   
      / / bookl et  



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 181 

 

 }  
103) Write the code for the method count Ps  so that it returns the total number of 
occurences of the letter P in all of the strings in _st r i ngs .  Your method should count 
both lower case (p) and upper case (P) letters. [8 points] 
  
 publ i c  i nt  count Ps( )  {  
 / / Wr i t e t he code f or  t hi s met hod i n your  answer   
      / / bookl et  
 }  

 

6.3.3 Types, Declaration Models, and Parameter  Passing (Group 3) 

The questions in this group cover the topics of types, scoping, lifetime and parameter 

passing mechanisms, from PF3, PL4 and PL5.  These questions sometimes stand alone 

and sometimes are inter-mixed inside of other groupings of questions where the 

opportunity presented itself to test topics from these knowledge units. 

Question 4 of the exam tests student understanding of the parameterized type 

(generics) mechanism.  The question presents students with the creation of two data 

structures, one using Java generics (parameterized types), the other without generics.  

Students are asked to recognize that when an element is removed from a structure that 

does not use generics, the type of the object returned is not the type of the object that was 

inserted into the collection. 

For question 4, consider the following code segment:   
 
j ava. ut i l . HashMap<I nt eger ,  St r i ng> mapOne =  

                        new j ava. ut i l . HashMap<I nt eger ,  St r i ng>( ) ;  
 
j ava. ut i l . HashMap mapTwo = new j ava. ut i l . HashMap( ) ;  
 
mapOne. put ( 1,  “ Fi r st  name” ) ;  
mapTwo. put ( 1,  “ Fi r st  name” ) ;  
 
St r i ng s1 = mapOne. get ( 1) ;   



182 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

St r i ng s2 = mapTwo. get ( 1) ;   
 
4) Which of the two assignments of “First name”  to a String variable does not work 
correctly and why? (Circle only one answer). [1 point] 
 

a. Assignment to s1 does not work because get ( )  returns an Obj ect , not a  
    St r i ng. 
b. Assignment to s1 does not work because s1 is not a St r i ng. 
c. Assignment to s1 does not work because HashMaps cannot use I nt eger s  as  
    keys. 
d. Assignment to s2 does not work because get ( )  returns an Obj ect , not a  
    St r i ng. 
e. Assignment to s2 does not work because s2 is not a St r i ng. 
f. Assignment to s2 does not work because HashMaps  cannot use I nt eger s  as  
    keys. 
g. Neither assignment works because get ( )  returns an Obj ect , not a St r i ng. 
h. Neither assignment works because neither s1 nor s2 is a St r i ng. 
i. Neither assignment works because HashMaps  cannot use I nt eger s  as keys. 

 

Questions 47 and 48 of the exam are true-false questions that probe the understanding 

of the difference between primitive types and object types.  While the language might be 

skewed towards Java terminology, the idea of the difference between a built-in type and 

user-defined type is probed, as well as the difference between a primitive type and a 

reference type. 

47) When we declare a variable whose type is a primitive data type, we are actually 
creating a reference to a space of allocated memory. [1 point] 
 a. TRUE 
 b. FALSE 
 
48) Primitive types are not objects and therefore do not have methods defined on them. [1 
point] 
 a. TRUE 
 b. FALSE 
 

Question 91 tests to see if students recognize type mismatch in an expression.  For 

example, in Java (and many other languages), integer numbers and whole numbers are 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 183 

 

not considered the same type.  Often, one cannot assign the result of arithmetic with 

floating point numbers to an integer. 

Use the following variables and their values to evaluate the expressions given in 
questions 83 - 91.  Suppose each expression is executed independently (ie – no later 
expression depends on a result of a previous expression). 
  
i nt  a = 4;     doubl e d = 4. 5;  
i nt  b = 6;     doubl e e = 3. 3;  
i nt  c = - 3;     doubl e f  = 0. 5;  
 
91) The following line of code does not compile (e & b refer back to the previous page).  
What do you need to do to get the line of code to work? [4 points] 
 

i nt  z  = e *  b;  
 
(Circle all answers from the choices below that would make the code compile.) 
a. You need to cast b to be a double. 
b. You need to cast b to be an integer. 
c. You need to cast e to be an integer. 
d. You need to cast e to be a double. 
e. You need to cast the result of e *  b to be an integer. 
f. You need to cast the result of e *  b to be a double. 
g. You need to make z  a double. 
h. You need to make z  an object. 

 

Questions 104 – 112 have the students look at a group of two classes, an interface, 

and a class with a main method in it.  One of the classes implements the interface and the 

other does not.  Each class has several methods in it.  The class that implements the 

interface has an instance variable of type java.awt.Color (a reference type).  The other 

class has two instance variables, one of the type that implements the interface (a 

reference type) and one of type int (a primitive type).  Various methods are defined that 

take either a reference type or both as parameters in this class.  The Driver class creates 

some instances and calls some methods on them. 



184 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

Use the following code segment for the classes named Types , Thi ng, and Dr i ver , the 
interface named Col or abl e, and your knowledge of Java to answer the questions 104 – 
112.  If the question has multiple choices, you should circle the letter of the best answer 
for each question, unless instructed otherwise. 
 
 
publ i c  i nt er f ace Col or abl e {  
 publ i c  voi d set Col or  ( j ava. awt . Col or  col or ) ;  
 publ i c  j ava. awt . Col or  get Col or ( ) ;  
} / / Col or abl e 
 
publ i c  c l ass Thi ng i mpl ement s Col or abl e{  
 pr i vat e j ava. awt . Col or  _col or ;  
 publ i c  Thi ng( )  {  
  _col or  = j ava. awt . Col or . WHI TE;  
 }  
 publ i c  voi d set Col or  ( j ava. awt . Col or  col or )  {  
  _col or  = col or ;  
 }  
 publ i c  j ava. awt . Col or  get Col or ( )  {  

  r et ur n _col or ;  
}  

} / / Thi ng 
 

publ i c  c l ass Types {  
 pr i vat e Thi ng _t hi ng;  
 pr i vat e i nt  _number ;  
 
 publ i c  Types( )  {  
  _t hi ng = new Thi ng( ) ;  
  _number  = 0;  
 }  
 publ i c  voi d i ncr ement Number  ( i nt  i ncr ement )  {  

 _number  += i ncr ement ;  
}  

} / / Types 
 
publ i c  c l ass Dr i ver  {  
 publ i c  Dr i ver ( )  {  
  i nt  i  = 5;  

Col or abl e t  = new Thi ng( ) ;  
/ / Li ne f or  quest i on 109 i nser t ed her e 
t hi s. changePar ams( i ,  t ) ;  

 }  
 publ i c  voi d changePar ams ( i nt  i nput , Col or abl e t hi ng) {  
  i nput  = i nput  *  2;  
  t hi ng. set Col or ( j ava. awt . Col or . RED) ;  
 }  
 publ i c  st at i c  voi d mai n ( St r i ng[ ]  ar gs)  {  
  Dr i ver  d = new Dr i ver ( ) ;  
 }  
} / / Dr i ver  



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 185 

 

Questions 104 and 105 test the students understanding of a null reference and then 

what happens after the reference is initialized to a non-null value.   

104) What is the value of _t hi ng before the constructor is run for the class Types? [1 
point] 
  a. A null reference. 
  b. A random value assigned value assigned by the compiler.  
  c. An object of type Thi ng whose instance variables are set to null. 
  d. _t hi ng does not exist before the constructor is run. 
 
105) What is the value of _number  after  the constructor is run for the class Types? [1 
point] 
  a. null 
  b. 0 
  c. -1 
  d. undefined 

 

Question 106 asks the student to identify in the code the difference between variables 

of reference type and primitive type.   

106) Which of the variables presented in this code segment are object references?  Circle 
the letters of all that apply. [5 points] 
  a. _col or  
  b. _t hi ng 
  c. _number  
  d. i ncr ement  
  e. i  
  f. t  
  g. i nput  
  h. t hi ng 
  i. d 
  j.  None of these variables are references. 
  k. All of these variables are references. 

 

Questions 107 and 108 test the student’s knowledge of visibility and scope of 

methods and variables inside the code segment.   



186 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

107) Which of the members (variables or methods) from the class Types  are accessible 
from outside the class?  Circle the letters of all that apply. [6 points] 
 a. _t hi ng 
 b. _number  
 c. Types( )  constructor 
 d. i ncr ement Number ( i nt  i ncr ement )  method 
 e.  None of the members are accessible outside of the class. 
 f.  All of the members are accessible outside of the class. 
 
108) Which of the members from the class Dr i ver  are not local and only accessible 
from inside the class?  Circle the letters of all that apply. [6 points] 

a. i  
 b. t 
 c. Dr i ver ( )  constructor 
 d. changePar ams( i nt  i nput ,  Col or abl e t hi ng)  method 
 e. mai n( St r i ng[ ]  ar gs)  method 
 f.  None of the members are only accessible from inside the class. 
 

Question 109 presents a scenario in which one variable is to be assigned the value of 

another variable, but the two variables are not of compatible types.  The question requires 

the student to notice that the variables are of different types and know that this type of 

assignment would therefore not be allowed.   

109) Suppose we add the following line to the constructor in the space indicated by the 
comments in Dr i ver : [1 point] 
 t  = i ;  
Is this valid?  What would happen? 

a. It is perfectly valid.  The code would run. 
b. It is valid.  The type of i is a primitive and t is an object type and you 
can always assign a primitive type to any object type because primitives 
are subclasses of objects. 
c. This is not valid.  The code would compile, but would cause a run-time 
error. 
d. This is not valid.  The code would not compile because t and i are not 
of compatible types. 

 
Question 110 relies on this code segment, but actually tests knowledge of inheritance, 

which will be discussed in §6.3.7 of this chapter.   

110) Under what circumstances would you be allowed to add the following line of code 
to the end of the class Dr i ver ’s constructor: [1 point] 

t  = new Ot her Thi ng( ) ;  



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 187 

 

 
a. No special circumstances, this line of code would always work. 
b. Only when Ot her Thi ng is a subclass of Thi ng. 
c. Only when Ot her Thi ng is a superclass of Thi ng. 
d. This line of code would never work because the declared type of t  is 
Thi ng, so you must assign a Thi ng object to t . 

 

Question 111 tests knowledge of what happens to the value of a variable of primitive 

type that is passed into a method and then changed in the method.  In Java, all parameters 

are passed by value, so no change is caused by the change of the value within the method.   

111) Looking at the code for Dr i ver , what is the value of i  after the method 
changePar ams has been called? [1 point] 

a. The value is unchanged, 5. 
b. The value is 2 times the value, 10. 
c. The value is 0 because i  was never initialized. 
d. The value will be null because you can not change the value of i  from 
within a method. 

 

Question 112 asks this same question, but with a variable whose type is a reference 

type.  The same action would cause a change in the value of the variable because it is a 

reference type. 

112) Again looking at the code for Dr i ver , after the method changePar ams  has been 
called in the constructor, suppose we add the following line of code:  
 j ava. awt . Col or  col or  = t . get Col or ( ) ;  
 
What would be the value of color? [1 point] 

a. java.awt.Color.WHITE 
b. java.awt.Color.RED 
c. java.awt.Color.PINK 
d. null 

 
Questions 113 – 115 also test the student’s knowledge of reference types.  For these 

questions, another code example is given.  These questions can be characterized as the 



188 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

typical “pointers”  question common when teaching C, C++, or any other language with 

pointers.  Two variables of a particular type are created and originally point to different 

values.  The student is asked about their values when they both point to the same value.  

Then the value is changed using one of the pointers, and the student is asked what value 

the other points to.  Last, the pointers are redirected to point to different values, and the 

student is queried again about the values they point to.  This series of questions is 

implemented in Java using references, and therefore classes, but could be easily modified 

for pointers (if the language supports them). 

For questions 113 - 115, use the following code to help you answer the questions. 
 
publ i c  c l ass Bal l  {  
 pr i vat e j ava. awt . Col or  _col or ;  
 publ i c  Bal l ( )  {  
  _col or  = j ava. awt . Col or . GREEN;  
 }  
 publ i c  j ava. awt . Col or  get Col or ( )  {  
  r et ur n _col or ;  
 }  
 publ i c  voi d set Col or  ( j ava. awt . Col or  col or )  {  

_col or  = col or ;   
}  

}  
 
publ i c  c l ass Dr i ver  {  
 publ i c  Dr i ver ( )  {  
  Bal l  bal l  = new Bal l ( ) ;  
  bal l . set Col or ( j ava. awt . Col or . RED) ;  
 
  Bal l  bal l 2 = new Bal l ( ) ;  
  bal l 2 = bal l ;    / / Quest i on 113 r ef er s up t o  
                            / / t hi s poi nt  
 
  bal l . set Col or ( j ava. awt . Col or . BLUE) ;       
                  / / Quest i on 114 code 
  j ava. awt . Col or  quest i on114 = bal l 2. get Col or ( ) ;    
                 / / Quest i on114 code 
 
  bal l 2 = new Bal l ( ) ;                          
                / / Quest i on 115 code 
  bal l 2. set Col or ( j ava. awt . Col or . BLACK) ;           



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 189 

 

                / / Quest i on 115 code 
  j ava. awt . Col or  quest i on115 = bal l . get Col or ( ) ;    
               / / Quest i on115 code 

}  
 publ i c  st at i c  voi d mai n( St r i ng[ ]  ar gs)  {  
  Dr i ver  d = new Dr i ver ( ) ;  
 }  
}  

 
113) After the line of code in Dr i ver  that reads 
  bal l 2 = bal l ;  
is executed, which reference refers to a green ball? [1 point] 
 

a.  bal l  
b.  bal l 2 
c. both bal l  and bal l 2 
d. neither bal l  or bal l 2 

 
114) Focus your attention on the lines of code that is the code for Question 114 as 
indicated by comments.  What will the value of the variable quest i on114 be? [1 
point] 

a.  j ava. awt . Col or . RED 
b.  j ava. awt . Col or . GREEN 
c.  j ava. awt . Col or . BLUE 
d. no color – it will be an error 

 
115) Focus your attention on the lines of code that is the code for Question 115 as 
indicated by comments.  What will the value of the variable quest i on115 be? [1 
point] 

a.  j ava. awt . Col or . RED 
b.  j ava. awt . Col or . GREEN 
c.  j ava. awt . Col or . BLUE 
d.  j ava. awt . Col or . BLACK 

 

6.3.4 Data Structures (Group 4) 

This group consists of questions dealing with the various types of data structures 

assessed by this instrument.  It finishes up the topics in PF3: strings, linked structures, 

stacks, queues, hash maps, graphs, trees, and strategies for choosing the right data 

structure.  It also incorporates some questions on asymptotic analysis and Big O notation 

with questions concerning data structures.  The topics of hash tables (more accurately, 



190 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

hashing) and binary search trees from AL3 are part of this group.  Questions about the 

topic collection classes and iteration protocols from PL6 are also included in this section. 

Question 1 asks the students to construct a binary search tree given the elements to be 

inserted.  Question 2 asks the students to trace through the search algorithm for binary 

search trees.  Question 3 asks the students to construct a valid binary search tree once the 

root of the given binary search tree has been removed. 

1) Draw the binary search tree which results when the following items are inserted, in the 
order given into an initially empty BST.  [8 points] 
 
Elements:  62, 55, 37, 106, 202 
 
Given the following BST, answer questions 2 – 3. 

 
 
2) You call search (find) and are looking for the number 32.  List of nodes that are visited 
while you are determining that 32 is not in the BST. [3 points] 
 
3) You want to delete 34 (the root) from this tree.  Show one possible valid binary search 
trees that could result from deleting the root. [8 points] 

 

34 

26 50 

43 66 30 

47 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 191 

 

Question 5 asks students to write code to iterate over a collection of objects using an 

iterator and call a method on each object in a collection. 

5) Write the body of the following method named changeCol or s .  The method 
takes as a parameter, a j ava. ut i l . Col l ect i on of j ava. awt . Col or s.  The 
changeCol or s  method should call the method set Col or ( j ava. awt . Col or ) ,  
which is inherited from j avax. swi ng. JPanel �  for each color in the Col l ect i on 
so that the user sees a changing background color for the panel on their program.  You 
can assume that this method appears in a class that extends JPanel  so you can simply 
call the set Col or  method from within this method.  You must use an iterator/for-each 
loop in your solution to this question to receive full credit. [8 points] 
 
voi d changeCol or s( j ava. ut i l . Col l ect i on<j ava. awt . Col or >  

col or sFor Backgr ound)  {  
}  

 

Questions 6 – 8 test the students’  knowledge of how indexing of arrays works (i.e., in 

Java, that arrays are indexed beginning at 0 and ending at size – 1).  Question 9 asks the 

students to write code to re-size an array retaining the original elements in the array but 

giving space to add new elements into the array.  Question 10 asks students to write code 

that creates an array whose elements correspond to the square of the index that the 

element is stored at.  Question 11 asks the students to write a find method on a two-

dimensional array.  

Assume you have created the following array in a program: 
  i nt [ ]  hol der  = new i nt [ 50] ;  
 
Use this information to answer questions 6 – 9. 
 
6) What is the maximum number of elements that can be stored by hol der ? [1 point] 

 
7) At which index would the first integer in hol der  be stored? [1 point] 
 
8) At which index would the last integer in hol der  be stored? [1 point] 
 



192 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

9) As you are using the array in your program, you find out that you need to store more 
than the maximum number of elements you listed in question 8.  You do not know how 
many more elements you will be storing, just that you need more space in your array.  
You are asked to write a method, needMor eSpace that takes in an array and performs 
the necessary operations to return a larger array with the same elements as the original, 
but with space to store additional elements.  Since you don’ t know how many elements 
you will eventually need to store, you should write the method body so that it could be 
called at a later time if the array needs to get bigger again. [8 points] 
 
publ i c  i nt [ ]  needMor eSpace( i nt  [ ]  or i gi nal Ar r ay)  {  
 
}  
 
10) Fill in the method below so that it creates and returns an array of size si ze and 
populates the array with elements each of whose values is the square of the index at 
which the element is stored.  For example, at array index 3, the value 9 should be stored. 
[8 points] 
 
publ i c  i nt [ ]  ar r ayOf Squar es ( i nt  s i ze)  {  
 
}  

 
11) Fill in the method below so that it returns t r ue if the value passed in as a parameter 
is contained inside the matrix and returns false otherwise. [8 points] 
 
publ i c  bool ean cont ai ns( doubl e[ ] [ ]  mat r i x ,  doubl e val ue)  {  
 
}  

 

Question 12 gives the design (in UML) for a doubly-linked list and asks the student to 

write the code for the delete method of the list.  The UML given in this question is not 

intended to be the testable material.  Rather, this question is given in terms of the design 

of the code, not necessarily the implementation.  This is not a requirement of the 

question, and another expression of design can be substituted for UML, or even the 

partially implemented code. 

12) Given the following UML diagram for a doubly linked list, fill in the method 
del et e below, which is a method in the List class and takes an element to be deleted 
and returns the deleted element when finished.  [8 points] 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 193 

 

 
Notes about the classes in the diagram: 

• Node’s constructor sets the value of _el ement  to the value passed in and sets the 
value of _next  and _pr ev  to nul l .  The other elements are simple accessors and 
mutators for _el ement ,  _node,  and _pr ev .   
 

• Node holds an element that implements the interface Compar abl e.  Recall that a class 
that implements this interface has a method named compar eTo that takes in an 
Obj ect  obj , and returns a positive number if t hi s > obj , the value 0 (zero) if the 
two are the same, or a negative value if t hi s < obj . 
 

• Li st ’s constructor simply sets the value of _head to nul l . 
 
publ i c  Compar abl e del et e( Compar abl e el ement )  {  
 
}  

 

Questions 13 – 18 test students on their knowledge of basic tree vocabulary:  root, 

leaf, parent, child, and height of a tree.   

Use the following representation of a tree data structure to answer questions 13 - 18. 



194 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

 
�

13) What is the value stored in the node that is the root? [1 point] 
 
14) Give the value stored in one of the leaves of this structure. [1 point] 
 
15) What is the height of a tree that just contains a root and no other nodes? [1 point] 
 
16) What is the height of this structure? [1 point] 
 
17) Give the value stored in the node that is the parent of n. [1 point] 
 
18) Give the values stored in all the children of m. [3 points] 

 

Question 19 gives students an adjacency list for a graph and asks them to draw the 

graph that the adjacency list represents.  Questions 20 and 21 test basic graph vocabulary 

including: directed, undirected, weighted, unweighted, simple, complete, acyclic, 

isomorphic, and adjacent nodes. 

19) Given the following adjacency list for a directed graph, draw the graph structure it 
represents. [8 points] 
 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 195 

 

 
 
 
Use the following representation of a graph to answer questions 20 and 21. 

 
20) Circle the letters of all of the words that accurately describe the graph above. [4.5 
points] 
a. directed 
b. undirected 
c. weighted 
d. unweighted 
e. simple 
f. complete 
g. acyclic 
h. isomorphic 



196 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

i. rooted 
 
21) Circle the letters corresponding to all the pairs of nodes given that are adjacent in the 
above graph. [4 points] 
a. r and s 
b. t and n 
c. d and s 
d. n and d 

 
Question 22 asks the students to assess which type of implementation (array-based or 

link-based) would be a more efficient implementation for a linked structure when using 

linear search. 

22) If a data structure is linear in nature (list, vector, etc), which implementation would 
perform better asymptotically in a linear search.  Circle one of the implementations listed: 
[1 point] 
 a. array-based 
 b. linked list-based 
 c. neither – they would both perform the same on the linear search. 

 
Question 23 combines knowledge of both inheritance and data structures.  Students 

are asked why it would be inappropriate for a stack to be a subclass of vector.  The data 

structures portion of this question is that students must know that a stack is a limited-

access structure and that invariant (property) should be preserved when implementing a 

stack.  Students must also then be able to identify why using inheritance has the potential 

for breaking this invariant. 

23) Referring to your knowledge of data structures and inheritance, why is it 
inappropriate for a java.util.Stack to be a subclass of java.util.Vector? [8 points] 

 
Questions 24 – 31 present the student with one of: a definition of a data structure, a 

fact about a data structure, or a scenario for using data structures, and asks the students to 

select, from a list of data structures, which structure or structures would be the most 

appropriate answers for each question. 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 197 

 

From the list of data structures given, choose the best answer or answers for questions 24 
– 31.  If there is no appropriate answer, write “None” .  If you feel that more than one 
answer is appropriate, list all appropriate answers.  It is possible that some answers from 
the box will not be used. 
 

Linked List      Array 
 
Graph      Stack 
 
Tree       Queue 
 
Hash Map       

 
24) Structure that associates a key with a value. [6 points] 
 
25) Structure whose insertion/removal strategy can be defined as LIFO. [6 points] 
 
26) Structure whose insertion/removal strategy can be defined as FIFO. [6 points] 
 
27) Structure that is non-linear. [6 points] 
 
28) Structure whose elements are always stored in a contiguous block of memory. [6 
points] 
 
29) You are creating software for a call center that does technical support.  Technicians 
are supposed to answer calls in the order they are received.  What structure would be best 
for keeping track of which call should be answered next? [6 points] 
 
30) Your company has decided to create a program to help cell-phone customers 
everywhere.  It is an on-line program that allows the user to type a person’s name and 
will return a list of all cell phone numbers registered to them.  You are asked to 
recommend a structure to hold onto the information.  Which structure would you 
recommend? [6 points] 
 
31) You are working for a brand new on-line mapping company.  This company needs to 
maintain information about locations and roads that connect them so that it can tell 
customers about various routes between locations.  What type of structure would be best 
for them to use to store their information? [6 points] 

 

Question 40 asks students to identify the running time of a hashing function.  

Question 41 and 42 presents students with code for two different types of insertion into a 

linked list and asks them to identify the running time of each insertion. 

40) If your hashing function worked every time with no collisions, what would be the 
running time of a method to find an element in a hash table of size n? [1 point] 



198 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

  a. O(1) 
  b. O(log n) 
  c. O(n) 
  d. O(n2) 
 
Use the code for a node and linked list given below to answer questions 41 and 42.  
Please note that some methods from both classes may have been removed if they do not 
pertain to the questions. 
 
publ i c  c l ass Node<E> {  

pr i vat e E dat a;  
pr i vat e Node<E> next ;  

 
publ i c  Node<E> ( E el ement ,  Node next Node)  {  

dat a = el ement ;  
next  = next Node;  

}  
publ i c  voi d set Next ( Node next Node)  {  next  = next Node;  }  

}  
 
publ i c  c l ass Li nkedLi st <E> {  

pr i vat e Node<E> head = nul l ;  
pr i vat e Node<E> t ai l  = nul l ;  

 
publ i c  Li nkedLi st ( )  { }  
publ i c  voi d i nser t  ( E el ement )  {  

Node<E> newNode = new Node( el ement ,  nul l ) ;  
t ai l . set Next ( newNode) ;  
t ai l  = newNode;  

}  
publ i c  voi d i nser t At Fr ont ( E el ement )  {  

Node<E> newHead = new Node( el ement ,  head) ;  
head = newHead;  

}  
}  
41)  What is the big-oh running time of the LinkedList’s method insert in the worst case? 
[1 point] 
  a. O(1) 
  b. O(log n) 
  c. O(n) 
  d. O(n2) 
 
42) What is the big-oh running time of the LinkedList’s method insertAtFront in the 
worst case? [1 point] 
   a. O(1) 
  b. O(log n) 
  c. O(n) 
  d. O(n2) 

 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 199 

 

Question 50 tests to see if students understand that an array is simply a container and 

can hold any type of data (not just primitive typed data). It is a true-false question. 

50) We can create an array to hold elements of primitive types (int, char, double, etc), but 
to hold elements of object type, we must use another type of data structure. [1 point] 
 
 a. TRUE 
 b. FALSE 
 

6.3.5 Recursion (Group 5) 

This group of questions assesses the entirety of the topics in PF4 Recursion. 

Question 39 asks students to identify which of the six algorithms listed use a divide-

and-conquer strategy in implementations. 

39) Circle any and all of the following algorithms that use a divide and conquer strategy 
to perform their specific task.  If none of the listed algorithms use a divide and conquer 
strategy, circle choice F. [6 points] 
 

a. Linear Search 
b. Quicksort 
c. Mergesort 
d. Insertion Sort 
e. Selection Sort 
f. None of the above. 

 

Question 51 asks students to identify, out of a series of examples of processes, which 

are recursive.  Questions 52 – 56 present two methods to the students, one recursive and 

one not.  The students are then asked to evaluate the two methods on various inputs.  On 

some inputs the methods behave the same, but on others they do not.  Question 56 asks 

students to select under which conditions the methods execute differently.  These 



200 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

questions involve the students tracing through a recursive procedure and understanding 

how it functions. 

51) Parts a – d describe four procedures in code and through words.  Circle the letter of 
each procedure that can be categorized as recursive. [4 points] 
 
a.  
publ i c  i nt  par t A( Obj ect [ ]  i t ems, Compar abl e x, i nt  y, i nt  z) {  
 i f  (  y  > z)  {  
  r et ur n - 1;  
 }  
 el se {  
  i nt  a = (  y + z ) / 2;  
  i nt  b = x. compar eTo( i t ems[ a] ) ;  
  i f  ( b == 0)  {  
   r et ur n a;  
  }  
  el se i f  ( b < 0)  {  
   r et ur n par t A( i t ems,  x,  y,  a – 1) ;  
  }  
  el se {  
   r et ur n par t A( i t ems,  x,  a + 1,  z) ;  
  }  
 }  
}  
 
 
 
b.  
publ i c  i nt  par t B( i nt  x)  {  
 i nt  r  = x;  
 r  = r  /  30;  
 Mat h. power ( x,  2) ;  
 r et ur n x;  
}  
 
 
 
c .  
publ i c  i nt  par t C ( i nt  x)  {  
 i nt  y = 0;  
 f or  ( i nt  i  = 0;  i  < x;  i ++)  {  
  y  = y + i  
 }  
 r et ur n y;  
}  
 
 
 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 201 

 

d.  
Pr ocedur e f or  Wr i t i ng Down Names of  Peopl e Wai t i ng i n l i ne 
f or  Movi e Ti cket s:  
 

1)  I f  l i ne i s  empt y go back t o of f i ce.  
2)  I f  l i ne i s  not  empt y:  

a.  Wal k up t o f i r s t  per son i n l i ne and ask f or  
t hei r  name.    
b.  Wr i t e name on of f i c i al  sheet  and gi ve 
par t i c i pant  f r ee popcor n coupon.    
c .  Move per son t o “ f ast  pass”  l i ne f or  t i cket s.  
d.  Begi n Pr ocedur e f or  Wr i t i ng Down Names of  
Peopl e Wai t i ng i n l i ne f or  Movi e Ti cket s agai n.  

 
 
Use the following code segment to answer questions 52 – 56.  Some of the questions ask 
about the output of a method on a particular input.  If the method goes into an infinite 
loop or infinite recursion on an input, write “ infinite loop”  as your answer. 
 
publ i c  i nt  met hod1 ( i nt  x,  i nt  y)  {  
 i f  ( y  == 0)  {  
  r et ur n 1;  
 }  
 el se {  
  r et ur n x *  met hod1( x,  y – 1) ;  
 }  
}  
 
publ i c  i nt  met hod2 ( i nt  x,  i nt  y)  {  
 i nt  r esul t  = 1;  
 f or  ( i nt  i  = 0;  i  < y;  i ++)  {  
  r esul t  = r esul t  *  x;  
 }  
 r et ur n r esul t ;  
}  
 
 
52) What is the value returned from the following method call: [1 point] 
 

met hod1( 2, 1) ;  
 
53) What is the value returned from the following method call: [1 point] 
 

met hod2( 2, 2) ;  
 
54) What is the value returned from the following method call: [1 point] 

met hod2( 2, - 5) ;  
 
55) What is the value returned from the following method call: [1 point] 

met hod1( 2, - 3) ;  
 



202 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

56) These methods function differently on different inputs.  On which class of inputs do 
these methods behave differently (circle all that apply)? [5 points] 
 
 a. When both x and y are positive numbers. 
 b. When both x and y are the number 0 (zero). 
 c. When both x and y are negative numbers. 
 d. When x is positive and y is negative. 
 e. When x is negative and y is positive. 
 f. When x is zero and y is positive. 
 g. When x is zero and y is negative. 
 h. When x is positive and y is zero. 
 i. When x is negative and y is zero. 
 j. The methods never function differently. 

 
Questions 57 – 58 present the mathematical definition of a recursive sequence (the 

Lucas sequence).  Students are not expected to have had previous experience with the 

Lucas sequence.  The recursive definition of the sequence is given to the students to aid 

them in answering this question.  Students are asked to identify from the definition which 

are base cases and which are recursive cases.  Question 59 then asks the students to create 

a recursive method that gives the nth element of the Lucas sequence. 

Given the following definition of the Lucas sequence, answer questions 57 – 59. 
 

L(1) = 1; 
L(2) = 3; 
L(n) = L(n – 1) + L(n – 2)  for n > 2 
 

57) State what the base case(s) is/are for the Lucas sequence. [4 points] 
 
58) State what the recursive case is for the Lucas sequence. [4 points] 
 
59) Write the Java code for a recursive method that takes as a parameter an integer n and 
returns the nth element of the Lucas sequence.  You can assume that n will always be a 
number greater than zero. [8 points] 

 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 203 

 

6.3.6 Searching and Sorting Algor ithms, and Algor ithm Analysis 
(Group 6) 

This group covers all of the topics in AL1 Basic Algorithmic Analysis as well as the 

rest of the topics in AL3 concerning searching and sorting algorithms.  Any question that 

concerns Big O19 notation is included in this group as well as questions that ask about 

searching and sorting algorithms. 

Questions 32 – 37 give a list of common searching and sorting algorithms and ask 

students to identify all valid Big O bounds on the worst case running time of each of the 

algorithms.  Question 38 asks the students to identify which of the sorting and searching 

algorithms function correctly only on sorted inputs (the only one is binary search). 

In questions 32–37 you are given an algorithm for sorting or searching.  You are to circle 
any and all valid big-oh bounds on the worst-case performance of each of the algorithms 
listed. 
 
32) Binary Search [6 points] 
a. O(1)  b. O(log n) c. O(n) d. O(n log n) e. O(n2)  f. O(2n) 
 
33) Linear Search [6 points] 
a. O(1)  b. O(log n) c. O(n) d. O(n log n) e. O(n2)  f. O(2n) 
 
34) Selection Sort [6 points] 
a. O(1)  b. O(log n) c. O(n) d. O(n log n) e. O(n2)  f. O(2n) 
 
35) Insertion Sort [6 points] 
a. O(1)  b. O(log n) c. O(n) d. O(n log n) e. O(n2)  f. O(2n) 
 
36) Quicksort [6 points] 
a. O(1)  b. O(log n) c. O(n) d. O(n log n) e. O(n2)  f. O(2n) 
 
37) Mergesort [6 points] 

                                                 
19 In the text of this dissertation, I use Big O to describe the asymptotic running time.  In the exam, it is 
referred to as big-oh running time.  They should be taken to mean the same thing.  Since the exam has 
already been written and administered, it is left in that form for the dissertation, even though it is 
inconsistent with the dissertation wording. 



204 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

a. O(1)  b. O(log n) c. O(n) d. O(n log n) e. O(n2)  f. O(2n) 
 

38) Circle any and all of the following algorithms that only function correctly on sorted 
inputs.  If none of the algorithms require sorted inputs to function correctly, circle choice 
F. [6 points] 
 

a. Binary Search 
b. Linear Search 
c. Selection Sort 
d. Quicksort 
e. Mergesort 
f. None of the above. 

 
Questions 40 – 42 ask about the running time of methods on data structures, which fit 

both into the section on data structures §6.3.4 as well as this section because they deal 

with Big O notation.  See §6.3.4 for these questions. 

Questions 43 and 44 are true-false questions about Big O.  Students are given a 

mathematical function and its Big O bound and asked to indicate whether the statement is 

true or false (i.e., if the Big O bound is correct).  If the statement is false, the students are 

asked to correct the Big O of the statement so that it would be correct.  Question 46 is 

another true-false question that requires that the student know that upper bounds on the 

growth of a function are transitive. 

For questions 43 - 44, decide whether the statement is true or false and circle the 
appropriate word true or false.  If the statement is false, rewrite the big-oh notation so that 
it would be true in the space provided. 
 
 
43) n3 + 2n + 25 = O(n) [3 points] 
true false 
Rewritten statement (if false): 
 
44) n2 + 30n + 4362 = O(n2) [3 points] 
true false 
Rewritten statement (if false): 
 
46) If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n)). [1 point] 
 a. TRUE 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 205 

 

 b. FALSE 
 

Question 45 asks the students to arrange a set of functions in order from slowest 

growing to fastest growing.  The functions represent the basic levels of complexity of 

algorithms: 1, log n, n, n2, 2n, n!, nn.  

45) Arrange the following functions in order from slowest growing to fastest growing. [7 
points] 
n, n!, n2, log n, 1, 2n, nn 

 

6.3.7 Object-Or iented Programming (Group 7) 

The topics in this group are those covered from PL6.  There are no specific questions 

about encapsulation or information hiding.  However, every class that uses private 

instance variables and public methods, especially those in the questions about data 

structures, illustrates this concept.  The students are not directly tested on their ability to 

re-create encapsulation, but they need to understand the concept in order to answer any 

question where the code uses it. 

Question 23 straddles two groups.  Its first group was data structures, and the other is 

object-oriented programming.  Students must be aware of the implications of inheritance 

to correctly answer the question about why Stack should not inherit from Vector. 

23) Referring to your knowledge of data structures and inheritance, why is it 
inappropriate for a java.util.Stack to be a subclass of java.util.Vector? [8 points] 

 
Question 49 is a true-false question testing student’s knowledge of inheritance and 

polymorphism.  Question 110, which is sandwiched inside a set of questions that are from 



206 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

Group 3, tests students knowledge of the difference between the declared type and the 

actual type of a variable, which is a component of understanding how inheritance and 

polymorphism work together.  This question fits in with the code example used in that 

part of the exam, so was included in that section, but really tests ideas from this group. 

49) Suppose Triangle, Circle, and Square are all subclasses of Shape.  In our program, we 
create an array that stores objects of type Triangle.  That array can hold any number of 
Circles, Squares, and Triangles because they are all subclasses of Shape. [1 point] 
 a. TRUE 
 b. FALSE 

 
110) Under what circumstances would you be allowed to add the following line of code 
to the end of the class Dr i ver ’s constructor: [1 point] 

t  = new Ot her Thi ng( ) ;  
a. No special circumstances, this line of code would always work. 
b. Only when Ot her Thi ng is a subclass of Thi ng. 
c. Only when Ot her Thi ng is a superclass of Thi ng. 
d. This line of code would never work because the declared type of t  is Thi ng, 
so you must assign a Thi ng object to t . 

 

Questions 116 – 127 are based on a system of classes and interfaces that is first 

illustrated using a UML diagram and then given in code.  Students need to analyze these 

classes to answer the questions.  Questions 116 – 125 give the students a set of variable 

declarations.  Some of the variables have a different declared type and actual type, once 

again the setup for polymorphism.  These questions ask students to identify which 

methods are allowed to be called on a variable and which methods will be executed if the 

call is legal.  Question 126 asks students to identify methods that are inherited within the 

class structure, and Question 127 asks students to identify if a method is partially 

overridden or totally overridden in the code example. 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 207 

 

Use the UML diagram given below as well as the code segment given after the diagram 
to answer questions 116 – 127. 
 

 
/ *  The c l asses gi ven bel ow wer e wr i t t en f or  t he pur poses of   
 *  t hi s exam.  I n r eal i t y ,  t hey woul d each be i n t hei r  own     
 *  separ at e f i l e,  but  ar e r epr i nt ed her e as one l ong f i l e  
 *  f or  ease of  r eadi ng.  Thi s “ pr i nt - out ”  spans t wo pages,     
 *  so pl ease l ook at  bot h pages whi l e answer i ng t he   
 *  f ol l owi ng quest i ons.  
 * /  
 
publ i c  c l ass App {  
    pr i vat e Puppy _puppy;  
    pr i vat e I D _i d;  
    publ i c  App ( ) {  
 Syst em. out . pr i nt l n( " App const r uct or  cal l ed. " ) ;  
 _puppy = new Puppy( new Toy( ) ) ;  
 t hi s. set I D( new I D( t hi s,  _puppy) ) ;  
 Syst em. out . pr i nt l n( " App const r uct or  end. " ) ;  
    }  
    publ i c  voi d set I D( I D i d)  {  
 _i d = i d;  
    }  
    publ i c  st at i c  voi d mai n ( St r i ng[ ]  ar gs)  {  
 App app = new App( ) ;  
    }  / /  end of  mai n ( )      
} / /  App 



208 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

 
publ i c  i nt er f ace Col or abl e {  
   j ava. awt . Col or  get Col or ( ) ;  
   voi d set Col or ( j ava. awt . Col or  col or ) ;  
} / /  Col or abl e 
 
publ i c  c l ass I D i mpl ement s Col or abl e{  
   pr i vat e Ani mal  _ani mal ;  
   pr i vat e j ava. awt . Col or  _col or ;  
   publ i c  I D ( App app,  Ani mal  ani mal ) {  
      _ani mal  = ani mal ;  
      _col or  = j ava. awt . Col or . BLACK;  
   }  
   publ i c  j ava. awt . Col or  get Col or ( )  {  
      r et ur n _col or ;  
   }  
   publ i c  voi d set Col or ( j ava. awt . Col or  col or )  {  
      _col or  = col or ;  
   }  
} / /  I D 
 
publ i c  c l ass Ani mal  {  
   pr i vat e Toy _t oy;  
   publ i c  Ani mal  ( ) {  _t oy = new Toy( ) ;  }  
   publ i c  Ani mal  ( Toy t oy)  {  _t oy = t oy;  }  
   pr ot ect ed Toy get Toy( )  {  r et ur n _t oy;  }  
   publ i c  voi d somet hi ngShoul dHappen( )  {   

_t oy. doSomet hi ng( ) ;   
   }  
} / /  Ani mal  
 
publ i c  c l ass Puppy ext ends Ani mal {  
   publ i c  Puppy( )  { }  
   publ i c  Puppy ( Toy t oy) {  
      super ( t oy) ;  
      t hi s. doSomet hi ngWi t hThi sCol or ( t hi s. get Toy( )  
                                              . get Col or ( ) ) ;  
   }  
   publ i c  voi d doSomet hi ngWi t hThi sCol or  
                                    ( j ava. awt . Col or  col or ) {  
      t hi s. get Toy( ) . set Col or ( col or . dar ker ( ) ) ;  
   }  
   publ i c  voi d somet hi ngShoul dHappen( )  {  
      super . somet hi ngShoul dHappen( ) ;  
      t hi s. get Toy( ) . doNot hi ng( ) ;  
   }  
} / /  Puppy 
 
publ i c  c l ass Toy {  
   pr i vat e j ava. awt . Col or  _col or ;  
   pr i vat e St r i ng[ ]  _sounds;  
   publ i c  Toy ( ) {  _col or  = j ava. awt . Col or . RED;  }  



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 209 

 

   publ i c  voi d set Col or ( j ava. awt . Col or  col or )  {   
_col or  = col or ;   

   }  
   publ i c  j ava. awt . Col or  get Col or ( )  {  r et ur n _col or ;  }  
   publ i c  voi d doSomet hi ng( )  {  
      _sounds = new St r i ng[ 20] ;  
      f or  (  i nt  count  = 0;  count  <_sounds. l engt h;  count ++) {  
     _sounds[ count ]  = " Squeak" ;  
      }  / /  end of  f or  ( )  
      Syst em. out . pr i nt l n( _sounds) ;  
   }  
   publ i c  voi d doNot hi ng( )  {  
      / / Thi s met hod r eal l y  does not hi ng.  
   }  
} / /  Toy 
 
 
For questions 116 – 125, assume the following variable declarations.  Note that any 
ellipses (…) indicates material that will not affect your answer to the question and can be 
safely ignored.  For each of the method calls in questions 116 - 125, you should circle the 
name of the class/interface that defines the method that will be executed for the method 
call.  If the call is Illegal, circle the choice that corresponds to “ Illegal” . 
 
Col or abl e c = new I D( …) ;  
Ani mal  ani mal  = new Puppy( ) ;  
Puppy puppy = new Puppy( ) ;  
 

116) c. get Col or ( ) ;  [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 
 
117) c . set Col or ( …) ;  [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 
 
118) c. set I D( ) ;  [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 



210 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

f. Toy 
g. Illegal 

 
119) ani mal . get Toy( ) ;  [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 
 
120) ani mal . somet hi ngShoul dHappen( ) ;  [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 
 
121) ani mal . doSomet hi ngWi t hThi sCol or ( …) ;   [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 
 
122) puppy. somet hi ngShoul dHappen( ) ;  [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 

 
123) puppy. doSomet hi ngWi t hThi sCol or ( …) ;  [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 
 
124) puppy. get Toy( ) ;  [1 point] 
a. App 
b. Animal 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 211 

 

c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 
 
125) puppy. get Col or ( ) ; [1 point] 
a. App 
b. Animal 
c. Puppy 
d. Colorable 
e. ID 
f. Toy 
g. Illegal 
 
Recall that questions 126 – 127 still refer to the UML diagram and code used for 
questions 116-125. 
 
126) Circle the names of all methods that are simply inherited (not overridden) by 
some other class.  If no methods are inherited, circle the choice that corresponds to 
“None” . [6 points] 
a. void main (String[] args) //in class App 
b. void setColor(java.awt.Color color) //in class ID 
c. Animal () //in class Animal 
d. Animal (Toy toy) //in class Animal 
e. Toy getToy() //in class Animal 
f. void somethingShouldHappen() //in class Animal 
g. Puppy () //in class Puppy 
h. Puppy (Toy toy) //in class Puppy 
i. void somethingShouldHappen() //in class Puppy 
j. void doSomethingWithThisColor(java.awt.Color color) //in class Puppy 
k. void setColor(java.awt.Color color) //in class Toy 
l. None 
  
127) Is the method somet hi ngShoul dHappen in the class Puppy  partially 
overridden or totally overridden? [1 point] 
a. Partially overridden 
b. Totally overridden 

6.4 Critique of the Exam 

The exam underwent three distinct rounds of critique by a total of five distinct 

reviewers at two different institutions (one public, one private).  Some of the reviewers 

reviewed the exam multiple times.  All critiques were completed before the data 

collection began for the study described in Chapters 7 and 8 of this dissertation. 



212 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

In the first critique, the initial question pool was narrowed to a more reasonable 

number of questions for the three-hour time limit by eliminating duplicate questions.  

After this round of critique, I solicited the help of three of my current teaching assistants 

to simulate an exam administration.  While the teaching assistants are not introductory 

level students, they were each able to complete the exam in under two hours, which gave 

me initial confidence that students would be able to complete the exam in the time 

allotted. 

In the second critique, instructors for the CS2 course in which the exam was to be 

offered as the final exam gave their commentary on its contents.  Some additional 

questions were removed at this stage, others were reformatted, and grammatical and 

spelling mistakes were corrected.   

In the third and final critique, instructors from outside the course were asked for an 

independent analysis of the exam.  Three instructors, who had all been involved in 

teaching CS2 at some point in the recent past but were not teaching the course when the 

study was administered, were asked to give general commentary on the exam and answer 

the questions on the reviewer questionnaire (see Appendix C of this dissertation).  

Comments were considered and questions changed appropriately to clarify directions and 

any additional spelling and grammatical errors. 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 213 

 

6.5 Conclusion 

This chapter discussed the creation of the exam and how the exam covers all of the 

topics left in our topic list after the elimination of topics discussed in Chapter 4.  This 

chapter also discussed the process by which the exam was reviewed for content by 

domain experts.  The comments and critiques of these experts were taken under 

consideration when creating the final version of the exam and many suggestions were 

implemented based on reviewer feedback. 

Aside from issues with question particulars, which were either addressed, or 

discussion given as to why the suggestions were ignored, the reviewers felt that the exam 

had the correct level of difficulty for the students and that content was comprehensive 

enough for a CS1-CS2 assessment.   

The only major issue that has come up repeatedly from most of the reviewers has 

been length.  The issue of length is addressed in the analysis chapter (Chapter 8) as part 

of the administration process for this exam was a recording of the time to completion for 

each student. 

6.6 Coding of Questions on Exam 

The following table gives an alternate view of the categorization of the questions on 

the exam in the order that the questions appear on the exam and which section of this 

chapter discusses these questions. 



214 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

Question 
Number 

Brief Description Section  

1 BST Insert 6.3.4 
2 BST Find 6.3.4 
3 BST Delete Root 6.3.4 
4 Collection with generic type 6.3.3 
5 Iterating over a collection 6.3.4 
6 Array indexing 6.3.4 
7 Array indexing 6.3.4 
8 Array indexing 6.3.4 
9 Array re-sizing 6.3.4 
10 Creating and populating an array 6.3.4 
11 Searching a two-dimensional array 6.3.4 
12 Deletion from a doubly-linked list 6.3.4 
13 Tree vocabulary 6.3.4 
14 Tree vocabulary 6.3.4 
15 Tree vocabulary 6.3.4 
16 Tree vocabulary 6.3.4 
17 Tree vocabulary 6.3.4 
18 Tree vocabulary 6.3.4 
19 Graph representations 6.3.4 
20 Graph vocabulary 6.3.4 
21 Graph vocabulary 6.3.4 
22 Running time based on implementation of data structure 6.3.4, 6.3.6 
23 Why should a stack not inherit from a vector? 6.3.4, 6.3.7 
24 Choose the most appropriate data structure 6.3.4 
25 Choose the most appropriate data structure 6.3.4 
26 Choose the most appropriate data structure 6.3.4 
27 Choose the most appropriate data structure 6.3.4 
28 Choose the most appropriate data structure 6.3.4 
29 Choose the most appropriate data structure 6.3.4 
30 Choose the most appropriate data structure 6.3.4 
31 Choose the most appropriate data structure 6.3.4 
32 Algorithmic running time 6.3.6 
33 Algorithmic running time 6.3.6 
34 Algorithmic running time 6.3.6 
35 Algorithmic running time 6.3.6 
36 Algorithmic running time 6.3.6 
37 Algorithmic running time 6.3.6 
38 Conditions for correct algorithm function 6.3.6 
39 Divide and conquer strategy 6.3.5 
40 Hashing function running time 6.3.4, 6.3.6 
41 Analysis of linked list function running time 6.3.4, 6.3.6 
42 Analysis of linked list function running time 6.3.4, 6.3.6 
43 Big O notation 6.3.6 



CHAPTER 6 CREATION AND CRITIQUE OF EXAM 215 

 

44 Big O notation 6.3.6 
45 Common complexity classes 6.3.6 
46 Big O notation 6.3.6 
47 Primitive types 6.3.3 
48 Primitive types 6.3.3 
49 Inheritance 6.3.7 
50 Arrays 6.3.4 
51 Identifying recursion 6.3.5 
52 Tracing recursive methods 6.3.5 
53 Tracing recursive methods 6.3.5 
54 Tracing recursive methods 6.3.5 
55 Tracing recursive methods 6.3.5 
56 Tracing recursive methods 6.3.5 
57 Recognizing base case of recursion 6.3.5 
58 Recognizing recursive case of recursion 6.3.5 
59 Writing a recursive function 6.3.5 
60 Programming vocabulary 6.3.1 
61 Programming vocabulary 6.3.1 
62 Programming vocabulary 6.3.1 
63 Programming vocabulary 6.3.1 
64 Programming vocabulary 6.3.1 
65 Programming vocabulary 6.3.1 
66 Programming vocabulary 6.3.1 
67 Programming vocabulary 6.3.1 
68 Programming vocabulary 6.3.1 
69 Programming vocabulary 6.3.1 
70 Programming vocabulary 6.3.1 
71 Programming vocabulary 6.3.1 
72 Programming vocabulary 6.3.1 
73 Programming vocabulary 6.3.1 
74 Programming vocabulary 6.3.1 
75 Programming vocabulary 6.3.1 
76 Programming vocabulary 6.3.1 
77 Programming vocabulary 6.3.1 
78 Programming vocabulary 6.3.1 
79 Parameter passing mechanisms 6.3.2 
80 Parameter passing mechanisms 6.3.2 
81 Parameter passing mechanisms 6.3.2 
82 Parameter passing mechanisms 6.3.2 
83 Arithmetic/logical expression evaluation 6.3.2 
84 Arithmetic/logical expression evaluation 6.3.2 
85 Arithmetic/logical expression evaluation 6.3.2 
86 Arithmetic/logical expression evaluation 6.3.2 
87 Arithmetic/logical expression evaluation 6.3.2 



216 CHAPTER 6 CREATION AND CRITIQUE OF EXAM   
 

88 Arithmetic/logical expression evaluation 6.3.2 
89 Arithmetic/logical expression evaluation 6.3.2 
90 Arithmetic/logical expression evaluation 6.3.2 
91 Typecasting/type checking 6.3.3 
92 Simple numeric algorithms 6.3.2 
93 Simple numeric algorithms 6.3.2 
94 Selection using conditionals 6.3.2 
95 Selection using conditionals 6.3.2 
96 Selection using conditionals 6.3.2 
97 Iteration using loops 6.3.2 
98 Iteration using loops 6.3.2 
99 Iteration using loops 6.3.2 
100 Iteration using loops 6.3.2 
101 String processing, loops, conditionals 6.3.2 
102 String processing, loops, conditionals 6.3.2 
103 String processing, loops, conditionals 6.3.2 
104 Reference types 6.3.3 
105 Reference types 6.3.3 
106 Reference types 6.3.3 
107 Visibility/scope 6.3.3 
108 Visibility/scope 6.3.3 
109 Type incompatibility 6.3.3 
110 Inheritance 6.3.7 
111 Parameter passing mechanisms 6.3.3 
112 Parameter passing mechanisms 6.3.3 
113 Pointers and references 6.3.3 
114 Pointers and references 6.3.3 
115 Pointers and references 6.3.3 
116 Inheritance/Polymorphism 6.3.7 
117 Inheritance/Polymorphism 6.3.7 
118 Inheritance/Polymorphism 6.3.7 
119 Inheritance/Polymorphism 6.3.7 
120 Inheritance/Polymorphism 6.3.7 
121 Inheritance/Polymorphism 6.3.7 
122 Inheritance/Polymorphism 6.3.7 
123 Inheritance/Polymorphism 6.3.7 
124 Inheritance/Polymorphism 6.3.7 
125 Inheritance/Polymorphism 6.3.7 
126 Inheritance, overriding 6.3.7 
127 Inheritance, overriding 6.3.7 

Table 6-2:  Categor ization of Questions on Exam 



 217 

Chapter  7 

Exam Administration and Grading 

This chapter will discuss the administration of the exam, the procedures followed 

during the data collection process and the grading process for the exam. 

7.1 General Exam Administration Guidelines 

The exam is a closed-book, closed-notes, closed-neighbor (i.e., not collaborative) 

exam designed to be administered at the end of the CS2 semester.  No electronic devices 

should be used while completing this exam.  It is assumed that most institutions have 

some mechanism in place for end-of-the-semester final exams.  The exam is designed to 

be given in a three-hour time block, but designed for students to be able to finish in two 

hours allowing an extra hour for students to have extra time to think about the problems 

and not feel rushed. 

Students are given an exam booklet and an answer booklet; all answers should be 

written only in the answer booklet.  Students should be instructed that answers written in 

the test booklet that are not also in the answer booklet will not be graded.   



218 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

As with any exam, an appropriate number of exam administrators should monitor the 

exam.  This number should be dictated by the common practices of the institution and the 

number of students that will be taking the exam at one time.  Exam administrators in the 

exam room should be familiar with the exam itself so as to be able to answer questions 

that may be asked by the students.  Under no circumstances should answers to questions 

be provided to the students by exam administrators.  However, student questions about 

where to write answers to questions and what type of answer (code, prose, etc.) should be 

answered, provided that the answers given do not provide the student with the answer to a 

particular question.   

It is common practice at our institution to allow students to leave an exam room as 

soon as they have completed the exam.  This is not a necessary component of the exam 

administration process but is allowed if it is common at the institution of administration.   

When a student has completed the exam, it is recommended that the exam 

administrators collect both the exam booklet and the answer booklet from the student and 

not allow them to remove any exam materials from the exam room.  This is to help 

permit the reuse of the exam in subsequent semesters, because there will be no copies of 

the questions available outside of the exam room.  It is not recommended that the exam 

be reused in its current form across multiple semesters, but rather versioned to change the 

questions slightly in each semester.  For example, in the computation questions, change 

values of variables, switch the order of answers for multiple choice questions, and flip 

some of the values of the true-false questions. 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 219 

 

After all students have completed the exam, the exams should be graded using the 

grading procedures outlined in this chapter.  The exam has 127 questions and is graded 

out of 354 points.  A student’s percentage scores are achieved by dividing their total 

number of points earned by 354 and multiplying by 100.  In a particular version of the 

CS1-CS2 sequence at a particular institution, certain topics that are covered by this exam 

may not have been covered in the CS1-CS2 sequence.  Exam administrators can choose 

not to consider certain questions from the exam in final grading for that particular exam 

administration.  However, if the exam is to be used as a benchmarking or comparison 

tool, the same questions must be considered for subsequent administrations of the exam.   

The administrations of this exam so far have been for data gathering and statistical-

analysis purposes, so students were instructed to answer all questions to the best of their 

ability.  After the exam was finished, the instructors for the individual CS2 courses 

decided which questions would and would not be counted toward the student’s final 

exam grade.   However, it is also reasonable to allow an instructor to tell the students 

ahead of time to skip certain questions on the exam.  Still another option is to reprint the 

exam with those questions removed.   

In any case, which questions are analyzed for a particular administration of the exam 

is up to the individual instructors.  However, the need to remove questions should 

indicate to instructors that there is material missing from their CS1-CS2 sequence in 

relation to the guidelines given in CC2001.  There are very few redundant questions on 



220 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

this exam because many of the repeated questions were removed during critique to help 

make the exam shorter. 

7.2  Grading Procedure Development 

There is little dispute that a rubric for grading is essential for ensuring consistency of 

test scores for questions that are subjective.  Such a rubric should specify how the 

questions should be graded and what weighting (if any) certain questions should be given 

over others.  In any question that is not multiple-choice or true-false, where the student 

has the opportunity to express the answer in his or her own words, the rating of the 

response must be interpreted by the rater.   

In an article about grading essay assignments in a computer ethics course, Moskal, 

Miller, and King (2002) give examples of a rubric for grading student essays and give 

their recommendation that a rubric helps to better define the way an answer should be 

graded.  McCauley (2003) also praises the use of a rubric that gives a clear description of 

what a particular grading criterion is as well as the level to which the student should 

demonstrate proficiency with that criterion (i.e., should partial credit be awarded, and, if 

so, how should that credit be determined?).  Walker (2000) weighs in on the grading 

debate, with a discussion of how important grading is, but also how time consuming 

grading computer science questions can be as evidenced by published results of how 

many AP Computer Science exams are graded in a specific time period as opposed to 

other AP exams. 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 221 

 

Therefore, it is evident that the creation of the grading rubric and the grading of the 

exam itself are just as important as the creation of the questions for the exam.  The 

grading guideline is reprinted as Appendix B of this dissertation.  In this chapter, a 

discussion of the grading specifics begins in §7.2.3. 

7.2.1 Multiple Choice Questions 

7.2.1.1 Questions with Only One Answer 

Questions that were given multiple choices in any way (i.e., traditional multiple 

choice questions or true-false questions) where only one choice was required to be circled 

were treated as the easiest category to grade.  Since there is only one correct answer out 

of a given number of choices (and the students would know this from reading the 

question), the answers that a student gives for that question were either correct or 

incorrect.  These questions are categorized in the grading guideline as MC1A: multiple 

choice questions that have only one correct answer.  This distinction is given to the 

following 30 questions (24% of the exam). The questions are: 4, 22, 40-42, 46-50, 104-

105, 109-125, and 127. 

7.2.1.2 Questions with More than One Answer 

There are questions on the exam where multiple choices are given, but the student is 

expected to indicate all that are correct from the list of choices given for that question.  In 

these questions, all correct answers must be indicated for the entire answer to be correct.  



222 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

These questions are categorized in the grading guideline as MCMA:  multiple choice 

questions that can have multiple correct answers.  This distinction is given to the 

following 17 questions (13% of the exam): 20 - 21, 32 - 39, 51, 56, 91, 106 - 108, and 

126. 

7.2.2 Non-Multiple Choice Questions  

7.2.2.1 Objective Free-Response Questions – One Answer 

A number of questions on the exam do not give the students choices for their answers, 

yet have clearly correct answers.  For example, questions that ask the students to state 

what is printed to the screen when an expression is evaluated generally have one answer.  

The questions like this on the exam are constructed in such a way so that there is a 

definite correct answer.  The answers to these questions are not based on student 

impression or the methodology that the student uses to solve the question, as can be the 

case with essay questions or questions that ask the student to write source code to 

perform a specific function. 

These questions are categorized in the grading guideline as FR1A: free response (i.e., 

no choices given) with only one correct answer.  This distinction is given to the following 

32 questions (25% of the exam): 6 - 8, 13 - 16, 52 - 55, 79 - 90, and 92 - 100. 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 223 

 

7.2.2.2 Objective Free-Response Questions – Complex Answer 

There is also a set of questions on the exam where choices are not given, but the 

answers are not simply one-word or one-statement answers.  These answers at times 

require several items in a particular order, or the identification of multiple items.  The 

other type of question that is lumped in this category are those that ask students to 

identify the parts of code from a given code segment.  These types of questions have 

answers that are not as simple as one-word answers, but still are not as subjective as the 

questions discussed in the next section. 

These questions are categorized in the grading guideline as FRCA:  free response 

(i.e., no choices given) with possibly more than one correct answer.  This distinction is 

given to the following 33 questions (26% of the exam): 1-3, 18-19, 24-31, 45, and 60-78. 

7.2.2.3 Subjective Free-Response Questions  

The last set of questions is arguably the most difficult to grade.  These questions 

require the students to either write an explanation of an answer to a question (a short-

answer-style essay) or to write source code to solve a particular problem.  These 

questions will most likely be the questions that take the students the longest to finish and 

take the most time in the grading process and also subject to the most variability on the 

part of the raters of the exam. 

These questions are categorized in the grading guideline as SG:  subjective grading.  

There are not necessarily definitively correct answers for the questions, and they require 



224 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

that the raters read a more complex grading rubric for how to assign credit for each 

question.  This distinction is given to the following 14 questions (11% of the exam): 5, 9 

- 12, 23, 43 - 44, 57 - 59, and 101 - 103. 

7.2.3 Weighting of Questions 

The point weight for each of the questions is greatly determined by which type of 

question category they fall into.  Questions that require the student to pick one answer out 

of a list of choices are considered for the purposes of this assessment to be worth less 

than questions that require the student to produce code as an answer to a question.  I have 

always viewed the act of writing code to solve a problem to be more difficult than 

analyzing a pre-existing piece of code.  I would relate it to the fact that we can find many 

people who are good readers of written work but far fewer who are good writers.  

Forming a solution in a programming language requires a synthesis of the information 

known about the language itself as well as the problem.   

However, this high-level distinction of more points for code-writing questions and 

fewer points for multiple-choice questions is too coarse for this exam.  A finer-grained 

distinction can be made by looking at the types of questions grouped as described in 

§7.2.1 and §7.2.2.  Even within the multiple-choice questions, there are questions that 

require the students to pick out one answer (MC1A) or decide for each choice if the 

choice is a correct answer for that question (MCMA).  Therefore, it was decided that 

questions that MC1A questions would be weighted as 1 point on the exam.  MCMA 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 225 

 

questions would be weighted so that each answer choice was worth 1 point on the exam, 

in effect, treating each answer choice as its own mini-question.  For example, if there are 

five choices for a question where only one is correct, and the student selects the wrong 

one, the student has effectively gotten two answers incorrect and three answers correct. 

Free response questions that only have one answer were considered to be in the same 

category as single answer multiple choice questions and were then weighted as 1 point 

per question. 

Free response questions that have a more complex answer (FRCA) were considered 

more difficult than the previous types of questions and were given a weighting to reflect 

this level of difficulty.  The default weighting for these questions was 8 points each.  The 

decision for 8 points was partially arbitrary, but partially motivated by the fact that points 

on a question could be broken into groups each worth either 2 points or 4 points.  Also, it 

stresses the fact that these questions are considered of greater difficulty than other 

questions on the exam20.  However, certain questions necessitated a deviation from this 

point system.  The special cases will be explained in more detail in the next section. 

Questions for which students needed to write code were considered to be as difficult 

as FRCA questions and were given the same weighting, 8 points each.   

                                                 
20 Arguably, this method of assigning harder questions to be worth more points could be considered unfair 
to the students.  Since the question is harder, it is more likely that the students will get the question wrong 
and therefore lose a larger number of points.  If the harder questions were weighted the same as the easier 
questions, the students would lose the same number of points no matter which questions were answered 
incorrectly.  This is perhaps a more fair approach to point assignment, but it is not the decision that was 
made for this assessment. 



226 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

However, this method of assigning weights fails for multiple choice questions that 

have multiple answers with greater than 8 choices.  Therefore, for questions with 8 or 

more answer choices, the answer choices would be worth only ½ point to keep their point 

value lower than the FRCA and coding questions. 

7.2.3.1 Special Cases 

There are a few special cases in this question-weighting scheme,  included in the 

questions that are categorized as FRCA or SG.  The questions that have weightings that 

deviate from the standards discussed previously are questions 2, 18, 24-31, 43-44, 45, 57-

58, and 60-7821. 

Question 2 asks the student to produce the list of nodes visited in a binary search tree 

search.  The answer to this question could be partially correct and partially incorrect, but 

there are only three elements in this particular search, so it was decided that each element 

of the search would be worth 1 point.  The grading guideline explains how to assign 

partial credit for this question. 

Question 18 asks the student to list all of the children of a particular node of a tree.  

The question is really a free-response question that has a definite answer.  However, since 

three answers are expected, it is possible that a student would forget one.  Doing that 

should not cause the student to lose all credit for the question.  So, the three answers were 

weighted 1 point each, making the question worth 3 points.  This was done to keep each 

                                                 
21 Refer to Appendix A of this dissertation for the exact wording of the questions referred to in this section. 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 227 

 

question worth a whole number of points wherever possible and to avoid fractional point 

values other than ½. 

Questions 24 - 31 ask the students to choose, out of a list of given data structures, the 

ones that are most accurately described by the problems given in each question.  Some of 

these could have multiple answers and require the students to apply what they know 

about data structures to novel problems.  However, they are not as complex as the coding 

questions, because the students are given an answer-bank of choices.  Also, some of the 

questions had three answers, which was hard to divide into 8 points.  Therefore, a 

compromise of 6 points per question was assigned to them. 

Questions 43 and 44 are true-false questions that ask the student to re-write a 

statement to be true if they believe it is false.  Both of these questions involve Big O 

notation, so the students have to give the correct Big O bounds for the question.  This is 

more complex than a regular true-false question.  The true-false part of the question was 

weighted the same as the other true-false questions on the exam (1 point).  The re-writing 

was given a weighting of 2 points, because it required a little more effort than merely 

stating the truth value of a statement.  Therefore, each of these two questions is worth 3 

points. 

Question 45 asks the student to organize functions by growth rate.  Originally the 

question was to be weighted 8 points, but since there are only 7 functions to be ranked, it 

made point breakdown easier to assign the question 7 points. 



228 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

Questions 57 and 58 ask the student to provide the base case and recursive case of a 

recursive formula.  These two questions were given half the weight of a code question, 

because they are not as complex as some of the coding questions, yet require a bit more 

than FR1A question. 

Questions 60 – 78 ask the students to identify the parts of code associated with a 

given programming vocabulary term.  The answers to these questions are free response 

and are categorized “complex”  because the answer that needs to be provided is not as 

simple as some of the other free-response questions, in turn because students have to look 

at a piece of code and identify the correct part.  Also, the grading is not as 

straightforward, because there may actually be multiple correct answers for one of the 

vocabulary terms.  In the grading guide, the possible answers are elaborated.  These 

questions fit better into the category of a simple free-response question or even a 

multiple-choice question, because the students have to pick out from a given code 

segment where the vocabulary terms are.  Therefore, the questions were given the 

weighting of 1 point each. 

7.2.4 Partial Credit (The Tr iage Theory of Grading) 

The grading guideline gives a detailed description of how the coding questions are to 

be graded.  However, the justification of this grading system must be given.  When 

working on the grading system for the exam, several issues were considered.  Among 

them were the relative weightings of the individual types of questions.  The most difficult 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 229 

 

consideration was how to handle questions that had the potential for partially correct 

answers.  These questions are primarily the coding questions on the exam, although a few 

of the complex-answer, free-response questions use a system for partial credit as well. 

The system for partial credit is based on the Triage Theory of Grading (Rapaport, 

2006).  In this system, a totally correct answer is given full credit and an answer that is 

clearly wrong is given minimal credit.  In this system, zero points is reserved for not 

putting any answer for a question.  Any answer that falls in between is given half credit.  

In this way, the points for a question do not have to be broken down across syntactically 

specific constructs of the particular question, but rather across the general themes of the 

question.   

This theory concisely explains how to grade coding questions in a way that could be 

easily communicated to the raters in the grading guideline.  Also, it allows for the 

language of implementation to be changed without necessitating an entire re-write of the 

grading guideline.  The theory was adopted for the coding questions and some of the free 

response questions. 

The student’s final score is the total number of points earned on the exam.  This 

number is then divided by the total number of possible points to get a percentage score.  

Instructors can use the percentage score however they see fit within their own 

classrooms.  This leaves the correlation of a particular percentage score to a letter grade 

to the discretion of the course instructor. 



230 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

7.3 Study Design 

  In order to determine the reliability and provide data to determine the validity of the 

assessment instrument, the exam was administered to students so that their scores could 

be analyzed.  Since the exam was designed to be an assessment of the CS1-CS2 

sequence, the instructors for the CS2 course (CSE 116) at UB were approached about the 

possibility of giving this exam as their final exam for the course in both the Fall 2005 and 

Spring 2006 semesters.  As discussed in Chapter 6, the instructors for both courses agreed 

to administer the exam and offered suggestions for the improvement of the instrument as 

well.   

7.3.1 Research Questions 

For validity, students who participated in the study consented to have their final 

grades for CSE 115 and CSE 116 analyzed.  In an attempt to show criterion validity, the 

students’  results on the exams were compared to both their CSE 115 and CSE 116 grades 

to look for any correlations between the two scores.  It was hypothesized that the exam 

score would be correlated with their performance in both of these courses.  However, it is 

known that the exam itself is factored into the student’s final grades for CSE 116.  

Therefore, student’s scores in CSE 116 are compared both to this final grade as well as a 

recomputed grade with the final exam score removed. 

Other questions that the study attempted to answer were: 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 231 

 

1) How long on average does it take students to finish the exam? 

2) Would students of different genders perform differently on the exam? 

3) Would students of different ages or level in school perform differently on the 

exam? 

4) Would computer science and engineering majors or minors perform 

differently from non-majors on the exam? 

5) Would students who did not take CS1 at the University at Buffalo perform 

differently on the exam?  

6) Would students who repeated either CS1 or CS2 perform differently on the 

exam? 

7) Would students with prior programming experience perform differently on the 

exam? 

7.3.2 Subjects 

The subjects of this study were students enrolled in CSE 116, Introduction to 

Computer Science for Majors II, at the University at Buffalo in the Fall 2005 and Spring 

2006 semesters.  This course at the University at Buffalo is equivalent to a CS2 as 

described in CC2001.  Institutional Review Board approval was obtained before data 

collection began for this study.  The instructors for these courses agreed to give this exam 

as a final exam for CSE 116 in those two semesters.  Students were required by the 



232 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

syllabus to take the final exam for the course.  However, the students were not required to 

participate in the study that analyzed the results of their exam scores.   

Students were informed of the study and their ability to participate in it prior to final 

exam day.  On the day of the exam, students were presented with the consent form to sign 

if they were interested in participating in the study.  One hundred students agreed to 

participate in this study22. 

7.3.3 Study Protocol 

In order to correlate student performance on the exam with their performance overall 

in both CSE 115 and CSE 116, and to help the instructors of CSE 116 use the exam data 

as final exam grades for their students, student names needed to be associated with their 

exam papers in some way.  However, since the exam needed to be graded, having student 

names on the exam could introduce rater-bias effects if the student was known to the 

rater. 

To eliminate this, the students were assigned an exam number for the study.  This 

exam number appeared with their name on only the first page of the exam booklet.  

Student names did not appear on the answer booklet at all, and students were instructed 

not to put their name or any other identifying information on the answer booklet. 

To gather information to answer the additional questions given in §7.3.1, a 

demographic questionnaire was created.  This questionnaire is given as Appendix D of 

                                                 
22 See §9.2.1 for a comparison of students who did participate in the study to those students who did not. 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 233 

 

this dissertation and collects information about gender, age, major, and prior 

programming experience in an attempt to provide answers to the additional research 

questions.  Only the student’s exam number appeared on the demographic questionnaire. 

University at Buffalo final exams are scheduled by a university-wide scheduling 

system.  The date and time of the exam is publicly announced, and instructors use this 

schedule to inform students when the final exam for a course will be held.  Before the 

exam began, exam packets (study consent form, demographic questionnaire, exam 

booklet, and answer booklet) were distributed in the exam room by the exam 

administrators.  Students were spaced appropriately in the room for a final exam so that 

they could not directly see any other students’  papers.   

When students began arriving at the exam room, they were instructed to take a seat 

where there was an exam, but not to open the exam booklet until we officially began the 

exam.  At the exam time, I informed the students about the study, the consent form, the 

demographic questionnaire, their exam numbers, and the answer booklet.  Students were 

then given a few minutes to complete the demographic questionnaire and read the 

instructions on the front page of the exam.  They also had the opportunity to ask any 

questions about the study at this time. 

All of the students began the exam together and were given three hours to complete it.  

Exam administrators were in the room for the entire exam, and students were free to 

leave the exam room as soon as they were finished with the exam.  When a student 



234 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

finished the exam, it was brought to the front of the room, and the time of completion 

was noted on the front page of the answer sheet.   

Students were not allowed to leave the room unsupervised while they were taking the 

exam.  If a student requested to leave the room for any reason other than a visit to the 

lavatory, the request was denied.  If a student requested to use the lavatory, one of the 

exam administrators escorted them to the lavatory and waited to escort them back to the 

exam room. 

Students could ask questions during the exam.  These questions mainly consisted of 

confusion about where to write answers.  Some students did not realize at first that there 

was an answer booklet.  Questions 60 – 78 were particularly problematic, because 

students did not seem to notice that the directions said that the code for those questions 

was in the answer booklet only. 

After three hours, all exams were collected.  Exams were kept in storage by me until 

the grading process could begin.  Interesting conflicts uncovered while grading the exams 

are described in §7.4.  However, to ensure the integrity of the original answers, copies of 

the answer sheets were made, and it was these copies that were actually graded during the 

grading stage of the process. 

7.3.4 Exam Grading for  Study Participants 

As described above, many of the questions on the exam are objective, having one and 

only one correct answer.   These questions are easy to grade, because they do not suffer 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 235 

 

from the problem of personal judgment invading the grading process.  They suffer from 

grading errors, however, due to simple human error.  This type of error is easily 

eliminated if the exam is machine graded.  Machine grading of this exam was not 

attempted for the purposes of this study or this dissertation. 

Other questions, mainly the coding questions, require that the raters use their 

judgment to assign a grade to the student.  This type of subjective grading must be 

carefully monitored to ensure consistency among the grades assigned to each question. 

To prevent rater inconsistency, a grading rubric was provided.  In order to test that the 

rubric was clear and that the question grading would be consistent, two raters were 

assigned to grade each question that had the possibility for partial credit.  After both 

raters graded a question, their grades were compared.  The results were surprising and are 

discussed in §7.4. 

When all of the exam grades were computed, the scores were given to the CSE 116 

instructors for use as they saw fit in their respective courses.  The data collected from the 

exam scores and the demographic questionnaires were then analyzed; the results are 

discussed in Chapter 8. 

7.4 Rating the Raters 

For questions that had the potential to be awarded partial credit, two raters were 

assigned to each student’s paper.  They were each given a copy of the student answer 

sheets and the grading rubric.  Grading of the questions was done independently and then 



236 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

the scores were compared.  Even though inconsistent scores were expected, the raters 

personally expressed surprise at the number of inconsistent scores uncovered in the 

grading of the exam.  In an attempt to resolve the conflicts and to try to determine the 

cause of the discrepancies, the raters discussed the justification for their ratings.  During 

this process, some clarifications were made to the grading guideline.  If clarifications 

were made to the grading guideline, the questions were re-graded using the new 

guideline.  These re-graded scores are the ones that have been analyzed for this study. 

 However, the most interesting result of the discussion were the number of conflicts 

that were made simply by mistake; after looking at the student’s answer a second time, 

some raters realized that they had in fact given the student an incorrect score the first 

time. 

This leads to a recommendation in the grading guideline that those questions 

(subjective free response) be graded by two raters if possible, to trap for such 

inconsistencies.  However, this is not always feasible and is not a necessary part of the 

grading process for this exam. 

7.4.1 Questions Double Graded to Ensure Rater  Consistency 

After the exam was graded by both raters, it was extremely disheartening to discover 

that only 14 of the 100 exams for study participants did not have some sort of grading 

conflict in the subjective grading questions.  This meant that 86% of the exams had at 

least one grading conflict that needed to be resolved.  Tables 7.1 and 7.2 show the 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 237 

 

statistical breakdown of how many errors were present in each exam and for each 

question.   

Appendix E gives a full discussion of the errors noticed within the grading 

discrepancies.  This discussion takes place in the context of a table that shows the exams 

that have grading discrepancies as well as the grades given by each of the two raters.  The 

discussion included in the tables in the appendix will elaborate on what each discrepancy 

was between the raters and how it was resolved. 

 

Question 
Number 

Number of Exams 
that had 

Discrepancies23 

Question 5 12 
Question 11 12 
Question 12 13 
Question 57 14 
Question 58 15 
Question 59 18 
Question 10 19 
Question 102 23 
Question 101 25 
Question 23 27 
Question 103 28 
Question 9 29 

Table 7-1: Discrepancies by Question 

 
 
 
 

                                                 
23 Note that this number also corresponds to the percentage of exams with a conflict because the total 
number of exams studied was 100. 



238 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

Number of 
Discrepancies 

in Exam 

Number of 
Exams with 

that Number of 
Discrepancies24 

7 1 
8 1 
6 4 
5 6 
4 9 
0 14 
1 19 
3 20 
2 26 

Table 7-2: Number  of Discrepancies per  Exam 

7.4.2 Discussion of Rating the Raters 

Appendix E gives a detailed breakdown of the discrepancies uncovered from the 

double-grading of the subjective questions on the exam discussed in §7.4.1.  Also 

discussed in Appendix E are the resolutions of the discrepancies and which rater was 

correct in each case.  In summary, rater 1 was correct approximately 44.5% of the time, 

while rater 2 was correct 47% of the time and neither rater was correct 8.5% of the time 

when just considering the discrepancies.  It is interesting to note that every question that 

was double graded had at least one exam where the raters gave two different grades, and, 

upon the two raters coming together to discuss the discrepancies in grading, the decision 

was reached that neither grade originally given was actually correct.   

To resolve the conflicts, the raters were brought together in the same room with all 

the exam papers that were in conflict.  The conflicts were handled on a question-by-

                                                 
24 Note once again that since the number of exams is 100, this number is a raw value as well as the 
percentage of the total. 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 239 

 

question basis, meaning that all conflicts for question 5 were resolved first, followed by 

question 9 and so on.  Before looking at any student answer papers, the question and 

grading guideline were reviewed so that each rater could remember what the question 

was and how it was to be graded.   

The raters were each given the answer book that they graded for a particular question 

in order to see their own notes (if any) about the thought process they used while grading 

the particular answer.  For each student, the raters read the answer for the student in their 

answer book and then discussed what rating the student should have.   Any conflicts were 

talked over and resolved through discussion at this point, and a single score was decided 

for each answer. 

Through these discussions, it was discovered that both raters made errors in grading 

that were simply human errors.  The errors were not the fault of a poor grading guideline 

or even a poor understanding of the guideline.  When discussing the inconsistencies 

between the two raters, there were times that one rater looked up at the other and said 

things like “ I’m sorry, this should be given no credit – I don’ t know what I was thinking.”   

This exchange was repeated numerous times throughout the sessions.   

Overall, the conflicts were resolved by developing a few minor modifications to the 

wording of the grading guideline for that question.  These changes are now printed in the 

grading guideline to be used to grade the exams.  These modifications were clarifications, 

rather than actual re-writes of the guideline.  However, the exams were looked at once 

more with the newer, refined guidelines. 



240 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

The raters recommended re-writing questions 57 and 58 as multiple-choice questions 

that ask the students to identify the base case(s) and recursive case(s) of a recursive 

definition.  The raters noted that students copied down various configurations of answers 

for the base case and recursive case, making accurate grading difficult.  This way, the 

student’s knowledge of base cases and recursive cases is tested, not their ability to copy 

notation from the question in a form the rater will believe mimics understanding.  This 

change has not been implemented in the version of this exam reprinted in Appendix A, 

but is left for future revisions of the exam. 

7.5 Recommendations for  Grading 

7.5.1 Two Raters for  Subjective Questions 

It is highly recommended that questions that could be graded subjectively be graded 

by more than one rater.  These questions are indicated as type SG in the grading 

guideline.  Of course, this could be difficult, if not impossible.  However, the benefit of 

two raters and the comparison of their ratings is significant.  It can point to a failure in 

understanding of the guideline and therefore a skew in the scoring of the exam.  It is also 

important that, if two or more raters’  grades conflict, the conflicts be discussed and 

resolved between the raters, so that one score is agreed upon for that question.  Due to the 

triage style of grading the questions, the discrepancies will not involve minor syntactic 

minutiae, but rather the larger issues of the question.  



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 241 

 

If it is not possible to ensure double rating for these questions, the next-best solution 

is to have one person rate the entirety of the questions for a single administration of an 

exam.  In this way, decisions about how questions are graded are resolved with the single 

rater and the rater will know how previous answers were graded in an effort to minimize 

errors.  Many instructors would assume that a single rater will be consistent, but as 

discovered by the exercise in having two people grade questions on the exams for the 

study, even one person can be inconsistent with themselves.  A single rater should be 

encouraged to grade all questions twice being blind to the previous rating.  It is also 

encouraged that the second grading be in a different order from the first grading.   

Overall though, the checks and balances of two raters is preferred. 

7.5.2 Grading Simultaneously 

If two raters will be grading the same question on the same exam, or if it becomes 

necessary to break the grading of a single question across two or more raters (not to be 

checked for discrepancies), it is recommended that the grading take place simultaneously.  

In fact, it is recommended that the grading be accomplished at the same time in the same 

room, with discussion encouraged between the raters.   

The discussion between the raters ensures that everyone grading a particular question 

has understanding of the guideline as well as what constitutes partial credit for a question.  

Also, it allows intermittent discussion while grading, if concerns arise over a particular 

student’s answer.  This will allow for greater consistency between the raters, if both are 



242 CHAPTER 7 EXAM ADMINISTRATION AND GRADING   
 

rating the same question for the same student.  However, it can also establish rules for all 

the raters, if the grading is split among them.  Standards that can be adhered to can be 

established during this process.   

If grading must be split among different raters with each rater grading a disjoint 

subset of the total number of exams, it is beneficial to have the raters sit down with at 

least two different students’  answers and grade them together, to further facilitate 

communication among the raters and to provide a quick way to check that all the raters 

understand the grading for a particular question. 

7.5.3 Grading Anonymous Tests 

It was found surprisingly refreshing by the raters for there not to be any student 

names on the answer booklets.  While this is by no means required of the raters of this 

exam, it is noted that there seems to be a greater focus on the grading of an exam answer 

when a student’s name is not present on the paper, and therefore no pre-conceived 

notions of the student are available to potentially cloud the judgment of the rater (for 

either good or bad). 

Also, when looking at statistical information (mean, median, high/low score), having 

anonymous data was considered a benefit.  The instructors were able to be more 

analytical about decisions about the appropriateness of the scores.  The instructors 

commented that they were not influenced by the notion that student X, who is a good 

student, did not do well on this particular question or the exam as a whole, which might 



CHAPTER 7 EXAM ADMINISTRATION AND GRADING 243 

 

cause them to reconsider the weighting of the particular question or exam as it pertains to 

overall grades.  Since it was not known at first which scores belonged to which students, 

the aggregate data could be analyzed to deem the results of a question acceptable or not.   

Once again, these are observations that were made throughout the grading process of 

the exams that will be used as part of the study.  I encourage faculty members to try 

anonymous grading for a particular exam to see if they too notice this difference.  The 

only administrative overhead for this style of grading is to number the exams and to 

maintain an external list of correlations between exam numbers and students.  

7.6 Conclusion 

This chapter discussed the way the exam should be administered as well as the 

creation of the grading rubric for the exam.  A study was undertaken to collect data to 

analyze the reliability and validity of the exam, and the design of the study was described 

in this chapter as well. 

The chapter ended with a discussion of the process and discrepancies that were found 

when rating the student exams.  All discrepancies were resolved before analysis of data 

began, but the discrepancies shed interesting light on the grading process and allowed for 

further refinement of the grading rubric for the exam.



 244 



 245 

Chapter  8 

Exper imental Results and Analysis 

This chapter presents a statistical analysis of the collected data from two 

administrations of the exam as a final exam for CSE 116 at the University at Buffalo.   

8.1 Overall Exam Statistics 

Recall that the exam has a total of 127 questions and is scored out of 354 points.  

Reporting of the statistics will give scores out of the total points possible for the exam as 

well as that raw score as a percentage.  One hundred exam scores were analyzed during 

the course of the study; therefore, the n for all statistical tests should be assumed to be 

100, unless otherwise stated.  All statistics are reported in aggregate, that is, the two 

administrations of the exam are treated as one for purposes of statistical analysis.  An 

alpha level of 0.05 was used for all statistical analyses in this chapter25.  

• The minimum score on the exam was a 138 (38.9%). 

• The median score on the exam was a 254 (71.7%). 

                                                 
25 Alpha level indicates the confidence level for statistical analysis.  An alpha level of .05 (or a confidence 
level of 95%) indicates that p values for all statistical tests run will need to be less than .05 to be considered 
statistically significant.  Therefore, any p values less than .05 are considered significant results for a 
particular statistical test.  The p value is the name given to the value analyzed for statistical significance. 



246 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

• The maximum score on the exam was a 334 (94.3%).  No one earned a 

perfect score on the exam. 

• The mean score on the exam was a 243.13 (68.6%). 

8.2 Time 

8.2.1 Time to Complete26 

As students completed the exam, their time to completion was noted on the top of 

their answer paper.  From these times, we have been able to determine the following 

information: 

• The minimum time that any student spent on the exam was 1 hour 20 

minutes. 

• The median time spent on the exam was 2 hours 36 minutes.27 

• The maximum time that any student spent on the exam was 3 hours 00 

minutes.  All students were stopped at this time regardless of whether or not 

they had completed all the questions on the exam. 

• The mean time for completion of the exam was 2 hours 31 minutes.3 

                                                 
26 The n for these time statistics is 98 because there were two students whose time was not reported on their 
answer sheets. 
27 Both the median and the average times is longer than a 2-hour exam.  One of the goals of the exam was 
to create a 2-hour exam that could be administered in a 3-hour time period.  Since the median time is longer 
than 2 hours, a possible direction for future work is to look to making the exam shorter so that the median 
time fits into the original 2-hour window. 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 247 

 

Table 8-1 shows the times to complete and the number of students who completed in 

that time.  Figure 8-1 shows a graph of these times. 

Time to Complete Number of Students 
Completed in that 

Time 

Time to Complete Number of Students 
Completed in that 

Time 

1:20 1 2:27 2 
1:23 1 2:28 2 
1:26 1 2:29 2 
1:45 1 2:30 2 
1:47 1 2:31 3 
1:49 2 2:36 3 
1:50 2 2:37 4 
1:51 1 2:39 1 
1:52 1 2:40 1 
1:58 2 2:41 1 
1:59 1 2:43 1 
2:04 1 2:44 1 
2:06 2 2:45 1 
2:07 1 2:46 2 
2:08 2 2:47 1 
2:09 1 2:48 1 
2:11 2 2:50 1 
2:12 1 2:53 2 
2:13 1 2:54 1 
2:15 4 2:55 1 
2:16 1 2:56 1 
2:19 2 2:57 2 
2:20 3 2:58 1 
2:21 1 2:59 2 
2:24 1 3:00 2228 

Table 8-1: Time to Complete Exam 

                                                 
28 See §8.2.3 for discussion of this group of students. 



248 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

 
Figure 8-1: Histogram for  Time to Complete Exam 

8.2.2 Correlation with Exam Score 

An investigation was undertaken to determine if there was a correlation between 

student’s time to complete the exam and their score on the exam.  Figure 8-2 shows the 

scatterplot of time to complete the exam versus exam score.  This plot does not show 

evidence of a linear relationship. 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 249 

 

 

Figure 8-2: Plot of Total Points Earned versus Time Finished 

  

The results of the correlation show that the time to complete does not correlate with 

student performance on the exam in the positive or negative direction.   

8.2.3 Analysis of students who took the full three hours to complete 
exam 

Even though 22 student papers were collected at the end of the 3 hour time limit, it 

does not appear that these students were unable to complete the exam rather that they 



250 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

were simply continuing to refine answers and go back to skipped questions on the exam.  

Looking at the individual question scores for those 22 students, none of the students in 

that group appeared to leave a significant portion of the exam blank.  For example, all 

students answered questions and received credit up to and including the last question on 

the exam.  Analyzing the two groups statistically, 76 students finished the exam before 

the 3 hour time expired (M  = 247.48, SD  = 52.107) and 22 student (M = 227.95, SD = 

35.075) papers were collected at the 3-hour limit29. 

8.2.3.1 Statistical Results 

Table 8-2 shows the results of the independent samples t-test for scores on the 

exam30.  However, the independent samples t-test can only be used accurately if the 

variances between the two groups are equal.  To ensure this, Levene’s Test for Equality 

of Variances is performed as a precursor to the t-test.  For these two groups, Levene’s 

Test for Equality of Variances showed a significant p-value, which means that the two 

groups do not have equal variances and the traditional t-test does not apply in this case.  

Table 8-3 gives the results of Levene’s Test. 

Therefore, a t-test that does not assume equal variances must be used.  Table 8-4 

gives the results of such a t-test.  Another alternative test when the groups studied do not 

have equal variances is the Mann-Whitney U.  Table 8-5 gives the results of using the 

                                                 
29 M is the mean score on the exam for the group.  SD is the standard deviation on the exam for the group.  
Recall that for this particular analysis, time data was not recorded for 2 students in the study, so the n is 98. 
30 An independent samples t-test measures the difference in variance between two groups to determine if 
the groups are actually from two different populations.  The variance of a group of scores tells you how 
spread out the scores are around the mean (Aron 2002: 28). 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 251 

 

Mann-Whitney U to compare these two groups.  In both cases, there is a statistically 

significant difference detected between these two groups.  

 
t-test for Equality of Means31 

 

t Df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -1.650 96 .102 -19.526 11.837 -43.021 3.970 

 

Table 8-2: t-test for  time to complete exam 

 

 Levene’s Test for Equality of Variances 
 F p 

Exam Scores 6.095 .015 

Table 8-3: Levene's Test for  Equality of Means for  time to complete exam 

 
 

t-test for Equality of Means (Equal Variances not assumed) 
 

t df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -2.040 50.619 .047 -19.526 9.573 -38.748 -.303 

Table 8-4: t-test (unequal var iances) for  time to complete 

 

                                                 
31 In this and all tables presenting results of a t-test, the t column gives the t-value, the name given to the 
value that the t-test actually computes.  The df column gives the degrees of freedom, or the number of 
scores in a sample that are free to vary.  The p column is the p-value indicating significance of the result.  
The Mean Difference column gives the difference of the means between the two groups.  The Std. Error 
Difference gives the difference between the standard errors of the two groups.  The 95% Confidence 
Interval of the Difference shows that the difference between the means of these two groups falls between 
these two values.  These values are the standard reported values for the t-test.  It is only when the p-value is 
significant that the values have meaning.  For purposes of my analysis, when a p-value is significant, we 
can conclude a difference between the two groups being studied. 



252 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

 Mann-Whitney Test for Comparison of Means 
 Mann-

Whitney 
U 

Wilcoxon 
W p Z 

Exam Scores 585.000 838.000 .033 -2.137 

Table 8-5: Mann-Whitney test for  time to complete 

8.2.3.2 Analysis of Results 

The results of the t-test assuming non-equal variances and the Mann-Whitney U test 

are statistically significant.  However, exactly what meaning can be prescribed to this 

difference is unclear.  Since there is no evidence that the students were unable to 

complete the exam (due to the lack of large blocks of skipped questions), it could signify 

that the students who took longer were not as adept with the material as those who 

finished earlier.  However, it could also mean that the students are slower workers and 

need more time to complete tasks of significant size.  Further exploration of this issue is 

needed and §8.2.3.3 discusses these two groups of students further. 

8.2.3.3 Additional Statistical Results &  Analysis 

The students who took the full three hours to complete the exam performed 

differently on the exam when compared to students who completed the exam before the 

three hour time period had elapsed.  Looking at the means for the two groups, it would 

appear that the students who took three hours performed worse on the exam than the 

others.  In an effort to see if these two groups of students also performed differently in 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 253 

 

their computer science courses so far, additional t-tests were performed looking at overall 

course grades for the two groups in both CSE 115 and CSE 116. 

Looking at course grades in CSE 115 there were 73 students who completed the test 

in under the three hour time limit also completed CSE 115 at UB and have recorded 

course grades (M  = 3.2653, SD  = 0.75740) and 22 students who used the entire three 

hours had course grades recorded for CSE 115 (M = 3.2273, SD = 0.64617).  Table 8-6 

shows how letter grades were converted to a 4.0 scale for statistical analysis. 

Letter Grade 
Conversion 
to 4.0 scale 

A 4.0 
A- 3.67 
B+ 3.33 
B 3.0 
B- 2.67 
C+ 2.33 
C 2.0 
C- 1.67 
D+ 1.33 
D 1.0 
F 0.0 

Table 8-6: Conversion of Letter  Grades to 4.0 Scale 

 
Table 8-7 shows the results of the independent samples t-test for grades in CSE 115 

for the two groups.  As can be seen from the table, there were no significant differences 

between the two groups in their grades in CSE 115. 

 

 



254 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

 
t-test for Equality of Means 

 

t df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores .213 93 .832 -.03807 .17846 -.39246 .31632 

Table 8-7: t-test for  CSE 115 overall course grades 

Looking to the students performance in CSE 116, there were 76 students who 

completed the test in under the three hour time limit also completed CSE 116 (M  = 

3.0611, SD  = 0.95044) and 22 students who used the entire three hours had course 

grades recorded for CSE 116 (M = 2.8641, SD = 0.85834).  Conversion from letter grade 

to 4.0 scale once again uses the conversions in Table 8-6. 

Table 8-8 shows the results of the independent samples t-test for grades in CSE 116 

for the two groups.  As can be seen from the table, there were no significant differences 

between the two groups in their grades in CSE 116.  This is an interesting result given 

that the score on the exam is a contributing factor to the overall CSE 116 grade.  

Therefore, an additional analysis was performed with recomputed CSE 116 grades not 

including the final exam score. 

 
t-test for Equality of Means 

 
T Df p 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence Interval 
of the Difference 

  
Lower Upper 

Exam Scores -.874 96 .384 -.19696 .22541 -.64440 .25048 

Table 8-8: t-test for  CSE 116 overall course grade 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 255 

 

Looking to the students recalculated performance in CSE 116, there were 76 students 

who completed the test in under the three hour time limit also completed CSE 116 (M  = 

3.1053, SD  = 0.99396) and 22 students who used the entire three hours had course 

grades recorded for CSE 116 (M = 2.8336, SD = 1.08238).  Conversion from letter grade 

to 4.0 scale once again uses the conversions in Table 8-6. 

Table 8-9 shows the results of the independent samples t-test for recalculated grades 

in CSE 116 for the two groups.  As can be seen from the table, there were no significant 

differences between the two groups in their grades in CSE 116.   

 
t-test for Equality of Means 

 

T df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -1.107 96 .271 -.27163 .24548 -.75890 .21565 

Table 8-9: t-test for  recalculated CSE 116 overall course grades 

Lastly, average student performance across CSE 115 and CSE 116 were considered.  

There were 73 of the 76 students who completed the test in under the three hour time 

limit also completed CSE 115 and CSE 116 at UB (M  = 3.19, SD  = 0.787) and 22 

students who used the entire three hours had course grades recorded for CSE 115 and 

CSE 116 (M = 3.03, SD = 0.751).  Conversion from letter grade to 4.0 scale once again 

uses the conversions in Table 8-6. 

Table 8-10 shows the results of the independent samples t-test for average grades in 

CSE 115 and CSE 116 for the two groups.  As can be seen from the table, there were no 



256 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

significant differences between the two groups in their average grades in CSE 115 and 

CSE 116. 

 
t-test for Equality of Means 

 

t df P 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -.835 93 .406 -.158 .190 -.535 .21 

Table 8-10: t-test for  averaged CSE 115 and CSE 116 overall course grades 

 

8.2.3.4 Conclusions about Students who Took Three Hours to Complete 

The exam scores obtained from these two different groups of students point to a 

difference in these two groups.  Analysis of the two groups in performance overall in the 

courses they have completed (CSE 115 and CSE 116) yielded no significant differences 

between the groups in performance in the courses.  In any case, the students who worked 

until the very end of the exam appeared to have “ finished”  the exam, even if not to the 

same level of performance as the other students who decided for themselves that they had 

completed the exam.  Further analysis of this phenomenon is perhaps necessary to draw 

any additional conclusions either about the students themselves or about the exam. 

8.3 Reliability 

Recall that a necessary condition for determining the validity of an instrument is to 

first determine the instrument’s reliability.  For the purposes of this dissertation, a 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 257 

 

measure of internal consistency reliability was chosen for the advantages of ease of data 

collection and exam administration.  Test-retest reliability was not used because of the 

inherent difficulty in getting the same group of students to take the exam twice.  Also, 

given that this is a test in knowledge in a particular area, it is possible that a student’s 

knowledge could improve in this area over even a short time (especially because, for 

many students, this is their major).  Assessing reliability through multiple forms was not 

attempted for this study to alleviate any further complications in the grading process.   

Due to the choice of internal consistency, Cronbach’s alpha was chosen as the method 

to assess internal consistency reliability.32  An alpha greater than 0.7 is considered 

minimally acceptable for an instrument.  The closer the alpha number is to 1 (meaning 

the instrument is perfectly internally consistent) the more internally consistent the 

instrument is.  Cronbach’s alpha was 0.903, with Cronbach's Alpha Based on 

Standardized Items being 0.940.  This alpha number is considered to be very good. 

8.4 Demographic Information  

Demographic information on all of the students was collected during administration 

of the exam.  Students were not required to answer the demographic questionnaire and 

were instructed to not answer any questions that they did not feel comfortable answering.  

                                                 
32 Cronbach’s alpha is a test used to measure internal consistency.  One way to determine internal 
consistency is to split the test in half and compare the variance in the scores of one half of the test to the 
other half.  Cronbach’s alpha computes all possible combinations of this type of splitting of the exam. 



258 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

Therefore, the n for some of the statistical tests will vary slightly from 100 depending on 

how many students elected not to answer a particular question.   

8.4.1 Gender  

Gathering information on gender allows us to assess whether there are gender 

differences in the level of performance on the exam. Ninety men (M = 243.67, SD = 

49.069) and 10 women (M = 238.25, SD = 54.201) took the exam. 

8.4.1.1 Statistical Results 

Table 8-11 shows the results of the independent samples t-test for scores on the exam.  

As can be seen from the table, there were no significant differences between the two 

groups in their scores on the exam. 

 
t-test for Equality of Means 

 

t Df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores .328  98 .743 5.422 16.521 -27.363 38.208 

 

Table 8-11: t-test for  Gender  

8.4.1.2 Analysis of Results 

The results of the t-test are encouraging first steps into asserting that the exam has no 

gender bias.  However, the number of females that took the exam is small (due to the 

sheer disproportionate nature of the computer science and engineering discipline).  



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 259 

 

Therefore, more subject data will need to be assessed for me to be confident in claiming 

that the test is free of gender bias.  However, these results are encouraging in that even in 

this preliminary stage, they do not point towards a gender bias (in either direction). 

8.4.2 Age 

The age variable was gathered by asking students to choose from the following 

choices: 18, 19, 20, 21, 22, 23, 24, 25 – 29, 30 – 34, 35 – 39, 40 – 44, 45 – 49, 50 and 

over.  The first several choices represent the typical age range of undergraduate students.  

As we move away from the typical age range, a range of age choices is presented.  It is 

most often the case that students who are enrolled in CS1 and CS2 are freshmen in 

school.  It is not unreasonable to assume that these students came to college right after 

high school.  Therefore, their age is typically 18 or 19.  For purposes of this analysis, we 

will consider that to be the typical age of a CS1-CS2 student.  A breakdown of how many 

students fall into each age category is given in Table 8-12.  We will compare the results 

of the typically aged CS1-CS2 student (n = 63, M = 242.74, SD = 51.107) and the non-

typically aged CS1-CS2 student (n = 37, M = 243.80, SD = 46.854). 

 

 

 

 



260 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

Age (Age Range) Number of Students in 
Age Range 

18 30 
19 33 
20 9 
21 8 
22 1 
23 3 
24 4 

25 – 29 6 
30 – 34 2 
35 – 39 3 
40 – 44 1 
45 – 49 0 

50 and over 0 

Table 8-12: Age Ranges of Par ticipants 

8.4.2.1 Statistical Results 

Table 8-13 shows the results of the independent samples t-test for scores on the exam.  

As can be seen from the table, there were no significant differences between the two 

groups in their scores on the exam. 

 
t-test for Equality of Means 

 

T df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -.103 98 .918 -1.059 10.271 -21.441 19.323 

Table 8-13: t-test for  Age 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 261 

 

8.4.2.2 Analysis of Results 

The results of this t-test are further encouragement for a lack of bias in the exam.  

Since the two groups did not perform differently on the exam, the results point towards 

an exam that is not age-biased. 

8.4.3 Year  in School 

Year in school was collected to be either freshman, sophomore, junior, or senior.  

This data was collected from the demographic questionnaire, so it captures the year in 

school the participants consider themselves.  This can be different than the year in school 

the university considers the student for a variety of reasons (AP credit, transfer credits, 

etc).   

8.4.3.1 Statistical Results 

In the analysis, year in school was treated as a dichotomous variable33.  This was 

done by classifying students into groups of freshmen (n = 52, M = 243.67, SD = 51.092), 

and non-freshmen (n = 47, M = 241.65, SD = 48.013).  I have decided to treat this 

variable this way because I am most interested in looking at the “ typical”  CS1-CS2 

student versus a “non-typical”  student to see if academic maturity has any effect on 

performance on this exam.  Table 8-14 shows the results of the independent samples t-

test for scores on the exam.  As can be seen from the table, there were no significant 

differences between the two groups in their scores on the exam. 
                                                 
33 Dichotomous means that the variable only takes on two values. 



262 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

 
t-test for Equality of Means 

 

T Df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores .203  97 .840 2.024 9.994 -17.811 21.859 

Table 8-14: t-test for  Year  in School 

8.4.3.2 Analysis of Results 

Since age is not always indicative of year in school, these results begin to show that 

the exam is not biased in any direction to year in school.  This is important because it 

could be the case that an exam like this has hidden biases for students who have had 

many years of experience with college courses and course final exams and would 

therefore cause a difference in performance for those students.  These results point 

towards the fact that this is not the case. 

8.4.4 Major  

Student major was analyzed as being either computer science, computer engineering, 

or “other” .  If the student chose “other” , they were asked to specify their intended major.  

For “other” , the answers included:  Bioinformatics, Business, Engineering specialties 

other than computer engineering, English, GIS/Cartography, Mathematics, Media Study, 

and Undeclared.  For purposes of this analysis, all students who indicated that their major 

was one other than computer science or computer engineering were classified in one 

group. 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 263 

 

8.4.4.1 Statistical Results 

For this variable, testing was undertaken in two ways.  First, computer science and 

computer engineering majors (n = 76, M = 242.18, SD = 50.795) were compared to non-

majors (n = 23, M = 244.48, SD = 45.562).  Table 8-15 shows the results of the 

independent samples t-test for scores on the exam.  As can be seen from the table, there 

were no significant differences between the two groups in their scores on the exam. 

 
t-test for Equality of Means 

 

T df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -.195 97 .846 -2.301 11.817 -25.755 21.154 

Table 8-15: t-test for  Major  (Computer  Science or  Computer  Engineer ing vs. Other  Majors) 

 

Second, computer science majors were considered independent of computer engineers 

and the non-majors were not considered.  Since the CS1-CS2 sequence, especially with a 

programming-first curricular influence, could be viewed by some as inherently computer 

science and not computer engineering, this second test was undertaken to see if 

differences existed between those two groups on the exam.  Once again, major can be 

viewed as a dichotomous variable, computer science majors (n = 50, M = 247.64, SD = 

48.761) and computer engineering majors (n = 26, M = 231.67, SD = 53.905).  Table 8-

16 shows the results of the independent samples t-test for scores on the exam.  As can be 



264 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

seen from the table, there were no significant differences between the two groups in their 

scores on the exam. 

 
t-test for Equality of Means 

 

T df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores 1.306  74 .196 15.967 12.224 -8.390 40.324 

Table 8-16: t-test for  Major  (Computer  Science Majors vs. Computer  Engineer ing Majors) 

8.4.4.2 Analysis of Results 

Even though the exam is designed to assess the results of CS1 and CS2, it should not 

be biased towards majors, because the CS1 and CS2 course could be taken by non-

majors, and they should have the same opportunity to succeed as the majors.  The results 

of this analysis seem to indicate that non-majors have the same opportunity to succeed on 

this assessment. 

The second analysis shows that the test is not biased between computer science or 

computer engineering majors.  At our institution, the computer science and computer 

engineering majors take many of the same courses in first two years of their respective 

programs.  However, since this test was designed for the computer science curriculum 

only, it was a concern that it would be biased towards computer science majors.  

However, this does not seem to be the case. 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 265 

 

8.4.5 How Courses Were Taken 

This section describes analysis undertaken with information provided by students on 

the demographic questionnaire about where they took CS1 and CS2 and also when they 

took CS1 and CS2. 

8.4.5.1 Students Who Took Courses at Other  Institutions 

The first analysis that was attempted was to compare students who took any of the 

CS1-CS2 sequence at an institution other than the University at Buffalo.  However, when 

the data from the demographic questionnaire were compiled, there were only 2 students 

who completed CS1 at another institution. This group size was not large enough to show 

a meaningful result, so analysis did not proceed further. 

8.4.5.2 Statistical Results 

Two separate analyses were performed on this data.  The first compared students who 

took CS1 and CS2 in consecutive semesters (n = 85, M = 246.56, SD = 46.950) versus 

those who did not take CS1 and CS2 in consecutive semesters (n = 6, M = 211.17, SD = 

46.071).  For purposes of this analysis, the summer semester counted for consecutive 

semesters, so there were four possible ways a student could take CS1-CS2 in consecutive 

semesters (Fall-Spring, Spring-Fall, Spring-Summer, or Summer-Fall).  Table 8-17 

shows the results of the independent samples t-test for scores on the exam.  As can be 



266 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

seen from the table, there were no significant differences between the two groups in their 

scores on the exam. 

 
t-test for Equality of Means 

 

t df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores 1.786  89 .077 35.392 19.812 -3.973 74.757 

Table 8-17: t-test for  Taking CS1-CS2 in consecutive semesters 

 

The second analysis compared students who took CS1 and CS2 in the traditional 

academic year, i.e. CS1 in fall semester and CS2 in spring semester, (n =71, M = 244.80, 

SD = 49.609) versus those who did not (n =23, M = 245.30, SD = 40.889).  Table 8-18 

shows the results of the independent samples t-test for scores on the exam.  As can be 

seen from the table, there were no significant differences between the two groups in their 

scores on the exam. 

 
t-test for Equality of Means 

 

t df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -.044  92 .965 -.509 11.437 -23.223 22.206 

Table 8-18: t-test for  Taking CS1-CS2 in traditional academic year  



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 267 

 

8.4.5.3 Analysis of Results 

The results of this analysis point towards no bias as to the taking of the introductory 

sequence.  The exam is designed to assess knowledge of the introductory sequence.  It 

would not be a desirable result that the group who took CS1-CS2 in a traditional 

academic year performed better than a group that did not, or vice versa.  Likewise, a 

requirement of the exam should not be completion of the CS1-CS2 sequence in 

consecutive semesters.  The results of the tests show that neither group performed 

differently from the other on this exam. 

8.4.6 Repeaters 

The next group of students that was analyzed was students who repeated CS1 or CS2 

or both.  Considering students who failed either, or both of the courses, was the 

performance on the exam of these groups different? 

8.4.6.1 Statistical Results 

The analysis on this variable was conducted in four ways. The first was comparing 

students who failed CS1 at least one time previously (n = 6, M = 236.33, SD = 22.631) 

with those students who had never failed CS1 (n = 94, M = 243.56, SD = 50.603).  

Students were asked to report whether or not they had ever failed CS1, not whether they 

had ever taken CS1 before.  Therefore, this analysis only looks at students who definitely 

failed the course before and had to repeat it. Table 8-19 shows the results of the 



268 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

independent samples t-test for scores on the exam.  As can be seen from the table, there 

were no significant differences between the two groups in their scores on the exam. 

 
t-test for Equality of Means 

 

t df P 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -.681  8.653 .513 -7.230 10.611 -31.383 16.922 

Table 8-19: t-test for  Repeaters (Students who failed CS1 vs. those who did not) 

The second analysis compared students who failed CS2 at least one time previously 

(n = 3, M = 271.17, SD = 31.086) with those students who had never failed CS2 (n = 97, 

M = 242.26, SD = 49.648).  Table 8-20 shows the results of the independent samples t-

test for scores on the exam.  As can be seen from the table, there were no significant 

differences between the two groups in their scores on the exam. 

 
t-test for Equality of Means 

 

t df P 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores .999  98 .320 28.904 28.923 -28.493 86.301 

Table 8-20: t-test for  Repeaters (Students who failed CS2 vs. those who did not) 

 

The third analysis compared students who had failed either CS1 or CS2 (inclusive) at 

least once previously (n = 8, M = 248.75, SD = 31.336) with those students who had 

never failed either of CS1 or CS2 (n = 92, M = 242.64, SD = 50.693).  Table 8-21 shows 

the results of the independent samples t-test for scores on the exam.  As can be seen from 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 269 

 

the table, there were no significant differences between the two groups in their scores on 

the exam. 

 
t-test for Equality of Means 

 

t df P 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores .498  10.507 .629 6.109 12.275 -21.064 33.281 

Table 8-21: t-test for  Repeaters (Students who failed CS1 and/or  CS2 vs. those who did not) 

 

The final analysis compared students who had failed both CS1 and CS2 at least one 

time previously with those students who had not failed both courses before.  After 

compiling the demographic information, it was discovered that only 1 student failed both 

courses before.  This group was too small to analyze and no further analysis was 

performed. 

8.4.6.2 Analysis of Results 

This analysis looks in some ways for a practice effect that makes results on the exam 

different for the different groups.  The students who failed at least one of the courses 

before would have had more time with the material and therefore might display different 

results on the exam, in the positive direction.  Another possibility is that the repeating 

students are actually the weakest students and would therefore perform worse than the 

other students.  The fact that there is no difference between the groups of repeaters and 

non-repeaters points to neither of these things.   



270 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

8.4.7 Previous Programming Exper ience 

In gathering information about students’  programming experience prior to taking CS1 

and CS2, students were asked to identify how many years experience they had with 

various programming or programming-like languages, including: C, C++, Java, Perl, 

JavaScript, VB, VBScript, Fortran, BASIC, Assembly, and HTML.  HTML is included to 

trap for students who claim to have programmed before, but only have experience using 

HTML34.  Students also had the opportunity to fill in other languages that they have used 

and their level of experience with those languages.  The other languages indicated by the 

students were: ActionScript, ASP, Basic 8, C#, Commodore Basic, CSS, Expect/TCL, 

Foxpro, Karel, Pascal, PHP, Python, Ruby, QBasic, Scheme, Smalltalk, SQL, Visual 

Foxpro, and XML.  Note that of these languages, CSS, SQL, and XML are not 

considered programming languages. 

8.4.7.1 Statistical Results 

The analysis of this variable was conducted in three ways. The first was comparing 

students who had programmed before taking CS1 (n = 79, M = 245.53, SD = 49.699) and 

those who had not (n = 21, M = 234.12, SD = 48.052).  Table 8-22 shows the results of 

the independent samples t-test for scores on the exam.  As can be seen from the table, 

there was no significant difference between the two groups in their scores on the exam. 

 

                                                 
34 HTML is a markup language, not a full-fledged programming language. 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 271 

 

 
t-test for Equality of Means 

 

t df P 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores .941  98 .349 11.406 12.120 -12.646 35.459 

Table 8-22: t-test for  Pr ior  Programming Exper ience 

The second analysis compared students who had programmed in Java before taking 

CS1 (n = 39, M = 253.51, SD = 50.913) and those who had not (n = 61, M = 236.49, SD = 

47.541).  Table 8-23 shows the results of the independent samples t-test for scores on the 

exam.  As can be seen from the table, there was no significant difference between the two 

groups in their scores on the exam. 

 
t-test for Equality of Means 

 

t Df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores 1.699 98 .093 17.021 10.021 -2.865 36.907 

Table 8-23: t-test for  Pr ior  Programming (Pr ior  Java programming) 

 

The third analysis compared students who had previous experience in any of the C-

derived languages (C, C++, C#, Java) before taking CS1 in Java (n = 65, M = 250.20, SD 

= 48.337) and those who did not (n = 35, M = 230.00, SD = 49.164).  The C-derived 

languages can be described as those whose syntax was primarily derived from C.  Table 

8-24 shows the results of the independent samples t-test for scores on the exam.  As can 



272 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

be seen from the table, there was no significant difference between the two groups in 

their scores on the exam based on the decision rule of p-values less than 0.05. 

 
t-test for Equality of Means 

 

t df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores 1.981 98 .050 20.200 10.195 -6.581 46.981 

Table 8-24: t-test for  Pr ior  Programming (C-der ived languages) 

8.4.7.2 Analysis of Results 

The results all point towards no advantage or disadvantage on this exam if a student 

has programming prior to taking CS1 and CS2.  The further breakdown of looking at 

prior Java experience not affecting scores is encouraging and supports the assertion that 

the test is not a test of language, but rather of concepts.  Looking at all C-derived 

languages and seeing no difference in performance indicates that experience with 

languages with similar syntax does not impact performance on the exam if the decision 

rule is interpreted strictly.  However, because the p-value is right on the border of 

significance, it is actually difficult to make a claim either way about this result. 

8.4.8 First Programming Language 

In gathering information about the first language that students ever programmed in, 

the students were asked to pick from the languages, C, C++, Java, VB, Basic, or, if the 

student selected “other” , to specify what language was their first.  The other languages 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 273 

 

that students indicated were:  Logo, Karel, HTML, Foxpro, ActionScript, FORTRAN, 

and Pascal. 

8.4.8.1 Statistical Results 

The analysis of first programming language compared students who indicated that 

their first programming language was Java (n = 20, M = 234.85, SD = 48.148) versus 

those who indicated another language (n = 57, M = 242.82, SD = 55.234).  Table 8-25 

shows the results of the independent samples t-test for scores on the exam.  As can be 

seen from the table, there was no significant difference between the two groups in their 

scores on the exam. 

 
t-test for Equality of Means 

 

t df p 
Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

  
Lower Upper 

Exam Scores -.573  75 .568 -7.975 13.911 -35.688 19.739 

Table 8-25: t-test for  First Language (Java vs. not Java) 

8.4.8.2 Analysis of Results 

Significant differences in Java first programmers and non-Java first programmers 

would point towards a tendency in the exam to rely too heavily on the language of 

implementation of the coding examples and not on the larger CS1-CS2 concepts.  

Because this test did not show a significant difference in the performance of the two 



274 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

groups, it helps to support the premise that the exam is not testing programming language 

skills. 

8.5 Grades in CS1 and CS2 (including Exam Score) 

Data was also collected on each of the student’s performance in CSE 115 and CSE 

116 through the collection of their recorded letter grade for each course.  These letter 

grades were then converted to a 4.0 scale using the weightings given earlier in Table 8-6.  

Once these grades were converted to the 4.0 scale, the 115 and 116 grades were averaged 

together to produce an average grade across CS1 and CS2.  

8.5.1.1 Statistical Results 

The analysis of letter grades for CS1 and CS2 proceeded in three ways.  The first 

analysis looked for a correlation between scores on the exam and letter grades in CS1.  

Figure 8-3 shows the scatter plot of CSE 115 grades and total points on the exam.  We 

can see from this graph evidence of a relationship between the two variables. 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 275 

 

 

Figure 8-3: Plot of Points Earned on Exam vs. CSE 115 Overall Course Grade 

 

To analyze whether or not there was a correlation between these two variables, 

Pearson’s correlation coefficient (one-tailed) was computed35.  These two measures were 

positively correlated r(96) = 0.692, p < 0.01.     

 

                                                 
35 Pearson’s correlation coefficient is a descriptive statistic used to describe the degree and direction of 
linear correlation within the particular group studied (Aron 2002). 



276 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

The second analysis looked for a correlation between scores on the exam and letter 

grades in CS2.  Figure 8-4 shows the scatter plot of CSE 116 grades and total points on 

the exam.  We can see from this graph evidence of a relationship between the two 

variables. 

 

Figure 8-4: Plot of Points Earned on Exam vs. CSE 116 Overall Course Grade 

 

To analyze whether or not there was a correlation between these two variables, 

Pearson’s correlation coefficient (one-tailed) was computed.  These two measures were 

positively correlated r(99) = 0.777, p < 0.01. 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 277 

 

The third analysis looked for a correlation between scores on the exam and averaged 

letter grade for CS1 and CS2.  Figure 8-5 shows the scatter plot of the average of CSE 

115 and CSE 116 grades and total points on the exam.  We can see from this graph 

evidence of a relationship between the two variables. 

 

Figure 8-5: Plot of Points Earned on Exam vs. Averaged CSE 115 &  CSE 116 Overall Course Grade 

 

To analyze whether or not there was a correlation between these two variables, 

Pearson’s correlation coefficient (one-tailed) was computed.  These two measures were 

positively correlated r(96) = 0.816, p < 0.01. 



278 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

8.5.1.2 Analysis of Results 

The results of the analysis of the correlation were as hoped for.  If students performed 

well in CSE 115 or CSE 116 or both, the test should reflect that.  It is desired that 

students who do well in those courses overall would do well on this exam. That is what 

the statistical evidence shows. 

However, it can be argued and should be argued that the analysis of CS2 (CSE 116) is 

skewed because the grade that the students received on the exam was used in computing 

their CS2 grades.  Therefore, additional analysis was performed on their CS2 grades with 

the exam score removed. 

 

8.6 Grades in CS1 and CS2 (Exam Score Removed) 

To complete the analysis of the CS2 grade with the exam score removed, the 

instructors for the courses were asked to provide the way the final course grades were 

computed for each student.  Then, the exam was removed and the final course grade 

recomputed to get a new letter grade.  These letter grades were then converted using the 

same 4.0 scale given previously in Table 8-6.  Once again, the grade for 115 and the new 

116 grade were average together to produce an average grade across CS1 and CS2. 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 279 

 

8.6.1.1 Statistical Results 

The analysis of CS1 scores was not repeated at this time because the grades for CS1 

did not change.   

A new analysis performed looked for a correlation between scores on the exam and 

letter grades in CS2 computed without the exam score factored in.  Figure 8-6 shows the 

scatter plot of the new CSE 116 grades and total points on the exam.  We can see from 

this graph evidence of a relationship between the two variables. 

 

Figure 8-6: Plot of Points Earned on Exam vs. Revised CSE 116 Overall Course Grade 

 



280 CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS   
 

To analyze whether or not there was a correlation between these two variables, 

Pearson’s correlation coefficient (one-tailed) was computed.  These two measures were 

positively correlated r(99) = 0.757, p < 0.01. 

The second new analysis looked for a correlation between scores on the exam and 

averaged letter grade for CS1 and CS2.  Figure 8-7 shows the scatter plot of the average 

of CSE 115 and revised CSE 116 grades and total points on the exam.  We can see from 

this graph evidence of a relationship between the two variables. 

 

Figure 8-7: Plot of Points Earned on Exam vs. Averaged CSE 115 &  CSE 116 Overall Course Grade 

 



CHAPTER 8 EXPERIMENTAL RESULTS AND ANALYSIS 281 

 

To analyze whether or not there was a correlation between these two variables, 

Pearson’s correlation coefficient (one-tailed) was computed.  These two measures were 

positively correlated r(96) = 0.806, p < 0.01. 

8.6.1.2 Analysis of Results 

The results of the analysis of the correlation were as hoped for.  If students performed 

well in CSE 115 or CSE 116 or both, the test should reflect that.  It is desired that 

students who do well in those courses overall would do well on this exam. That is what 

the statistical evidence shows.



 282 



 283 

Chapter  9 

Discussion 

The work of this dissertation sought to create a language-independent assessment for 

the programming-first introductory computer science courses based on the 

recommendations of the CC2001 curriculum document. 

9.1 Discussion of Exam Creation Process 

During the development of the instrument, the CC2001 recommendations were 

analyzed.  Through this analysis, decisions were made to focus the assessment on the 

programming-first approaches to the curriculum (imperative-first, objects-first, and 

functional-first).  These decisions prompted the decision that the exam needed to choose 

a language of implementation for code examples and student answers.  However, the 

inclusion of a language in the exam made it imperative to create questions that did not 

rely on specific syntactically-oriented features of the particular language of 

implementation, but rather general introductory computing concepts that were simply 

illustrated by code examples.   

A core group of topics was identified from the CC2001 recommendations as common 

to all the programming-first approaches.  This group was only large enough with the 



284 CHAPTER 9 DISCUSSION   
 

inclusion of both the CS1 and CS2 course, making the exam an assessment for the entire 

first year of instruction in computer science.  

The exam was created using the topic list identified as well as the learning objectives 

given in CC2001.  Also, a grading guideline was created for the exam to be used for 

consistent scoring of the exam.  Once the test was created, the reliability and validity of 

the instrument needed to be evaluated by administering it to a sample student population. 

After the administration, the exam was scored using the grading rubric created and 

the results of using the grading rubric were studied.  For multiple graders, some 

inconsistencies in grading were uncovered.  Some of these inconsistencies were related to 

simple human error, while others necessitated changes or clarifications in the grading 

rubric and re-grading of some questions. Recommendations for the grading of this exam 

based on the process used in this study include anonymous grading and the use of 

multiple graders for both the subjective and non-subjective questions on the exam to 

maximize consistency with the established grading guidelines. 

9.2 Discussion of Analysis of Exam 

Following the administration and grading, the scores of the students were statistically 

analyzed to gather information about the validity and reliability of the instrument as well 

as to look for potential exam biases. 

Face and content validity information was gathered by asking a panel of five experts 

in the field to analyze the appropriateness of this exam as an assessment of introductory 



CHAPTER 9 DISCUSSION 285 

 

computer science.  These experts gave numerous suggestions for improvements of the 

exam as well as ways to decrease the number of questions by eliminating duplication.  It 

is important to note that even though the information gathered from these experts is used 

for establishing face and content validity of the exam, this analysis was completed and 

changes to the exam implemented before administration to the sample population. 

Despite initial fears expressed by the reviewers of the exam being too long, the 

students finished, on average, in an acceptable time frame.  Furthermore, statistical 

analysis showed that the time students used on the exam did not have a statistically 

significant correlation with their performance. 

After the exams were scored, the scores of the students underwent various statistical 

tests.  The first was to look for reliability of the instrument.  Cronbach’s alpha was 

computed for the instrument, revealing an acceptable reliability coefficient of .94.  These 

results indicate that the exam is internally consistent. 

Using the demographic data that was collected from the students while administering 

the exam, preliminary investigations were undertaken to look for exam bias based on 

gender, age, major, and previous programming experience.  The results of these analyses 

were promising, because no biases were found in the data gathered and analyzed so far.  

There was no statistically significant difference in scores between the two genders, 

between freshmen and non-freshmen students, or between intended majors and non-

majors.   



286 CHAPTER 9 DISCUSSION   
 

While previous programming experience before taking the CS1-CS2 sequence did not 

make a difference in the scores, a borderline statistically significant result (p=0.05, but 

not less than 0.05) was found for students who had experience with C-derived languages 

before taking the CS1-CS2 course and this exam.  Because of the borderline nature of the 

result, further research should involve the collection of more data for analysis to see if 

there definitely is a difference that can be detected between those with previous 

experience with C-derived languages and those who have no previous experience. 

An attempt was made to show the criterion validity of the exam by using overall 

course grades in the CS1 and CS2 courses.  The results of this analysis revealed that the 

exam score and course grades in CS1, CS2, and the average of the CS1-CS2 sequence 

positively correlated with one another.  The original CS2 grades would have included the 

exam score within their computation.  CS2 scores and the CS1-CS2 average were 

recomputed with the exam score removed, and a positive correlation was still found.  

This result strengthens the validity of the exam for use as an assessment of the CS1-CS2 

sequence. 

Overall, the work of this dissertation achieved its goals of creating an assessment for 

the programming-first approaches to the introductory curriculum that has been shown 

reliable.  Also, work on the face validity, content validity, and criterion validity has been 

undertaken, with all results pointing to an overall validity of the instrument for its task. 



CHAPTER 9 DISCUSSION 287 

 

9.2.1 Students who chose not to participate in study 

Since participation in the study was voluntary, there were students enrolled in the 

CS2 course (CSE 116) when the exam was administered that chose not to be included in 

the study.  It is important to look at this group of students in general to see if the sample 

used in the study was indicative of the general population of students enrolled in the CSE 

116 course.   

The information for the courses is available to instructors through their university 

class lists.  From the data available to the instructors, I was able to obtain anonymous 

information about total enrollments, gender, year in school, declared major, and final 

student letter grades assigned in the course for the entire CSE 116 population across the 

two semesters the exam was administered.  This information was obtained by the 

instructors from the information provided to them on their official university class lists.  

Therefore, some of the demographic information obtained in the study was not available 

for students that did not participate in the study.  However, with the information that is 

available about the enrollment overall, we can see a picture of any potential differences 

between those students who participated in the study and those students who did not. 

9.2.1.1 Overall enrollment 

The total enrollment of students for the two semesters of the study was 135 students.  

Of this original 135, 14 students elected to resign the course before the end of the 

semester and receive a grade of “R”  on their transcript.  This left a potential candidate 



288 CHAPTER 9 DISCUSSION   
 

pool of 121 total students for participation in the study.  Of these 121, 100 students 

elected to participate, leaving only 21 students not participating in the study.  Therefore, 

83% of the available student population was analyzed by the study. 

9.2.1.2 Gender  

Of the 121 students, 110 (91%) were men and 11 (9%) were women.  Ninety (90%) 

men and 10 (10%) women chose to participate in the study.  Therefore, the percentage of 

men and women in the study population and the regular population were similar. 

9.2.1.3 Year in School 

Of the 121 students, 45 (37%) were categorized by the university as freshmen, and 76 

(63%) were categorized as non-freshmen.  Fifty-two (52.5%) freshmen and 47 (47.5%) 

non-freshmen agreed to participate in the study.  These numbers seem to have an obvious 

conflict, because more freshmen are enrolled in my study than are reported by the 

university records.  However, this discrepancy can be explained by the fact that the 

university considers class year by credits earned, not by how many years a student has 

been enrolled at the university.  Therefore, many “ freshmen” entering the university 

actually have accumulated university credit before they even take one day of classes at 

the university.  In my study, the year in school was a self-reported variable.  Therefore, 

students in their first year of study at university commonly identify themselves as 

freshmen, even if the university records indicate otherwise.    



CHAPTER 9 DISCUSSION 289 

 

9.2.1.4 Declared Major  

Of the 121 students, 37 (31%) were declared computer engineering majors, 46 (38%) 

were declared computer science majors, and 38 (31%) were declared to be some other 

major (including undecided).  Twenty-six (26%) computer engineering majors, 50 

(50.5%) computer science majors, and 23 (23.5%) other majors agreed to participate in 

the study.   

These numbers are also subject to the same self-report-versus-university-records 

problems as the year in school.  At the University at Buffalo, students do not have to be 

formally accepted to a major until the end of their second year of study.  Therefore, many 

students intend to pursue a particular major, but, since they have not been formally 

accepted to that major yet, the university does not recognize them as majoring in that 

subject.  Also, a student may have decided to pursue a major and not yet informed the 

University of their intent at the time of the creation of the class lists.  Nonetheless, the 

numbers for students overall in the class and the students enrolled in the study are 

roughly the same. 

9.2.1.5 Grade in course 

Table 9-1 gives a breakdown of course grades earned by the 121 students enrolled in 

CSE 116 with a percentage breakdown of the grade within the class, as well as the 

number of those students who participated in the study and a percentage of how many 

students who earned each letter grade participated in the study.   



290 CHAPTER 9 DISCUSSION   
 

Recorded 
Course Grade 

Number 
of 

students 

Percentage of 
students overall 
earning grade 

Number of 
study 

participants 

Percentage of 
students who 

participated in study 
A 18 15% 17 94% 
A- 18   15% 16 89% 
B+ 25  21% 22 88% 
B 19  16% 16 84% 
B- 8  7% 7 88% 
C+ 10  8% 8 80% 
C 7  6% 6  86% 
C- 3  2% 2  67% 
D 3  2% 2  67% 
F 10  8% 4 40% 

Table 9-1: Course grade breakdown for  all CSE 116 students 

 
Table 9-2 gives a breakdown of course grades earned by the 21 students who elected 

not to participate in the study. 

Recorded Course 
Grade 

Number of students 
who earned that grade 

A 1 
A- 2 
B+ 3 
B 3 
B- 1 
C+ 2 
C 1 
C- 1 
D 1 
F 6 

Table 9-2: Course grade breakdown for  CSE 116 students who elected not to par ticpate in the study 

 
Those students who elected not to participate in the study were fairly spread 

throughout the grade spectrum.  The only group of students who did not seem to 

particpate at the same rate as the other students were those students who received an 



CHAPTER 9 DISCUSSION 291 

 

overall grade of F in the course.  Only 40% of the F-students participated in the study, 

while other groups of students had participation rates that ranged from 67% to 94%.   

Upon further investigation, it turns out that only 116 students total took the exam 

across the two administrations, which means that 5 students did not attend the final exam 

at all and therefore could not elect to participate in the study.  It is hypothesized that the 

students who did not take the final exam were among the students who earned an overall 

grade of F in the course, because, with the weighting that the final exam was given for 

the course, it would be almost impossible for a student to pass the course without taking 

the final exam.  

Therefore, between the 4 students who did particpate and the 5 who did not take the 

exam, it appears that only 1 student who earned an F in the course did not participate in 

the study, keeping the participation rate of students who earned an F similar to those 

students who earned other letter grades.   

9.2.1.6 Conclusions about Par ticipants 

Comparing the data gathered from university records to the data collected about the 

participants in the study, I feel confident in saying that the sample represented in the 

study is not significantly different from the overall possible pool of students enrolled in 

CSE 116.  There were relatively very few students who did not participate.  There was 

virtually no difference in gender, year in school, major, or overall course performance as 



292 CHAPTER 9 DISCUSSION   
 

indicated by overall course grade.  Therefore, I feel confident to conclude that the results 

of the study were not skewed in any way by the self-selection of participants in the study. 

9.3 Future Work 

This section presents directions for future work on this assessment instrument. 

9.3.1 Additional Student Data 

Although the data collected for this dissertation were adequate for analysis of the 

exam’s reliability and helped to make preliminary assertions about the exam’s validity, a 

future goal is to collect even more data about the exam by administering the test to more 

students.  With additional data, more detailed item analysis can be performed.  With this 

type of analysis, trends might be found in the exam to suggest that certain questions could 

be eliminated without affecting overall student outcomes. 

These types of analyses could also identify a group of questions that are the predictors 

for a student’s score on the exam.  If these questions were identified, it might be possible 

to edit the exam so it contains just those questions, or equivalent derivatives of those 

questions, which would make the exam shorter.  Alternatively, some questions might be 

replaced by items that would improve the reliability and validity of the exam. 

Additionally, more demographic data could be collected to continue the investigation 

into test bias.  Most notably, the number of females who took the test was large enough to 

perform statistical analysis; it is not enough to satisfy the question of gender bias on the 



CHAPTER 9 DISCUSSION 293 

 

exam.  Other areas of the demographics can also continue to be explored, including age, 

major, and additional programming language experience. 

9.3.2 Continuation of Predictors Research 

This work was inspired by work in the area of predictors of success in CS1 (Ventura, 

2003).  Ventura gathered various pieces of demographic information as well as 

administered a test of critical thinking ability to find the best predictors for success in an 

objects-first CS1.  His measure for success included course grades on various 

components and was never validated.  Our assessment instrument has been shown 

reliable and information has been presented for validity.  This instrument could be used 

as the measure for success for the predictors research.  However, this assessment is a 

measure of success for CS1 and CS2.  The initial work on predictors would need to be 

revisited to include predictors for CS2 as well as CS1.  Only then could the assessment 

that I created be used for further examination of this work. 

9.3.3 Testing of curr icular  changes 

One of the initial goals in creating this assessment was to have the ability to use it to 

measure the effectiveness of curricular changes.  Since the exam is based on the content 

for the introductory sequence as outlined by CC2001, it can provide a baseline indicator 

of what information the students should know after completing the CS1 and CS2 

sequence. 



294 CHAPTER 9 DISCUSSION   
 

Therefore, if this test was administered at the end of a year and then curricular 

changes were made for the next year, one would expect that the scores on the exams 

would not be statistically significantly different, or if they were different, that an 

improvement of overall the scores would be viewed as an affirmation of the value of the 

curricular changes. 

A decrease in the overall scores could point to a failure of the new curricular 

direction.  However, that cannot be the immediate conclusion based on this type of result.  

There could be many other factors impacting performance of a group of students on any 

exam, and they should be explored.  It would be best if scores on this exam could be 

observed both before the curricular change and after the change to give an adequate 

picture of the student performance as it relates to the curricular change. 

9.3.4 Trends and Longitudinal Research 

Another way that this assessment could be used is simply to track general trends of 

student performance irrespective of curricular innovation.  General performance of 

students across years, semesters, and instructors would be possible if each group of 

students were given this assessment at the end of CS2.   

Additionally, longitudinal tracking would be possible of students who took the 

assessment.  Students who took the assessment could be tracked throughout their careers 

to look for any predictive value of this assessment in their future success in their studies 

of computing. 



CHAPTER 9 DISCUSSION 295 

 

9.3.5 Multiple Languages and Multiple Forms 

Initially, this assessment was conceived as being language-independent.  However, 

early in the work on the instrument and because of the instrument’s focus on 

programming-first approaches to the curriculum, it was decided that a language needed to 

be used for code examples and for student answers.  Therefore, a natural extension of this 

work is to modify the exam for use in CS1-CS2 sequences that do not use Java as their 

main language of instruction.  A change to another language would involve the 

modification of questions and code examples used within the test as well as analysis of 

the grading rubric to ensure that none of the answers to questions would be affected by 

the change in language. 

To further reinforce the reliability data collected, equivalent forms of the exam should 

also be created and administered to students.  Ideally, these parallel forms should be 

created for the Java version of the exam as well as the other language versions.  In the 

effort to create parallel forms, it would be useful to create an exam template that could be 

easily changed to create new forms of the exam quickly and for the same administration 

of the exam. 

Another change to the exam that could be considered an alternate form is to create a 

better alternative for the multiple choice questions on the exam, either with Scantron (or 

similar) technology, or a way to put questions on a computer-delivered testing system to 

help automate grading of those questions. 



296 CHAPTER 9 DISCUSSION   
 

9.3.6 Multi-Institutional Analysis 

To further reinforce the reliability and validity data collected, the exam needs to move 

outside of the walls of the University at Buffalo.  This would allow the creation of tests in 

different languages as talked about previously, but also to allow for introductory 

sequences taught in the different approaches to use the exam. 

Testing students who have been taught with an imperative-first or functional-first 

approach would provide further evidence of the validity of the instrument across the 

different programming-first approaches. 

Furthermore, having other instructors administer and grade the exam will allow for 

further testing of the administration processes and grading rubric for the exam. 

Another advantage of porting the instrument to other institutions comes simply from 

the organization of the institution.  Our department is a computer science and engineering 

department, servicing both computer science and computer engineering majors.  Other 

departments might simply only serve computer science majors, or a mix of computer 

science and information technology majors in their CS1-CS2 sequence.  Analysis of data 

from these types of departments would allow further conclusions to be drawn about exam 

bias for different majors. 



CHAPTER 9 DISCUSSION 297 

 

9.3.7 Updates for  Future Curr icula  

As I tell my students, computing and computer science is a field that is constantly 

changing.  There is no way to tell where the field will be or what will be taught in CS1-

CS2 five or ten years from now.  Simply looking at the curriculum reports of the past can 

show us how the field has changed.  Therefore, this exam can never be static in the face 

of curricular change.  When new curriculum documents are published and schools begin 

to adopt the new recommendations, this assessment for the CS1-CS2 sequence needs to 

adapt and change accordingly. 

In the face of change, it should be noted that the process used to create this 

assessment can be repeated when new curriculum documents are produced.  Changes to 

the curriculum would most certainly necessitate updates for the exam and questions 

contained within it, but the practice of finding a common intersection could easily be 

repeated. 



 298 



 299 

References 

1. ACM/IEEE-CS Joint Curriculum Task Force Curricula.  Computing Curricula 
1991, [1991 cited 2003]. Available from 
http://www.acm.org/education/curr91/homepage.html. 

2. ACM/IEEE-CS Task Force on Computing Curricula 2001. Final Report of the 
Joint ACM/IEEE-CS Task Force on Computing Curricula 2001 for Computer 
Science [2001 cited 2007]. Available from 
http://acm.org/education/curric_vols/cc2001.pdf. 

3. Alphonce, Carl, and Philip R Ventura. "Object-Orientation in CS1-CS2 by 
Design." In ITiCSE 2002. Aarhus, Denmark, 2002. 

4. AP. AP Course Descriptions, 2003 [cited November 13, 2003].  Available from 
http://apcentral.collegeboard.com/repository/ap03_cd_computer_scie_4315.pdf 

5. AP CS A Reliability. Advanced Placements CS A Exam Reliability, 2004 [cited 
October 15 2004]. Available from 
http://apcentral.collegeboard.com/article/0,3045,152-167-0-
2021,00.htm#reliability. 

6. AP CS A Test Description. 2004 [cited November 7 2004]. Available from 
http://apcentral.collegeboard.com/members/article/1,3046,152-171-0-
22913,00.html. 

7. AP CS AB Reliability. Advanced Placements CS AB Exam Reliability, 2004 [cited 
October 15 2004]. Available from 
http://apcentral.collegeboard.com/article/0,3045,152-167-0-
2021,00.htm#reliability. 

8. AP CS AB Test Description. 2004 [cited November 7 2004]. Available from 
http://apcentral.collegeboard.com/members/article/1,3046,152-171-0-
22912,00.html. 

9. AP CS Development Committee. 2004 [cited November 7 2004]. Available from 
http://apcentral.collegeboard.com/members/article/1,3046,152-167-0-
2030,00.html. 

10. AP Exam Grading. 2004 [cited November 7 2004]. Available from 
http://www.apcentral.collegeboard.com/article/0,3045,152-167-0-1994,00.html. 



300 REFERENCES   
 

11. AP Validity. Exam Validation, 2004 [cited October 21 2004]. Available from 
http://apcentral.collegeboard.com/article/0,345,152-167-0-2052-00.html. 

12. Aron, Arthur, and Elaine N. Aron. Statistics for the Behavioral and Social 
Sciences: A Brief Course. Second ed. Upper Saddle River, NJ: Prentice Hall, 2002. 

13. Astrachan, Owen, and David Reed. "AAA and Cs1." In SIGCSE 1995. Nashville, 
TN, 1995. 

14. Bond, Ian. Ian Bond - Assignment 2, 2004 [cited January 27, 2005]. Available 
from http://www.massey.ac.nz.~iabond/159234/assignment2.pdf. 

15. Cantwell Wilson, Brenda, and Sharon Shrock. "Contributing to Success in an 
Introductory Computer Science Course:  A Study of Twelve Factors." In SIGCSE 
2001. Charlotte, NC, 2001. 

16. Committee on Computer Science Curriculum. "Curriculum 68: Recommendations 
for the Undergraduate Program in Computer Science." Communications of the 
ACM 11, no. 3 (1968): 151-97. 

17. Committee on Computer Science Curriculum. "Curriculum 78: Recommendations 
for the Undergraduate Program in Computer Science." Communications of the 
ACM 22, no. 3 (1978): 147-66. 

18. Cooper, Steven, Wanda Dann, and Randy Pausch. "Teaching Objects-First in 
Introductory Computer Science." In 34th SIGCSE technical symposium on 
Computer Science Education. Reno, Nevada, 2003. 

19. Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to 
Algorithms. Cambridge, Massachusetts: The MIT Press, 2000. 

20. CS Content Rep Study. Content Representativeness Study GRE, 2002 [cited 
December 3 2004]. Available from http://ftp.ets.org/pub/gre/conrepresults.pdf. 

21. Culwin, Fintan. "Object Imperatives!" In SIGCSE 1999. New Orleans, LA, 1999. 

22. Dade Computer Programming I Description. Computer Programming I. Pdf, 2001 
[cited March 16, 2007 2007]. Available from 
http://portal.dadeschools.net/cbc/Volume%20II/Instructional%20Technology/Senio
r%20High/Grade%2010/Computer%20Programming%20I.pdf. 

23. Daly, Charlie, and John Waldron. "Assessing the Assessment of Programming 
Ability." In SIGCSE 2004. Norfolk, VA, 2004. 

24. Dann, Wanda, Steven Cooper, and Randy Pausch. Learning to Program with Alice. 
Upper Saddle River, NJ: Prentice Hall, 2006. 



REFERENCES 301 

 

25. Decker, Adrienne. "A Tale of Two Paradigms." Journal of Computing Sciences in 
Colleges 19, no. 2 (2003): 238-46. 

26. Dietel, H. M., and P.J. Dietel. C: How to Program. Fourth Edition ed. Upper 
Saddle River, New Jersey: Prentice Hall Inc., 2004. 

27. Dietel, H. M., and P.J. Dietel. C. C++: How to Program. Fifth Edition ed. Upper 
Saddle River, New Jersey: Prentice Hall Inc., 2005. 

28. Dietel, H. M., and P.J. Dietel. C. Java: How to Program. Sixth Edition ed. Upper 
Saddle River, New Jersey: Prentice Hall Inc., 2005. 

29. ETS. ETS Major Field Test, 2003 [cited 2003]. Available from 
http://ftp.ets.org/pub/corp/hea/ContComSci2.pdf 

30. ETS Major Field Test Description. 2004 [cited November 7 2004]. Available from 
http://ftp.ets.org/pub/corp/hea/ContComSci2.pdf. 

31. ETS Reliability. ETS Major Field Test Computer Science Reliability, 2004 [cited 
October 15 2004]. Available from http://ftp.ets.org/pub/corp/hea/reliability03.pdf. 

32. Evans, Gerald E., and Mark G. Simkin. "What Best Predicts Computer 
Proficiency." Communications of the ACM 32, no. 11 (1989): 1322-27. 

33. Evans, M.D. "A New Emphasis & Pedagogy for a CS1 Course." inroads - The 
SIGCSE Bulletin 28, no. 3 (1996): 12 - 16. 

34. Fincher, Sally. "What Are We Doing When We Teach Programming?" In 29th 
ASEE/IEEE Frontiers in Education Conference. San Juan, Puerto Rico, 1999. 

35. GRE Score Use. Guide to the Use of Scores, 2003 [cited 2003]. Available from 
http://www.ets.org/Media/Tests/GRE/pdf/994994.pdf 

36. GRE Subject Test Computer Science Description. 2004 [cited November 8 2004]. 
Available from http://www.gre.org/subdesc.html#compsci. 

37. GRE Subject Test General Description. 2004 [cited November 8 2004]. Available 
from http://www.gre.org/pbstest.html. 

38. Guzdial, Mark, and Barbara Ericson. Introduction to Computing and Programming 
with Java: A Multimedia Approach. Upper Saddle River, NJ: Prentice Hall, 2006. 

39. Guzdial, Mark, and Elliot Soloway. "Teaching the Nintendo Generation to 
Program." Communications of the ACM 45, no. 4 (2002): 17-21. 

40. Hagan, Dianne, and Selby Markham. "Does It Help To Have Some Programming 
Experience before Beginning a Computing Degree Program?" In ITiCSE 2000. 
Helsinki, Finland, 2000. 



302 REFERENCES   
 

41. Hanly, Jeri R., and Elliot B. Koffman. Problem Solving and Program Design in C. 
Fourth Edition ed. Boston, Massachusetts: Addison-Wesley, 2003. 

42. Harvey, Brian, and Matthew Wright. Simply Scheme:  Introducing Computer 
Science. Second Edition ed. Cambridge, Massachusetts: The MIT Press, 1999. 

43. Hayes, Brian. "The Semicolon Wars." American Scientist 94, no. July-August 
(2006): 299-303. 

44. Horstmann, Cay. Big Java. Second ed. Hoboken, New Jersey: John Wiley & Sons, 
Inc., 2006. 

45. Joint Task Force on Computing Curricula. Curricula Recommendations, 2001 
[cited 2007]. Available from http://www.acm.org/education/curricula.html. 

46. Kaplan, R M, and D P Saccuzzo. Psychological Testing: Principles, Applications 
and Issues. Belmont, California: Wadsworth/Thomson Learning, 2001. 

47. Kolling, Michael, and David J. Barnes. "Enhancing Apprentice-Based Learning of 
Java." In SIGCSE 2004. Norfolk, VA, 2004. 

48. Kuncel, N. R., S. A. Hezlett, and D. S. Ones. "A Comprehensive Meta-Analysis of 
the Predictive Validity of the Graduate Record Examinations:  Implications for 
Graduate Student Selection and Performance." Psychological Bulletin 127, no. 1 
(2001): 162-81. 

49. Kurtz, Barry L. "Investigating the Relationship between the Development of 
Abstract Reasoning and Performance in an Introductory Programming Class." In 
SIGCSE 1980. Kansas City, MO, 1980. 

50. Leeper, R. R., and J. L. Silver. "Predicting Success in a First Programming 
Course." In SIGCSE 1982. Indianapolis, IN, 1982. 

51. Lewis, John, and William Loftus. Java Software Solutions:  Foundations of 
Program Design. Fifth Edition ed. Boston, Massachusetts: Addison-Wesley, 2007. 

52. Lister, Raymond, and John Leaney. "Introductory Programming, Criterion-
Referencing, and Bloom." In SIGCSE 2003. Reno, NV, 2003. 

53. Major Field Test. Major Field Tests:  Description of Test Reports, 2003 [cited 
2003]. Available from http://ftp.ets.org/pub/corp/hea/ContComSci2.pdf 

54. Major Field Test. Reliability Coefficients and Standard Error of Measurements, 
2002 [cited 2003]. Available from http://ftp.ets.org/pub/corp/hea/reliability03.pdf. 

55. Major Field Test Content. Major Field Tests Computer Science Description, 2003 
[cited 2003]. Available from http://ftp.ets.org/pub/corp/hea/ContComSci2.pdf 



REFERENCES 303 

 

56. Marion, William. "CS1: What Should We Be Teaching?" inroads - The SIGCSE 
Bulletin 31, no. 4 (1999): 35-38. 

57. Marshall, J C, and L W Hales. Essentials of Testing. Reading, Massachusetts: 
Addison-Wesley Publishing Company, 1972. 

58. Mazlack, Lawrence J. "Identifying Potential to Acquire Programming Skill." 
Communications of the ACM 23, no. 1 (1980): 14-17. 

59. McCauley, Renee. "Rubrics as Assessment Guides." inroads - The SIGCSE 
Bulletin 35, no. 4 (2003): 17 - 18. 

60. McCracken, Michael, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, 
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz 
Wilusz. "A Multi-National, Multi-Institutional Study of Assessment of 
Programming Skills of First-Year Cs Students:  Report by the ITiCSE 2001 
Working Group on Assessment of Programming Skills of First-Year CS Students." 
inroads - The SIGCSE Bulletin 33, no. 4 (2002): 1-16. 

61. Morgan, R., and L. Ramist. Advanced Placement Students in College: An 
Investigation of Course Grades at 21 Colleges ETS, 1998 [cited November 8 
2004]. Available from 
http://apcentral.collegeboard.com/repository/ap01.pdf.in_7926.pdf. 

62. Moskal, Barbara, Keith Miller, and L. A. Smith King. "Grading Essays in 
Computer Ethics: Rubrics Considered Helpful." In SIGCSE 2002. Covington, KY, 
2002. 

63. Nagappan, Nachiappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang, 
Carol Miller, and Suzanne Balik. "Improving the CS1 Experience with Pair 
Programming." In SIGCSE 2003. Reno, Nevada, 2003. 

64. Neebel, Danial J., and Brenda Tuomi Litka. "Objective Based Assessment in a 
First Programming Course." In 32nd ASEE/IEEE Frontiers in Education 
Conference. Boston, MA, 2002. 

65. Owens, Barbara Boucher, Robert D. Cupper, Stuart Hirshfield, Walter Potter, and 
Richard Salter. "New Models for the CS1 Course:  What Are They and Are They 
Leading to the Same Place?" In SIGCSE 1994. Phoenix, AZ, 1994. 

66. Parker, Peter E., Paul D. Fleming, Steve Beyerlein, Dan Apple, and Karl Krumsieg. 
"Differentiating Assessment from Evaluation as Continuous Improvement Tools." 
In 31st ASEE/IEEE Frontiers in Education Conference. Reno, NV, 2001. 

67. Pattis, Richard. "The "Procedures Early" Approach in CS1: A Heresy." In SIGCSE 
1993. Indianapolis, IN, 1993. 



304 REFERENCES   
 

68. Proulx, Viera, Richard Rasala, and Harriet Fell. "Foundations of Computer 
Science:  What Are They and How Do We Teach Them?" In 1st conference on 
integrating technology into computer science education. Barcelona, Spain, 1996. 

69. Ramalingam, Vennila, and Susan Wiedenbeck. "Development and Validation of 
Scores on a Computer Programming Self-Efficacy Scale and Analyses of Novice 
Programmer Self-Efficacy." Journal of Educational Computing Research 19, no. 4 
(1998): 367-81. 

70. Rapaport, William J. How I Grade (the Triage Theory of Grading), 2006 [cited July 
11 2006]. Available from 
http://www.cse.buffalo.edu/faculty/rapaport/howigrade.html. 

71. Ravid, R. Practical Statistics for Educators. Lanham: University Press of America, 
1994. 

72. Reges, Stuart. "Back to Basics in CS1 and CS2." In SIGCSE 2006. Houston, TX, 
2006. 

73. Reges, Stuart. "Conservatively Radical Java in CS1." In SIGCSE 2000. Austin, 
TX, 2000. 

74. Reges, Stuart. "Resolved: Objects Early Has Failed." In SIGCSE 2005. St. Louis, 
MO, 2005. 

75. Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling 
Language Reference Manual. Boston: Addison-Wesley, 1999. 

76. SAT Program Handbook. 2006 [cited 2007]. Available from 
http://www.collegeboard.com/prod_downloads/highered/ra/sat/2006-07-SAT-
Program-Handbook.pdf 

77. Savitch, Walter. Absolute Java. Second ed. Boston, Massachusetts: Addison-
Wesley, 2006. 

78. Sethi, Ravi. Programming Languages:  Concepts and Constructs. Second ed. 
Reading, Massachusetts: Addison-Wesley, 1996. 

79. Stein, Lynn Andrea. "Interactive Programming: Revolutionizing Introductory 
Computer Science." ACM Computing Surveys 28, no. 4es (1996). 

80. Ventura, Philip R. "On the Origins of Programmers: Identifying Predictors of 
Success for an Objects-First CS1." University at Buffalo, SUNY, 2003. 

81. Walker, Henry M. "Notes on Grading." inroads - The SIGCSE Bulletin 32, no. 2 
(2000): 18-19. 



REFERENCES 305 

 

82. Whitfield, Deborah. "From University Wide Outcomes to Course Embedded 
Assessment of CS1." Journal of Computing Sciences in Colleges 18, no. 5 (2003): 
210-20. 

 



 306 



 307 

Appendix A  

Exam Questions 

The actual exam begins on the next page to preserve the formatting of the original. 

 

 

 

 

 

 

 

 

 

 



308 APPENDIX A  EXAM QUESTIONS   
 

Course Number           Course Title    Semester  Year  
Final Exam 

 
Name (Print): 
 
 
Signature:  
 
 
Person#:    Exam Number: ___________________ 
 

Exam Instructions: 
You have been assigned an exam number for this exam.  The only place you should put your 
name is on this first page of the test.  You should not put your name, UBIT name, person number, 
or social security number on any other page of this exam, answer sheet, or demographic 
questionnaire. 
 
Feel free to write any scratch work in the exam booklet.  However, the only answers that will be 
scored are those that you write in pen on the answer sheet.  If at any time, you need extra paper 
for your work, please ask the exam administrators. 
 
You are not allowed to refer to any outside materials (notes, books, reference materials, your 
neighbor) while completing this exam.   
 
The exam was designed to test information that students should know after the first year of 
computer science/programming instruction, which corresponds to CSE 115 and 116 at UB.  
Because of the general nature of the exam, there may be questions that you are unable to answer.  
You should leave those answers blank.   
 
Some of the questions on this test present multiple choices for answers.  Some of those questions 
instruct you to pick as many answers as are appropriate.  Be sure to read the question to 
determine if you should indicate more than one answer for a particular question.  If the question 
requires only one answer and you have narrowed the choices down to two, you should make an 
educated guess about the answer for the question. 
 
If you have a question during the exam, please raise your hand and one of the exam 
administrators will come to you and answer your question.  Please do not walk to an exam 
administrator with a question.  The only time you should leave your seat is when you have 
completed the exam and are ready to hand it in. 
 
You will have three (3) hours to complete this exam. At the end of the three hours, you are 
required to hand in your paper. 
 
When you have completed the exam, you will take your demographic questionnaire, exam 
booklet, and answer sheet to an exam administrator.



APPENDIX A  EXAM QUESTIONS 309  
 

  

1) Draw the binary search tree which results when the following items are inserted, in the order 
given into an initially empty BST.  [8 points] 
 
Elements:  62, 55, 37, 106, 202 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



310 APPENDIX A  EXAM QUESTIONS   
 

Given the following BST, answer questions 2 – 3. 

 
 
2) You call search (find) and are looking for the number 32.  List of nodes that are visited while 
you are determining that 32 is not in the BST. [3 points] 
 
 
 
 
 
 
 
 
 
 
3) You want to delete 34 (the root) from this tree.  Show one possible valid binary search trees 
that could result from deleting the root. [8 points] 
 
 
 
 
 
 
 
 
 
 
 
 

34 

26 50 

43 66 30 

47 



APPENDIX A  EXAM QUESTIONS 311  

 

For question 4, consider the following code segment:   
 
j ava. ut i l . HashMap<I nt eger ,  St r i ng> mapOne =  

new j ava. ut i l . HashMap<I nt eger ,  
St r i ng>( ) ;  
 

j ava. ut i l . HashMap mapTwo = new j ava. ut i l . HashMap( ) ;  
 
mapOne. put ( 1,  “ Fi r st  name” ) ;  
mapTwo. put ( 1,  “ Fi r st  name” ) ;  
 
St r i ng s1 = mapOne. get ( 1) ;   
St r i ng s2 = mapTwo. get ( 1) ;   
 
4) Which of the two assignments of “First name”  to a String variable does not work correctly and 
why? (Circle only one answer). [1 point] 
 

a. Assignment to s1 does not work because get ( )  returns an Obj ect , not a St r i ng. 
b. Assignment to s1 does not work because s1 is not a St r i ng. 
c. Assignment to s1 does not work because HashMaps cannot use I nt eger s  as keys. 
d. Assignment to s2 does not work because get ( )  returns an Obj ect , not a St r i ng. 
e. Assignment to s2 does not work because s2 is not a St r i ng. 
f. Assignment to s2 does not work because HashMaps  cannot use I nt eger s  as keys. 
g. Neither assignment works because get ( )  returns an Obj ect , not a St r i ng. 
h. Neither assignment works because neither s1 nor s2 is a St r i ng. 
i. Neither assignment works because HashMaps  cannot use I nt eger s  as keys. 

 
6) Write the body of the following method named changeCol or s .  The method takes as a 
parameter, a j ava. ut i l . Col l ect i on of j ava. awt . Col or s.  The changeCol or s  
method should call the method set Col or ( j ava. awt . Col or ) ,  which is inherited from 
j avax. swi ng. JPanel �  for each color in the Col l ect i on so that the user sees a changing 
background color for the panel on their program.  You can assume that this method appears in a 
class that extends JPanel  so you can simply call the set Col or  method from within this 
method.  You must use an iterator/for-each loop in your solution to this question to receive full 
credit. [8 points] 
 
voi d changeCol or s( j ava. ut i l . Col l ect i on<j ava. awt . Col or > 
col or sFor Backgr ound)  {  
 
 
 
 
 
 
}  
 



312 APPENDIX A  EXAM QUESTIONS   
 

 
Assume you have created the following array in a program: 
  i nt [ ]  hol der  = new i nt [ 50] ;  
 
Use this information to answer questions 6 – 9. 
 
6) What is the maximum number of elements that can be stored by hol der ? [1 point] 
 
 
 
7) At which index would the first integer in hol der  be stored? [1 point] 
 
 
 
 
8) At which index would the last integer in hol der  be stored? [1 point] 
 
 
 
 
 
 
9) As you are using the array in your program, you find out that you need to store more than the 
maximum number of elements you listed in question 8.  You do not know how many more 
elements you will be storing, just that you need more space in your array.  You are asked to write 
a method, needMor eSpace that takes in an array and performs the necessary operations to 
return a larger array with the same elements as the original, but with space to store additional 
elements.  Since you don’ t know how many elements you will eventually need to store, you 
should write the method body so that it could be called at a later time if the array needs to get 
bigger again. [8 points] 
 
publ i c i nt [ ]  needMor eSpace( i nt  [ ]  or i gi nal Ar r ay)  {  
 
 
 
 
 
 
 
 
 
}  
 
 
 
 



APPENDIX A  EXAM QUESTIONS 313  

 

10) Fill in the method below so that it creates and returns an array of size si ze and populates 
the array with elements each of whose values is the square of the index at which the element is 
stored.  For example, at array index 3, the value 9 should be stored. [8 points] 
 
publ i c i nt [ ]  ar r ayOf Squar es ( i nt  s i ze)  {  
 
 
 
 
 
 
 
 
 
 
 
 
 
}  
 
 
11) Fill in the method below so that it returns t r ue if the value passed in as a parameter is 
contained inside the matrix and returns false otherwise. [8 points] 
 
publ i c bool ean cont ai ns( doubl e[ ] [ ]  mat r i x,  doubl e val ue)  {  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}  
 
 
 
 



314 APPENDIX A  EXAM QUESTIONS   
 

12) Given the following UML diagram for a doubly linked list, fill in the method del et e below, 
which is a method in the List class and takes an element to be deleted and returns the deleted 
element when finished.  [8 points] 

 
Notes about the classes in the diagram: 

• Node’ s constructor sets the value of _el ement  to the value passed in and sets the 
value of _next  and _pr ev  to nul l .  The other elements are simple accessors and 
mutators for _el ement ,  _node,  and _pr ev .   

 
• Node holds an element that implements the interface Compar abl e.  Recall that a class 

that implements this interface has a method named compar eTo that takes in an 
Obj ect  obj , and returns a positive number if t hi s > obj , the value 0 (zero) if the 
two are the same, or a negative value if t hi s < obj . 

 
• Li st ’ s constructor simply sets the value of _head to nul l . 

 
publ i c Compar abl e del et e( Compar abl e el ement )  {  
 
 
 
 
 
 
 
 
 
 
}  
 
 
 
 



APPENDIX A  EXAM QUESTIONS 315  

 

Use the following representation of a tree data structure to answer questions 13 - 18. 

 
�

13) What is the value stored in the node that is the root? [1 point] 
 
 
14) Give the value stored in one of the leaves of this structure. [1 point] 
 
 
15) What is the height of a tree that just contains a root and no other nodes? [1 point] 
 
 
16) What is the height of this structure? [1 point] 
 
 
17) Give the value stored in the node that is the parent of n. [1 point] 
 
 
18) Give the values stored in all the children of m. [3 points] 
 
 
 
 
 
 
 
 



316 APPENDIX A  EXAM QUESTIONS   
 

19) Given the following adjacency list for a directed graph, draw the graph structure it represents. 
[8 points] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX A  EXAM QUESTIONS 317  

 

 
Use the following representation of a graph to answer questions 20 and 21. 

 
20) Circle the letters of all of the words that accurately describe the graph above. [4.5 points] 

a. directed 
b. undirected 
c. weighted 
d. unweighted 
e. simple 
f. complete 
g. acyclic 
h. isomorphic 
i. rooted 

 
21) Circle the letters corresponding to all the pairs of nodes given that are adjacent in the above 
graph. [4 points] 

a. r and s 
b. t and n 
c. d and s 
d. n and d 

 
 
 
22) If a data structure is linear in nature (list, vector, etc), which implementation would perform 
better asymptotically in a linear search.  Circle one of the implementations listed: [1 point] 
 a. array-based 
 b. linked list-based 
 c. neither – they would both perform the same on the linear search. 
 



318 APPENDIX A  EXAM QUESTIONS   
 

23) Referring to your knowledge of data structures and inheritance, why is it inappropriate for a 
java.util.Stack to be a subclass of java.util.Vector? [8 points] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the list of data structures given, choose the best answer or answers for questions 24 – 31.  If 
there is no appropriate answer, write “None” .  If you feel that more than one answer is 
appropriate, list all appropriate answers.  It is possible that some answers from the box will not be 
used. 
 

Linked List     Array 
 
Graph      Stack 
 
Tree       Queue 
 
Hash Map       

 
24) Structure that associates a key with a value. [6 points] 
 
 
 
 
 
 
 
25) Structure whose insertion/removal strategy can be defined as LIFO. [6 points] 
 
 
 
 
 
 
 
26) Structure whose insertion/removal strategy can be defined as FIFO. [6 points] 



APPENDIX A  EXAM QUESTIONS 319  

 

 
 
27) Structure that is non-linear. [6 points] 
 
 
 
 
 
 
 
28) Structure whose elements are always stored in a contiguous block of memory. [6 points] 
 
 
 
 
 
 
 
29) You are creating software for a call center that does technical support.  Technicians are 
supposed to answer calls in the order they are received.  What structure would be best for keeping 
track of which call should be answered next? [6 points] 
 
 
 
 
 
 
 
30) Your company has decided to create a program to help cell-phone customers everywhere.  It 
is an on-line program that allows the user to type a person’s name and will return a list of all cell 
phone numbers registered to them.  You are asked to recommend a structure to hold onto the 
information.  Which structure would you recommend? [6 points] 
 
 
 
 
 
 
 
31) You are working for a brand new on-line mapping company.  This company needs to 
maintain information about locations and roads that connect them so that it can tell customers 
about various routes between locations.  What type of structure would be best for them to use to 
store their information? [6 points] 
 
 
 



320 APPENDIX A  EXAM QUESTIONS   
 

 
In questions 32–37 you are given an algorithm for sorting or searching.  You are to circle any and 
all valid big-oh bounds on the worst-case performance of each of the algorithms listed. 
 
32) Binary Search [6 points] 
 
a. O(1)  b. O(log n) c. O(n)  d. O(n log n)  e. O(n2) f. O(2n) 
 
 
 
33) Linear Search [6 points] 
 
a. O(1)  b. O(log n) c. O(n)  d. O(n log n)  e. O(n2) f. O(2n) 
 
 
 
34) Selection Sort [6 points] 
 
a. O(1)  b. O(log n) c. O(n)  d. O(n log n)  e. O(n2) f. O(2n) 
 
 
 
35) Insertion Sort [6 points] 
 
a. O(1)  b. O(log n) c. O(n)  d. O(n log n)  e. O(n2) f. O(2n) 
 
 
 
36) Quicksort [6 points] 
 
a. O(1)  b. O(log n) c. O(n)  d. O(n log n)  e. O(n2) f. O(2n) 
 
 
 
37) Mergesort [6 points] 
 
a. O(1)  b. O(log n) c. O(n)  d. O(n log n)  e. O(n2) f. O(2n) 
 
 
 
 
 
 
 
 
 



APPENDIX A  EXAM QUESTIONS 321  

 

 
38) Circle any and all of the following algorithms that only function correctly on sorted inputs.  If 
none of the algorithms require sorted inputs to function correctly, circle choice F. [6 points] 
 

a. Binary Search 
b. Linear Search 
c. Selection Sort 
d. Quicksort 
e. Mergesort 
f. None of the above. 

 
39) Circle any and all of the following algorithms that use a divide and conquer strategy to 
perform their specific task.  If none of the listed algorithms use a divide and conquer strategy, 
circle choice F. [6 points] 
 

a. Linear Search 
b. Quicksort 
c. Mergesort 
d. Insertion Sort 
e. Selection Sort 
f. None of the above. 

 
 
40) If your hashing function worked every time with no collisions, what would be the running 
time of a method to find an element in a hash table of size n? [1 point] 
  a. O(1) 
  b. O(log n) 
  c. O(n) 
  d. O(n2) 
 
Use the code for a node and linked list given below to answer questions 41 and 42.  Please note 
that some methods from both classes may have been removed if they do not pertain to the 
questions. 
 
publ i c c l ass Node<E> {  

pr i vat e E dat a;  
pr i vat e Node<E> next ;  

 
publ i c Node<E> ( E el ement ,  Node next Node)  {  

dat a = el ement ;  
next  = next Node;  

}  
 
publ i c voi d set Next ( Node next Node)  {  next  = next Node;  }  

}  
 
publ i c c l ass Li nkedLi st <E> {  



322 APPENDIX A  EXAM QUESTIONS   
 

 
pr i vat e Node<E> head = nul l ;  
pr i vat e Node<E> t ai l  = nul l ;  

 
publ i c Li nkedLi st ( )  { }  

 
publ i c voi d i nser t  ( E el ement )  {  

Node<E> newNode = new Node( el ement ,  nul l ) ;  
t ai l . set Next ( newNode) ;  
t ai l  = newNode;  

}  
 

publ i c voi d i nser t At Fr ont ( E el ement )  {  
Node<E> newHead = new Node( el ement ,  head) ;  
head = newHead;  

}  
}  
41)  What is the big-oh running time of the LinkedList’s method insert in the worst case? [1 
point] 
  a. O(1) 
  b. O(log n) 
  c. O(n) 
  d. O(n2) 
 
42) What is the big-oh running time of the LinkedList’s method insertAtFront in the worst case? 
[1 point] 
   a. O(1) 
  b. O(log n) 
  c. O(n) 
  d. O(n2) 
 
 
 
For questions 43 - 44, decide whether the statement is true or false and circle the appropriate 
word true or false.  If the statement is false, rewrite the big-oh notation so that it would be true in 
the space provided. 
 
 
43) n3 + 2n + 25 = O(n) [3 points] 

 
true      false 

   
  Rewritten statement (if false): 
 
 

 
 



APPENDIX A  EXAM QUESTIONS 323  

 

 
44) n2 + 30n + 4362 = O(n2) [3 points] 

 
true      false 

   
  Rewritten statement (if false): 
45) Arrange the following functions in order from slowest growing to fastest growing. [7 points] 

n, n!, n2, log n, 1, 2n, nn 
 
 
For questions 46-50, you are given a statement that is either true or false.  Circle the letter of the 
choice TRUE or FALSE for each statement given. 
 
46) If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n)). [1 point] 
 
 a. TRUE 
 b. FALSE 
 
47) When we declare a variable whose type is a primitive data type, we are actually creating a 
reference to a space of allocated memory. [1 point] 
 
 a. TRUE 
 b. FALSE 
 
48) Primitive types are not objects and therefore do not have methods defined on them. [1 point] 
 
 a. TRUE 
 b. FALSE 
 
 
49) Suppose Triangle, Circle, and Square are all subclasses of Shape.  In our program, we create 
an array that stores objects of type Triangle.  That array can hold any number of Circles, Squares, 
and Triangles because they are all subclasses of Shape. [1 point] 
 
 a. TRUE 
 b. FALSE 
 
 
50) We can create an array to hold elements of primitive types (int, char, double, etc), but to hold 
elements of object type, we must use another type of data structure. [1 point] 
 
 a. TRUE 
 b. FALSE 
 
 
 



324 APPENDIX A  EXAM QUESTIONS   
 

51) Parts a – d describe four procedures in code and through words.  Circle the letter of each 
procedure that can be categorized as recursive. [4 points] 
 
a.  
publ i c i nt  par t A( Obj ect [ ]  i t ems,  Compar abl e x,  i nt  y,  i nt  z)  {  
 i f  (  y > z)  {  
  r et ur n - 1;  
 }  
 el se {  
  i nt  a = (  y + z ) / 2;  
  i nt  b = x. compar eTo( i t ems[ a] ) ;  
  i f  ( b == 0)  {  
   r et ur n a;  
  }  
  el se i f  ( b < 0)  {  
   r et ur n par t A( i t ems,  x,  y,  a – 1) ;  
  }  
  el se {  
   r et ur n par t A( i t ems,  x,  a + 1,  z) ;  
  }  
 }  
}  
 
 
 
b.  
publ i c i nt  par t B( i nt  x)  {  
 i nt  r  = x;  
 r  = r  /  30;  
 Mat h. power ( x,  2) ;  
 r et ur n x;  
}  
 
 
 
c.  
publ i c i nt  par t C ( i nt  x)  {  
 i nt  y = 0;  
 f or  ( i nt  i  = 0;  i  < x;  i ++)  {  
  y = y + i  
 }  
 r et ur n y;  
}  
 
 
 
d.  
Pr ocedur e f or  Wr i t i ng Down Names of  Peopl e Wai t i ng i n l i ne f or  Movi e Ti cket s:  
 

3)  I f  l i ne i s empt y go back t o of f i ce.  
4)  I f  l i ne i s not  empt y:  

a.  Wal k up t o f i r st  per son i n l i ne and ask f or  t hei r  name.    
b.  Wr i t e name on of f i c i al  sheet  and gi ve par t i c i pant  f r ee popcor n 

coupon.    
c.  Move per son t o “ f ast  pass”  l i ne f or  t i cket s.  
d.  Begi n Pr ocedur e f or  Wr i t i ng Down Names of  Peopl e Wai t i ng i n l i ne 

f or  Movi e Ti cket s agai n.  



APPENDIX A  EXAM QUESTIONS 325  

 

Use the following code segment to answer questions 52 – 56.  Some of the questions ask about 
the output of a method on a particular input.  If the method goes into an infinite loop or infinite 
recursion on an input, write “ infinite loop”  as your answer. 
 
publ i c i nt  met hod1 ( i nt  x,  i nt  y)  {  
 i f  ( y == 0)  {  
  r et ur n 1;  
 }  
 el se {  
  r et ur n x *  met hod1( x,  y – 1) ;  
 }  
}  
 
publ i c i nt  met hod2 ( i nt  x,  i nt  y)  {  
 i nt  r esul t  = 1;  
 f or  ( i nt  i  = 0;  i  < y;  i ++)  {  
  r esul t  = r esul t  *  x;  
 }  
 r et ur n r esul t ;  
}  
 
 
52) What is the value returned from the following method call: [1 point] 
 

met hod1( 2, 1) ;  
 
 
 
 
53) What is the value returned from the following method call: [1 point] 
 

met hod2( 2, 2) ;  
 
 
 
 
54) What is the value returned from the following method call: [1 point] 

met hod2( 2, - 5) ;  
 
 
 
 
55) What is the value returned from the following method call: [1 point] 

met hod1( 2, - 3) ;  
 
 
 



326 APPENDIX A  EXAM QUESTIONS   
 

56) These methods function differently on different inputs.  On which class of inputs do these 
methods behave differently (circle all that apply)? [5 points] 
 
 a. When both x and y are positive numbers. 
 b. When both x and y are the number 0 (zero). 
 c. When both x and y are negative numbers. 
 d. When x is positive and y is negative. 
 e. When x is negative and y is positive. 
 f. When x is zero and y is positive. 
 g. When x is zero and y is negative. 
 h. When x is positive and y is zero. 
 i. When x is negative and y is zero. 
 j. The methods never function differently. 
 
 
 
 
 
Given the following definition of the Lucas sequence, answer questions 57 – 59. 
 

L(1) = 1; 
L(2) = 3; 
L(n) = L(n – 1) + L(n – 2)  for n > 2 
 

57) State what the base case(s) is/are for the Lucas sequence. [4 points] 
 
 
 
 
58) State what the recursive case is for the Lucas sequence. [4 points] 
 
 
 
 
59) Write the Java code for a recursive method that takes as a parameter an integer n and returns 
the nth element of the Lucas sequence.  You can assume that n will always be a number greater 
than zero. [8 points] 
 
 
 
 
 
 
 
 
 



APPENDIX A  EXAM QUESTIONS 327  

 

Given the following list of 19 parts of code, you should identify one example of each of the items 
in the code provided for this section (in the answer sheet) by precisely circling and clearly 
identifying by number the element in the code segment.  Make sure that your circles are clearly 
identified with numbers that are clearly written.  If the markings are not clear, the question will 
simply be marked incorrect and given no credit.  If there is no example of the item in the code, 
you should write the words “Does not exist”  on the line next to the element in the answer sheet.   
 
60) Class name [1 point] 

61) Constructor definition [1 point] 

62) Assignment statement [1 point] 

63) Comment [1 point] 

64) Instance variable declaration [1 point] 

65) Actual parameter (argument) [1 point] 

66) Formal parameter [1 point] 

67) Statement that displays information [1 point] 

68) Access (Visibility) control modifier [1 point] 

69) Accessor method definition [1 point] 

70) Mutator method definition [1 point] 

71) Creation/instantiation of an object [1 point] 

72) Method call/invocation [1 point] 

73) Method return type specification [1 point] 

74) Superclass name [1 point] 

75) Subclass name [1 point] 

76) Interface name [1 point] 

77) Name of a class that implements an interface [1 point] 

78) Method overloading (identify one of the methods that is overloaded) [1 point] 

 
 



328 APPENDIX A  EXAM QUESTIONS   
 

Use the class Si mpl ePar ams  and Si mpl ePar amsApp defined below to answer questions 
79–82. 
publ i c c l ass Si mpl ePar ams ( )  {  

pr i vat e doubl e _dat a;  
 

publ i c Si mpl ePar ams( )  {  
_dat a = 5. 75;  

}  
 

publ i c St r i ng met hod1( St r i ng s)  {  
r et ur n s + “ addi t i onal  st uf f ”;  

}  
 

publ i c voi d met hod2( i nt  i nput )  {  
i nt  t emp = i nput  + 1;  
Syst em. out . pr i nt l n( “I nput  was:  “ + i nput   

+ “ and t emp i s:  “ + t emp) ;  
}  

 
publ i c voi d met hod3( doubl e i nput )  {  

_dat a = i nput ;  
}  

 
publ i c doubl e get Dat a( )  {  

  r et ur n _dat a;  
 }  
} / / Si mpl ePar ams 
 
publ i c c l ass Si mpl ePar amsApp {  
 
 publ i c Si mpl ePar amsApp( )  {  
 
  Si mpl ePar ams sp = new Si mpl ePar ams( ) ;  
  doubl e answer 79 = sp. get Dat a( ) ;  
 
  St r i ng answer 80 = sp. met hod1( “ Si mpl e st uf f . ” ) ;  
 
  sp. met hod2( 6) ;   / / Needed f or  quest i on 81 
 
  sp. met hod3( 3. 8) ;  
  doubl e answer 82 = sp. get Dat a( ) ;  
 }  
  

publ i c st at i c voi d mai n( St r i ng[ ]  ar gs)  {  
  Si mpl ePar amsApp spa = new Si mpl ePar amsApp( ) ;  
 }  
} / / Si mpl ePar amsApp 



APPENDIX A  EXAM QUESTIONS 329  

 

79) When the code for Si mpl ePar amsApp is executed, what value will answer79 be assigned? 
[1 point] 
 
 
 
 
 
 
 
 
 
 
80) When the code for Si mpl ePar amsApp is executed, what value will answer80 be assigned? 
[1 point] 
 
 
 
 
 
 
 
 
 
 
81) When the code for Si mpl ePar amsApp is executed, and met hod2 is called with the value 
6, as indicated in the code with a comment, what text will be outputted? [1 point] 
 
 
 
 
 
 
 
 
 
82) When the code for Si mpl ePar amsApp is executed, what value will answer82                                                                                                                         
be assigned? [1 point] 
 
 
 
 
 
 
 
 
 



330 APPENDIX A  EXAM QUESTIONS   
 

Use the following variables and their values to evaluate the expressions given in questions 83 - 
91.  Suppose each expression is executed independently (ie – no later expression depends on a 
result of a previous expression). 
  
i nt  a = 4;     doubl e d = 4. 5;  
i nt  b = 6;     doubl e e = 3. 3;  
i nt  c = - 3;     doubl e f  = 0. 5;  
 
bool ean g = t r ue;  
bool ean h = f al se;  
bool ean i  = t r ue;  
 
 
83)  ( a + b)  *  ( c – c)  [1 point] 
 
 
 
 
 
84)  ( d /  f )  + ( a % b)  [1 point] 
 
 
 
 
 
85)  b < c [1 point] 
 
 
 
 
 
86)  d ! = f  [1 point] 
 
 
 
 
 
87) ( g && h)  | |  ( ! i  && h)  [1 point] 
 
 
 
 
 
 
 
 



APPENDIX A  EXAM QUESTIONS 331  

 

Now suppose the following lines of code have been executed.  The variables a and c  refer back 
to the previous page. 
 

i nt  x = a;  
i nt  y = c++;  

 
88) What is the value of x? [1 point] 
 
 
 
 
 
89) What is the value of y? [1 point] 
 
 
 
 
 
90) What is the value of c? [1 point] 
 
 
 
 
 
 
91) The following line of code does not compile (e & b refer back to the previous page).  What 
do you need to do to get the line of code to work? [4 points] 
 

i nt  z = e *  b;  
 
(Circle all answers from the choices below that would make the code compile.) 

i. You need to cast b to be a double. 
j. You need to cast b to be an integer. 
k. You need to cast e to be an integer. 
l. You need to cast e to be a double. 
m. You need to cast the result of e *  b to be an integer. 
n. You need to cast the result of e *  b to be a double. 
o. You need to make z  a double. 
p. You need to make z  an object. 

 
 
 
 
 
 
 



332 APPENDIX A  EXAM QUESTIONS   
 

Use the code for the method exp1 given below to answer questions 92 - 93. 
 
publ i c doubl e exp1 ( i nt  x1,  i nt  x2,  i nt  y1,  i nt  y2)  {  
 i nt  t empX = ( x2 – x1)  *  ( x2 – x1) ;  
 i nt  t empY = ( y2 – y1)  *  ( y2 – y1) ;  
 
 r et ur n Mat h. sqr t ( t empX + t empY) ;  
}  
 
 
Suppose that the exp1 method is called in the following way: 
 

exp1( 12,  16,  24,  27) ;  
 
 
92) What is the value that will be computed for t empX while the method is running? [1 point] 
 
 
 
 
93) What value is returned from the method call? [1 point] 
 
 
 
Use the code for the class Condi t i onal  given below to answer questions 94 – 96.  For 
questions 94 – 96, you are presented with a method call.  In the space provided, you should give 
the value that is returned from the method call. 
 
publ i c c l ass Condi t i onal  {  
 

publ i c St r i ng cond2 ( doubl e i nput )  {  
i f  ( i nput  <= 5. 0 && i nput  >= 0. 0)  {  
 r et ur n “ Fi r st  Br anch” ;  
}  
el se i f  ( i nput  > 5. 0 | |  i nput  <= - 2. 0)  {  

r et ur n “ Second Br anch” ;  
}  
el se {  

r et ur n “ Thi r d Br anch” ;  
}  

}  
}  
 
94) cond2( 3. 5) ;  [1 point] 
95) cond2( 7. 345) ;  [1 point] 
96) cond2( - 1. 9) ;  [1 point] 



APPENDIX A  EXAM QUESTIONS 333  

 

Use the code for the class Looper  given below to answer questions 97 – 100.  For questions 97 
– 100, you are presented with a method call.  In the space provided, you should give the value 
that is returned from the method call. 
 
publ i c c l ass Looper  {  
 
 publ i c i nt  l oop1( i nt  i nput )  {  

f or  ( i nt  i  = 1;  i  <= 20;  i ++)  {  
i nput ++;  

}  
r et ur n i nput ;  

}  
  
 publ i c i nt  l oop2( )  {  
  f or  ( i nt  count er  = 10;  count er  > 0;  count er  = count er  
– 2)  {  
   Syst em. out . pr i nt l n( “count er  = “ + count er ) ;  
  }  
  r et ur n 0;  
 }  
 
 publ i c i nt  l oop3( i nt  i nput )  {  
  whi l e ( i nput  < 10)  {  
   i nput  = i nput  *  2;  
  }  
  r et ur n i nput ;  
 }  
}  
 
97) l oop1( 20) ;  [1 point] 
 
 
 
 
98) l oop2( ) ;  [1 point] 
 
 
 
 
99) l oop3( 3) ;  [1 point] 
 
 
 
 
100) l oop3( 32) ;  [1 point] 
 



334 APPENDIX A  EXAM QUESTIONS   
 

For questions 101 – 103, you will be filling in the methods for the class St r i ngFun as 
described in each question.  The empty skeleton for this class is given below for reference.  You 
will fill in the areas with the ellipses (…).  Please also note the abbreviated API given for both the 
j ava. i o. Buf f er edReader  class as well as the St r i ng class as these could be of help to 
you while answering these questions. 
 
i mpor t  j ava. i o. * ;  
 
publ i c c l ass St r i ngFun {  
 pr i vat e j ava. ut i l . Ar r ayLi st <St r i ng> _st r i ngs;  
 
 publ i c St r i ngFun( )  {  
  _st r i ngs = new j ava. ut i l . Ar r ayLi st <St r i ng>( ) ;  

 }  
 
 / / Loads t he st r i ngs f r om t he f i l e speci f i ed i nt o t he 

Ar r ayLi st  
 publ i c voi d l oadFi l e( St r i ng f i l ename)  { [  
  . . .  
 }  
 
 / / I ndi cat es t he number  of  St r i ngs i n t he Ar r ayLi st  t hat  ar e 
t he r i ght  s i ze 
 publ i c i nt  r i ght Si ze( )  {  
  . . .   
 }  
 
 / / Count s t he t ot al  number  of  l et t er  Ps i n al l  t he st r i ngs 
i n t he Ar r ayLi st  
 publ i c i nt  count Ps( )  {  
  . . .  
 }  
}  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX A  EXAM QUESTIONS 335  

 

 
Abbreviated API  for  java.io.BufferedReader  (from Sun’s Java API  docs) 

 

Constructor  Summary 

BufferedReader( Reader  i n)   
          Create a buffering character-input stream that uses a default-sized input buffer. 

 

 

Method Summary 

 voi d close( )   
          Close the stream. 

 i nt  read( )   
          Read a single character. 

 i nt  read( char [ ]  cbuf ,  i nt  of f ,  i nt  l en)   
          Read characters into a portion of an array. 

 St r i ng readLine( )   
          Read a line of text. 

 
 
 

Abbreviated API  for  java.lang.Str ing (from Sun’s Java API  docs) 
 

  Method Summary 

 char  charAt( i nt  i ndex)   
          Returns the char  value at the specified index. 

 i nt  compareTo( St r i ng anot her St r i ng)   
          Compares two strings lexicographically. 

 i nt  compareToIgnoreCase( St r i ng st r )   
          Compares two strings lexicographically, ignoring case differences. 

 bool ean endsWith( St r i ng suf f i x)   
          Tests if this string ends with the specified suffix. 

 bool ean equals( Obj ect  anObj ect )   
          Compares this string to the specified object. 

 bool ean equalsIgnoreCase( St r i ng anot her St r i ng)   
          Compares this St r i ng to another St r i ng, ignoring case 
considerations. 

 i nt  length( )   
          Returns the length of this string. 



336 APPENDIX A  EXAM QUESTIONS   
 

 St r i ng replace( char  ol dChar ,  char  newChar )   
          Returns a new string resulting from replacing all occurrences of 
ol dChar  in this string with newChar . 

 bool ean startsWith( St r i ng pr ef i x)   
          Tests if this string starts with the specified prefix. 

 St r i ng substring( i nt  begi nI ndex)   
          Returns a new string that is a substring of this string. 

 St r i ng substring( i nt  begi nI ndex,  i nt  endI ndex)   
          Returns a new string that is a substring of this string. 

 St r i ng toLowerCase( )   
          Converts all of the characters in this St r i ng to lower case using the 
rules of the default locale. 

 St r i ng toUpperCase( )   
          Converts all of the characters in this St r i ng to upper case using the 
rules of the default locale. 

 St r i ng toUpperCase( Local e l ocal e)   
          Converts all of the characters in this St r i ng to upper case using the 
rules of the given Local e. 

 St r i ng trim( )   
          Returns a copy of the string, with leading and trailing whitespace omitted. 

 
 
 
101) In your answer booklet, you will finish writing the code for the method l oadFi l e.  Note 
that some of the code is already written for you.  The file is already loaded into the 
Buf f er edReader .  Your task is to read each line of the file and input each one into the 
Ar r ayLi st .  Please note that we are also assuming that some other object will handle the 
exceptions that might be thrown. [8 points] 
 

publ i c voi d l oadFi l e( St r i ng f i l ename)  t hr ows 
Fi l eNot FoundExcept i on,   

I OExcept i on {  
 
 Buf f er edReader  i n = new Buf f er edReader ( new 
Fi l eReader ( f i l ename) ) ;  
  / / Your  code begi ns her e.  
  / / Wr i t e your  code i n t he answer  bookl et .  
 
 
 
 
 



APPENDIX A  EXAM QUESTIONS 337  

 

 }  
 
 
102) Write the code for the method r i ght Si ze so that it returns the number of strings in 
_st r i ngs  whose length is between 3 and 10 characters inclusive. [8 points] 
 
 publ i c i nt  r i ght Si ze( )  {  
  / / Wr i t e t he code f or  t hi s met hod i n your  answer  
bookl et  
 
 
 
 
 
 
 
 
 }  
 
103) Write the code for the method count Ps  so that it returns the total number of occurences of 
the letter P in all of the strings in _st r i ngs .  Your method should count both lower case (p) and 
upper case (P) letters. [8 points] 
  
 publ i c i nt  count Ps( )  {  
  / / Wr i t e t he code f or  t hi s met hod i n your  answer  
bookl et  
 
 
 
 
 
 
 
 
 
 }  
 
 
 
 
 
 
 
 
 
 
 



338 APPENDIX A  EXAM QUESTIONS   
 

Use the following code segment for the classes named Types , Thi ng, and Dr i ver , the 
interface named Col or abl e, and your knowledge of Java to answer the questions 104 – 113.  If 
the question has multiple choices, you should circle the letter of the best answer for each 
question, unless instructed otherwise. 
 
 
publ i c i nt er f ace Col or abl e {  
 publ i c voi d set Col or  ( j ava. awt . Col or  col or ) ;  
 publ i c j ava. awt . Col or  get Col or ( ) ;  
} / / Col or abl e 
 
publ i c c l ass Thi ng i mpl ement s Col or abl e{  
 pr i vat e j ava. awt . Col or  _col or ;  
 
 publ i c Thi ng( )  {  
  _col or  = j ava. awt . Col or . WHI TE;  
 }  
 
 publ i c voi d set Col or  ( j ava. awt . Col or  col or )  {  
  _col or  = col or ;  
 }  
 
 publ i c j ava. awt . Col or  get Col or ( )  {  

  r et ur n _col or ;  
}  

} / / Thi ng 
 
 
 
publ i c c l ass Types {  
 pr i vat e Thi ng _t hi ng;  
 pr i vat e i nt  _number ;  
 
 publ i c Types( )  {  
  _t hi ng = new Thi ng( ) ;  
  _number  = 0;  
 }  
 
 publ i c voi d i ncr ement Number  ( i nt  i ncr ement )  {  

 _number  += i ncr ement ;  
}  

} / / Types 
 
 
 
 
 



APPENDIX A  EXAM QUESTIONS 339  

 

publ i c c l ass Dr i ver  {  
 publ i c Dr i ver ( )  {  
  i nt  i  = 5;  

Col or abl e t  = new Thi ng( ) ;  
/ / Li ne f or  quest i on 109 i nser t ed her e 
t hi s. changePar ams( i ,  t ) ;  

 }  
 
 publ i c voi d changePar ams ( i nt  i nput ,  Col or abl e t hi ng)  {  
  i nput  = i nput  *  2;  
  t hi ng. set Col or ( j ava. awt . Col or . RED) ;  
 }  
 
 publ i c st at i c voi d mai n ( St r i ng[ ]  ar gs)  {  
  Dr i ver  d = new Dr i ver ( ) ;  
 }  
} / / Dr i ver  
 
 
104) What is the value of _t hi ng before the constructor is run for the class Types? [1 point] 
  a. A null reference. 
  b. A random value assigned value assigned by the compiler.  
  c. An object of type Thi ng whose instance variables are set to null. 
  d. _t hi ng does not exist before the constructor is run. 
 
105) What is the value of _number  after  the constructor is run for the class Types? [1 point] 
  a. null 
  b. 0 
  c. -1 
  d. undefined 
 
106) Which of the variables presented in this code segment are object references?  Circle the 
letters of all that apply. [5 points] 
  a. _col or  
  b. _t hi ng 
  c. _number  
  d. i ncr ement  
  e. i  
  f. t  
  g. i nput  
  h. t hi ng 
  i. d 
  j.  None of these variables are references. 
  k. All of these variables are references. 
 



340 APPENDIX A  EXAM QUESTIONS   
 

107) Which of the members (variables or methods) from the class Types  are accessible from 
outside the class?  Circle the letters of all that apply. [6 points] 
 a. _t hi ng 
 b. _number  
 c. Types( )  constructor 
 d. i ncr ement Number ( i nt  i ncr ement )  method 
 e.  None of the members are accessible outside of the class. 
 f.  All of the members are accessible outside of the class. 
 
108) Which of the members from the class Dr i ver  are not local and only accessible from inside 
the class?  Circle the letters of all that apply. [6 points] 

a. i  
 b. t 
 c. Dr i ver ( )  constructor 
 d. changePar ams( i nt  i nput ,  Col or abl e t hi ng)  method 
 e. mai n( St r i ng[ ]  ar gs)  method 
 f.  None of the members are only accessible from inside the class. 
 
109) Suppose we add the following line to the constructor in the space indicated by the comments 
in Dr i ver : [1 point] 
 t  = i ;  
Is this valid?  What would happen? 

a. It is perfectly valid.  The code would run. 
b. It is valid.  The type of i is a primitive and t is an object type and you can always assign a 

primitive type to any object type because primitives are subclasses of objects. 
c. This is not valid.  The code would compile, but would cause a run-time error. 
d. This is not valid.  The code would not compile because t and i are not of compatible types. 

 
110) Under what circumstances would you be allowed to add the following line of code to the 
end of the class Dr i ver ’ s constructor: [1 point] 

t  = new Ot her Thi ng( ) ;  
 

e. No special circumstances, this line of code would always work. 
f. Only when Ot her Thi ng is a subclass of Thi ng. 
g. Only when Ot her Thi ng is a superclass of Thi ng. 
h. This line of code would never work because the declared type of t  is Thi ng, so you 

must assign a Thi ng object to t . 
 
 
111) Looking at the code for Dr i ver , what is the value of i  after the method changePar ams 
has been called? [1 point] 

e. The value is unchanged, 5. 
f. The value is 2 times the value, 10. 
g. The value is 0 because i  was never initialized. 
h. The value will be null because you can not change the value of i  from within a method. 



APPENDIX A  EXAM QUESTIONS 341  

 

112) Again looking at the code for Dr i ver , after the method changePar ams  has been called 
in the constructor, suppose we add the following line of code:  
 j ava. awt . Col or  col or  = t . get Col or ( ) ;  
 
What would be the value of color? [1 point] 

e. java.awt.Color.WHITE 
f. java.awt.Color.RED 
g. java.awt.Color.PINK 
h. null 

 
 
For questions 113 - 115, use the following code to help you answer the questions. 
 
publ i c  c l ass Bal l  {  
 
 pr i vat e j ava. awt . Col or  _col or ;  
 
 publ i c  Bal l ( )  {  
  _col or  = j ava. awt . Col or . GREEN;  
 }  
 
 publ i c  j ava. awt . Col or  get Col or ( )  {  
  r et ur n _col or ;  
 }  
 
 publ i c  voi d set Col or  ( j ava. awt . Col or  col or )  {  _col or  = col or ;  }  
}  
 
publ i c  c l ass Dr i ver  {  
 
 publ i c  Dr i ver ( )  {  
  Bal l  bal l  = new Bal l ( ) ;  
  bal l . set Col or ( j ava. awt . Col or . RED) ;  
 
  Bal l  bal l 2 = new Bal l ( ) ;  
  bal l 2 = bal l ;               / / Quest i on 113 r ef er s up t o t hi s 
poi nt  
 
  bal l . set Col or ( j ava. awt . Col or . BLUE) ;           / / Quest i on 114 
code 
  j ava. awt . Col or  quest i on114 = bal l 2. get Col or ( ) ;  
/ / Quest i on114 code 
 
  bal l 2 = new Bal l ( ) ;                            / / Quest i on 
115 code 
  bal l 2. set Col or ( j ava. awt . Col or . BLACK) ;          / / Quest i on 
115 code 
  j ava. awt . Col or  quest i on115 = bal l . get Col or ( ) ;   
/ / Quest i on115 code 

}  



342 APPENDIX A  EXAM QUESTIONS   
 

 
 publ i c  st at i c  voi d mai n( St r i ng[ ]  ar gs)  {  
  Dr i ver  d = new Dr i ver ( ) ;  
 }  
}  
 
113) After the line of code in Dr i ver  that reads 
  bal l 2 = bal l ;  
is executed, which reference refers to a green ball? [1 point] 
 

e.  bal l  
f .  bal l 2 
g. both bal l  and bal l 2 
h. neither bal l  or bal l 2 

 
114) Focus your attention on the lines of code that is the code for Question 114 as indicated by 
comments.  What will the value of the variable quest i on114 be? [1 point] 

e.  j ava. awt . Col or . RED 
f .  j ava. awt . Col or . GREEN 
g.  j ava. awt . Col or . BLUE 
h. no color – it will be an error 

 
115) Focus your attention on the lines of code that is the code for Question 115 as indicated by 
comments.  What will the value of the variable quest i on115 be? [1 point] 

e.  j ava. awt . Col or . RED 
f .  j ava. awt . Col or . GREEN 
g.  j ava. awt . Col or . BLUE 
h.  j ava. awt . Col or . BLACK 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX A  EXAM QUESTIONS 343  

 

Use the UML diagram given below as well as the code segment given after the diagram to answer 
questions 116 – 127. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



344 APPENDIX A  EXAM QUESTIONS   
 

/ *  The c l asses gi ven bel ow wer e wr i t t en f or  t he pur poses of  t hi s exam.  
I n  
 *  r eal i t y ,  t hey woul d each be i n t hei r  own separ at e f i l e,  but  ar e 
r epr i nt ed  
 *  her e as one l ong f i l e f or  ease of  r eadi ng.  Thi s “ pr i nt - out ”  spans 
t wo 
 *  pages,  so pl ease l ook at  bot h pages whi l e answer i ng t he f ol l owi ng  
 *  quest i ons.  
* /  
 
publ i c  c l ass App {  
 
    pr i vat e Puppy _puppy;  
    pr i vat e I D _i d;  
 
    publ i c  App ( ) {  
 Syst em. out . pr i nt l n( " App const r uct or  cal l ed. " ) ;  
 _puppy = new Puppy( new Toy( ) ) ;  
 t hi s. set I D( new I D( t hi s,  _puppy) ) ;  
 Syst em. out . pr i nt l n( " App const r uct or  end. " ) ;  
    }  
 
    publ i c  voi d set I D( I D i d)  {  
 _i d = i d;  
    }  
 
    publ i c  st at i c  voi d mai n ( St r i ng[ ]  ar gs)  {  
 App app = new App( ) ;  
    }  / /  end of  mai n ( )      
} / /  App 
 
publ i c  i nt er f ace Col or abl e {  
   j ava. awt . Col or  get Col or ( ) ;  
   voi d set Col or ( j ava. awt . Col or  col or ) ;  
} / /  Col or abl e 
 
publ i c  c l ass I D i mpl ement s Col or abl e{  
 
   pr i vat e Ani mal  _ani mal ;  
   pr i vat e j ava. awt . Col or  _col or ;  
 
   publ i c  I D ( App app,  Ani mal  ani mal ) {  
      _ani mal  = ani mal ;  
      _col or  = j ava. awt . Col or . BLACK;  
   }  
 
   publ i c  j ava. awt . Col or  get Col or ( )  {  
      r et ur n _col or ;  
   }  
 
   publ i c  voi d set Col or ( j ava. awt . Col or  col or )  {  
      _col or  = col or ;  



APPENDIX A  EXAM QUESTIONS 345  

 

   }  
} / /  I D 
 
publ i c  c l ass Ani mal  {  
   pr i vat e Toy _t oy;  
 
   publ i c  Ani mal  ( ) {  _t oy = new Toy( ) ;  }  
 
   publ i c  Ani mal  ( Toy t oy)  {  _t oy = t oy;  }  
 
   pr ot ect ed Toy get Toy( )  {  r et ur n _t oy;  }  
 
   publ i c  voi d somet hi ngShoul dHappen( )  {  _t oy. doSomet hi ng( ) ;  }  
} / /  Ani mal  
 
publ i c  c l ass Puppy ext ends Ani mal {  
   publ i c  Puppy( )  { }  
 
   publ i c  Puppy ( Toy t oy) {  
      super ( t oy) ;  
      t hi s. doSomet hi ngWi t hThi sCol or ( t hi s. get Toy( ) . get Col or ( ) ) ;  
   }  
 
   publ i c  voi d doSomet hi ngWi t hThi sCol or ( j ava. awt . Col or  col or )  {  
      t hi s. get Toy( ) . set Col or ( col or . dar ker ( ) ) ;  
   }  
 
   publ i c  voi d somet hi ngShoul dHappen( )  {  
      super . somet hi ngShoul dHappen( ) ;  
      t hi s. get Toy( ) . doNot hi ng( ) ;  
   }  
} / /  Puppy 
 
publ i c  c l ass Toy {  
   pr i vat e j ava. awt . Col or  _col or ;  
   pr i vat e St r i ng[ ]  _sounds;  
 
   publ i c  Toy ( ) {  _col or  = j ava. awt . Col or . RED;  }  
   publ i c  voi d set Col or ( j ava. awt . Col or  col or )  {  _col or  = col or ;  }  
   publ i c  j ava. awt . Col or  get Col or ( )  {  r et ur n _col or ;  }  
 
   publ i c  voi d doSomet hi ng( )  {  
      _sounds = new St r i ng[ 20] ;  
      f or  (  i nt  count  = 0;  count  < _sounds. l engt h;  count ++)  {  
  _sounds[ count ]  = " Squeak" ;  
      }  / /  end of  f or  ( )  
      Syst em. out . pr i nt l n( _sounds) ;  
   }  
   publ i c  voi d doNot hi ng( )  {  
      / / Thi s met hod r eal l y  does not hi ng.  
   }  
} / /  Toy 



346 APPENDIX A  EXAM QUESTIONS   
 

For questions 116 – 125, assume the following variable declarations.  Note that any ellipses (…) 
indicates material that will not affect your answer to the question and can be safely ignored.  For 
each of the method calls in questions 116 - 125, you should circle the name of the class/interface 
that defines the method that will be executed for the method call.  If the call is Illegal, circle the 
choice that corresponds to “ Illegal” . 
 
Colorable c = new ID(…); 
Animal animal = new Puppy(); 
Puppy puppy = new Puppy(); 
 
116) c. get Col or ( ) ;  [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 

 
117) c. set Col or ( …) ;  [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 

 
118) c. set I D( ) ;  [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 

 
119) ani mal . get Toy( ) ;  [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 



APPENDIX A  EXAM QUESTIONS 347  

 

l. ID 
m. Toy 
n. Illegal 
 

120) ani mal . somet hi ngShoul dHappen( ) ;  [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 

 
121) ani mal . doSomet hi ngWi t hThi sCol or ( …) ;   [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 

 
122) puppy. somet hi ngShoul dHappen( ) ;  [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 

 
123) puppy. doSomet hi ngWi t hThi sCol or ( …) ;  [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 

 
 
 



348 APPENDIX A  EXAM QUESTIONS   
 

124) puppy. get Toy( ) ;  [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 
 

125) puppy. get Col or ( ) ; [1 point] 
 

h. App 
i. Animal 
j. Puppy 
k. Colorable 
l. ID 
m. Toy 
n. Illegal 

 
Recall that questions 126 – 127 still refer to the UML diagram and code used for questions 116-
125. 
 
126) Circle the names of all methods that are simply inherited (not overridden) by some other 
class.  If no methods are inherited, circle the choice that corresponds to “None” . [6 points] 
 

m. void main (String[] args) //in class App 
n. void setColor(java.awt.Color color) //in class ID 
o. Animal () //in class Animal 
p. Animal (Toy toy) //in class Animal 
q. Toy getToy() //in class Animal 
r. void somethingShouldHappen() //in class Animal 
s. Puppy () //in class Puppy 
t. Puppy (Toy toy) //in class Puppy 
u. void somethingShouldHappen() //in class Puppy 
v. void doSomethingWithThisColor(java.awt.Color color) //in class Puppy 
w. void setColor(java.awt.Color color) //in class Toy 
x. None 

 
 
127) Is the method somet hi ngShoul dHappen in the class Puppy  partially overridden or 
totally overridden? [1 point] 

c. Partially overridden 
d. Totally overridden



 

 349 

Appendix B  

Grading Guideline for Exam 

The table below gives the categorization of each of the questions on the exam as well 

as the point value for each question.  The categories are: 

o MC1A: Multiple choice question where students are asked to provide one 

answer 

o MCMA:  Multiple choice question where students are asked to provide all 

possible answers from a list of choices 

o FR1A:  Free response question (no choices given) where there is a clearly 

correct and usually short answer 

o FRCA:  Free response question (no choices given) where the answer may be 

slightly more complex than a short answer, or the grading might allow for 

partial credit 

o SG:  Question that has been designated as subjective.  The content of the 

answer is sufficiently complex that there is much room for variance among 

answers.  It is recommended that whenever possible, these questions be 



350 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

graded by more than one rater and the raters’  ratings are compared for 

consistency.  If it is not possible, it would be best if one rater graded one 

question for the entire group of exams.  If neither of the above are possible 

and the grading must be split amongst multiple graders, it is recommended 

that the graders grade the same questions at the same time and engage in 

discourse about how they have interpreted the guideline so as to ensure 

consistency of scoring.  This is probably best achieved if the grading takes 

place in the same location. 

Question 
Number 

Question 
Category 

Number of 
Choices 

Total Points 
Possible for 

Question 

Individual 
Choice 

Weights36 
1 FRCA N/A37 8 N/A 
2 FRCA N/A 3 N/A 
3 FRCA N/A 8 N/A 
4 MC1A 9 1 N/A 
5 SG N/A 8 N/A 
6 FR1A N/A 1 N/A 
7 FR1A N/A 1 N/A 
8 FR1A N/A 1 N/A 
9 SG N/A 8 N/A 
10 SG N/A 8 N/A 
11 SG N/A 8 N/A 
12 SG N/A 8 N/A 
13 FR1A N/A 1 N/A 
14 FR1A N/A 1 N/A 
15 FR1A N/A 1 N/A 
16 FR1A N/A 1 N/A 
17 FR1A N/A 1 N/A 
18 FRCA N/A 3 N/A 
19 FRCA N/A 8 N/A 

                                                 
36 See Grading Non-Multiple Choice Questions section for more information about partial credit for 
multiple choice questions where students may need to circle more than one answer. 
37 N/A means the column category is not applicable to that particular question. 



APPENDIX B  GRADING GUIDELINE FOR EXAM 351 

 

20 MCMA 9 4.5 0.5 
21 MCMA 4 4 1 
22 MC1A 3 1 N/A 
23 SG N/A 8 N/A 
24 FRCA N/A 6 N/A 

Question 
Number 

Question 
Category 

Number of 
Choices 

Total Points 
Possible for 

Question 

Individual 
Choice 
Weights 

25 FRCA N/A 6 N/A 
26 FRCA N/A 6 N/A 
27 FRCA N/A 6 N/A 
28 FRCA N/A 6 N/A 
29 FRCA N/A 6 N/A 
30 FRCA N/A 6 N/A 
31 FRCA N/A 6 N/A 
32 MCMA 6 6 1 
33 MCMA 6 6 1 
34 MCMA 6 6 1 
35 MCMA 6 6 1 
36 MCMA 6 6 1 
37 MCMA 6 6 1 
38 MCMA 6 6 1 
39 MCMA 6 6 1 
40 MC1A 4 1 N/A 
41 MC1A 4 1 N/A 
42 MC1A 4 1 N/A 
43 SG N/A 3 N/A 
44 SG N/A 3 N/A 
45 FRCA N/A 7 N/A 
46 MC1A 2 1 N/A 
47 MC1A 2 1 N/A 
48 MC1A 2 1 N/A 
49 MC1A 2 1 N/A 
50 MC1A 2 1 N/A 
51 MCMA 4 4 1 
52 FR1A N/A 1 N/A 
53 FR1A N/A 1 N/A 
54 FR1A N/A 1 N/A 
55 FR1A N/A 1 N/A 
56 MCMA 10 5 0.5 
57 SG N/A 4 N/A 



352 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

58 SG N/A 4 N/A 
59 SG N/A 8 N/A 
60 FRCA N/A 1 N/A 
61 FRCA N/A 1 N/A 
62 FRCA N/A 1 N/A 

Question Number Question 
Category 

Number of 
Choices 

Total Points 
Possible for 

Question 

Individual 
Choice 
Weights 

63 FRCA N/A 1 N/A 
64 FRCA N/A 1 N/A 
65 FRCA N/A 1 N/A 
66 FRCA N/A 1 N/A 
67 FRCA N/A 1 N/A 
68 FRCA N/A 1 N/A 
69 FRCA N/A 1 N/A 
70 FRCA N/A 1 N/A 
71 FRCA N/A 1 N/A 
72 FRCA N/A 1 N/A 
73 FRCA N/A 1 N/A 
74 FRCA N/A 1 N/A 
75 FRCA N/A 1 N/A 
76 FRCA N/A 1 N/A 
77 FRCA N/A 1 N/A 
78 FRCA N/A 1 N/A 
79 FR1A N/A 1 N/A 
80 FR1A N/A 1 N/A 
81 FR1A N/A 1 N/A 
82 FR1A N/A 1 N/A 
83 FR1A N/A 1 N/A 
84 FR1A N/A 1 N/A 
85 FR1A N/A 1 N/A 
86 FR1A N/A 1 N/A 
87 FR1A N/A 1 N/A 
88 FR1A N/A 1 N/A 
89 FR1A N/A 1 N/A 
90 FR1A N/A 1 N/A 
91 MCMA 8 4 0.5 
92 FR1A N/A 1 N/A 
93 FR1A N/A 1 N/A 
94 FR1A N/A 1 N/A 
95 FR1A N/A 1 N/A 



APPENDIX B  GRADING GUIDELINE FOR EXAM 353 

 

96 FR1A N/A 1 N/A 
97 FR1A N/A 1 N/A 
98 FR1A N/A 1 N/A 
99 FR1A N/A 1 N/A 
100 FR1A N/A 1 N/A 

 
Question Number Question 

Category 
Number of 

Choices 
Total Points 
Possible for 

Question 

Individual 
Choice 
Weights 

101 SG N/A 8 N/A 
102 SG N/A 8 N/A 
103 SG N/A 8 N/A 
104 MC1A 4 1 N/A 
105 MC1A 4 1 N/A 
106 MCMA 11 5.5 0.5 
107 MCMA 6 6 1 
108 MCMA 6 6 1 
109 MC1A 4 1 N/A 
110 MC1A 4 1 N/A 
111 MC1A 4 1 N/A 
112 MC1A 4 1 N/A 
113 MC1A 4 1 N/A 
114 MC1A 4 1 N/A 
115 MC1A 4 1 N/A 
116 MC1A 7 1 N/A 
117 MC1A 7 1 N/A 
118 MC1A 7 1 N/A 
119 MC1A 7 1 N/A 
120 MC1A 7 1 N/A 
121 MC1A 7 1 N/A 
122 MC1A 7 1 N/A 
123 MC1A 7 1 N/A 
124 MC1A 7 1 N/A 
125 MC1A 7 1 N/A 
126 MCMA 12 6 0.5 
127 MC1A 7 1 N/A 

 



354 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

The table beginning on page 9 gives the answers to the questions that are multiple 

choice (both MC1A and MCMA) as well as those that are free response, but have one 

clearly recognizable answer (FR1A). 

For multiple choice questions with only one answer (MC1A) or free response one 

answer (FR1A) questions, the answer is either correct or incorrect, no partial credit is 

awarded.  Each of these questions is worth 1 point and either the student earns the point 

for the correct answer, or does not earn credit if the answer is incorrect. 

For any question that is free response, a student may give extraneous information that 

is not asked for by the question.  If the extraneous information is correct, neither award, 

nor deduct points.  If the information is not correct, a deduction of one point should be 

made for the question no matter how many pieces of extraneous information were given.  

If incorrect extraneous information is given on the next question as well, another one 

point deduction is appropriate.  Essentially, each question should be treated individually 

in this case.  If the student gives incorrect extraneous information for every question on 

the exam, they will be deducted one point for every question on the exam. 

For multiple choice questions with more than one answer (MCMA), grading is based 

on the correct state of each of the choices for the question.  That means, if an answer is 

supposed to be circled and it is, the student earns the appropriate credit, either 1 point or 

½ point (refer to first table for correct point value).  If an answer is not supposed to be 

circled and it is not, the student earns the appropriate credit.  If the answer should be 

circled and it is not the student does not earn credit.  Likewise, if the answer was not 



APPENDIX B  GRADING GUIDELINE FOR EXAM 355 

 

circled and should have been circled the student does not earn credit.  Let’s look at a few 

examples of this.  The first example is a question where each answer choice is worth one 

point.  The second example is a question where each answer choice is worth ½ point. 

Question X (Total points: 4; each choice 1):   
Answer Choices:  A    B    C    D 
Correct Answers:  B    D 
 
Student Answers:  B    D 
Earns: 4 points 
Reason:  A & C are correctly not answers and B & D are answers, all choices in correct 
state. 
 
Student Answers:  A    B    D 
Earns: 3 points 
Reason:  Choices B, C, and D are in the correct state.  Choice A is not, so the student 
loses 1 point. 
 
Student Answers:  B 
Earns:  3 points 
Reason:  Choices A, B, and C are in the correct state.  Choice D is not, so the student 
loses 1 point. 
 
Student Answers:  B    C 
Earns:  2 points 
Reason:  Choices A and B are in the correct state.  Choices C and D are not, so the 
student loses 2 points. 
 
Student Answers:  A    C 
Earns: 0 points 
Reason:  None of the choices are in the correct state. 
 

 

 

 



356 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

Question Y (Total points: 4, each choice ½ ): 
Answer Choices:  A    B    C    D    E    F    G    H 
Correct Answers:  B    C    F    G    H 
 
Student Answers:  B    C    F    G    H 
Earns: 4 points 
Reason:  All Choices are in the correct state, answers are circled, non-answered are not. 
 
Student Answers: B    C    F    H 
Earns: 3.5 points 
Reason:  Choice G is missing from the answers, but all other choices in correct state. 
 
Student Answers:  A    B    F    G   H 
Earns: 3 points 
Reason:  Choices B, D, E, F, G, and H are in the correct state Choices A and C are not. 
 
Student Answers:  B    D    E    F    G    H 
Earns: 2.5 points 
Reason:  Choices A, B, F, G, and H are in the correct state.  Choices C, D, and E are not. 
 
Student Answers:  A    B    C    E    F 
Earns: 2 points 
Reason:  Choices B, D, E, and F are in the correct state.  Choices A, C, G, and H are not. 
 
Student Answers:  A    B    C    D    E 
Earns: 1 point 
Reason:  Choices B and C are not.  Choices A, D, E, F, G, and H are not. 

 

 

 

 

 
 
 
 
 



APPENDIX B  GRADING GUIDELINE FOR EXAM 357 

 

Question 
Number 

Question 
Category 

Correct Answers 

4 MC1A D 
6 FR1A 50 
7 FR1A 0 
8 FR1A 49 
13 FR1A q 
14 FR1A b, f, g, k, g, n, r, s, or v  (only one answer needed, but any of these 

answers is correct) 
15 FR1A 0 or 1 (depending on what students were taught) 
16 FR1A 3 (if answer to 15 was 0) or 4 (if answer to 15 was 1) 
17 FR1A p 
20 MCMA B    C    E 
21 MCMA A    C 
22 MC1A C 
32 MCMA B    C    D    E    F 
33 MCMA C    D    E    F 
34 MCMA E    F 
35 MCMA E    F 
36 MCMA E    F 
37 MCMA D   E    F 
38 MCMA A 
39 MCMA B    C 
40 MC1A A 
41 MC1A A 
42 MC1A A 
46 MC1A A 
47 MC1A B 
48 MC1A A 
49 MC1A B 
50 MC1A B 
51 MCMA A    D 
52 FR1A 2 
53 FR1A 4 
54 FR1A 1 
55 FR1A Infinite loop 
56 MCMA C    D    G 
79 FR1A 5.75 
80 FR1A Simple stuff.  additional stuff 
81 FR1A Input was 6 and tamp is: 7 
82 FR1A 3.8 



358 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

83 FR1A 0 
84 FR1A 13 
85 FR1A false38 
86 FR1A true 
87 FR1A false 
88 FR1A 4 
89 FR1A -3 
90 FR1A 2 
91 MCMA C    E    G 
92 FR1A 16 
93 FR1A 5 
94 FR1A “First branch”  
95 FR1A “Second branch”  
96 FR1A “Third branch”  
97 FR1A 40 
98 FR1A 0 
99 FR1A 12 
100 FR1A 32 
104 MC1A A 
105 MC1A B 
106 MCMA A    B    F    H    I 
107 MCMA C    D 
108 MCMA F 
109 MC1A D 
110 MC1A B 
111 MC1A A 
112 MC1A B 
113 MC1A D 
114 MC1A C 
115 MC1A C 
116 MC1A E 
117 MC1A E 
118 MC1A G 
119 MC1A B 
120 MC1A C 
121 MC1A G 
122 MC1A C 
123 MC1A C 

                                                 
38 For questions 85, 86, and 87, students are asked to evaluate an expression in Java that uses booleans.  No 
credit should be given if the words true and/or false are not given.  The letters T or F, the values 0 or 1, or 
the words TRUE or FALSE are not the boolean constants in Java and should receive no credit. 



APPENDIX B  GRADING GUIDELINE FOR EXAM 359 

 

124 MC1A B 
125 MC1A G 
126 MCMA E 
127 MC1A A 
 

Grading Non-Multiple Choice Questions 

Free response complex answer questions have slightly more complex answers or 

slightly more complex grading rules than the free response one answer questions.  For 

each of the questions that fall into this category, the answers to the questions are given as 

well as any necessary explanation of the point breakdown. 

Recall the discussion in the previous section about incorrect extraneous information.  

The same rules apply for these questions. 

 

 

 

 

 

 

 



360 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

Question 
Number 
(FRCA) 

Total Points 
Possible for 

Question 

Answer Notes about Grading 

1 8 

 

Eight points awarded if tree is 
correct.  If one or two nodes 
are misplaced in the tree, 
student earns 4 points.  If 
more than two nodes are 
misplaced, student earns 0 
points. 

2 3 34, 26, 30 There are three “places”  for 
answers for this question.  
Each place should be treated 
as a separate answer.  The 
first place should contain the 
number 34.  If it does, award 
one point.  The second place 
should contain the number 
26.  If it does, award one 
point.  The third place should 
contain the number 30.  If it 
does, award one point. 

3 8 Will vary depending on what deletion 
strategy was taught at a particular 

institution. 

To earn eight points (full 
credit), the tree given as an 
answer must be a valid binary 
search tree (BST) containing 
all of the nodes of the original 
except 34.  If the student 
produces a valid BST that is 
missing one node in addition 
to 34, award only 4 points.  If 
the student produces a BST 
that has greater than one node 
missing in addition to 34 (ie – 
an entire branch of the 
original tree has been deleted 
with the root), award zero 
points.  If the tree given was 
not a valid BST, award zero 
points. 

18 3 k and g and r One point for each correct 
answer given.  All three 
answers need to be given for 
full credit.  Additional 
answers that are not correct 
do not earn any credit, but 



APPENDIX B  GRADING GUIDELINE FOR EXAM 361 

 

they do not lose any credit 
either. 

19 8 

 

If all nodes present and all 
arcs correct connecting nodes, 
award eight points.  If the 
student has arcs B to D 
(perhaps twice), D to A, and 
F to C, they have just tried to 
copy the adjacency list into a 
graph and do not understand 
how to translate between the 
two and should be awarded 
zero points. 

24 6 Hash Map No other answers correct for 
this question.  If other 
answers listed along with this 
answer, award only 3 points 
of the 6 possible. 

25 6 Stack No other answers correct for 
this question.  If other 
answers listed along with this 
answer, award only 3 points 
of the 6 possible. 

26 6 Queue No other answers correct for 
this question.  If other 
answers listed along with this 
answer, award only 3 points 
of the 6 possible. 

27 6 Graph & Tree The answers graph and tree 
are required and earn 3 points 
each for a total of 6 points.  If 
the student wrote Hash Map, 
the student should not earn 
additional credit, or lose any 
points.  If other answers are 
listed beside the three 
mentioned, subtract 3 points 
from the total earned, but the 
point value should not go 
below zero. 

28 6 Array No other answers correct for 
this question.  If other 
answers listed along with this 
answer, award only 3 points 
of the 6 possible. 

29 6 Queue No other answers correct for 



362 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

this question.  If other 
answers listed along with this 
answer, award only 3 points 
of the 6 possible. 

30 6 Hash Map No other answers correct for 
this question.  If other 
answers listed along with this 
answer, award only 3 points 
of the 6 possible. 

31 6 Graph No other answers correct for 
this question.  If other 
answers listed along with this 
answer, award only 3 points 
of the 6 possible. 

45 7 1, log n, n, n2, 2n, n!, nn There are seven “places” for 
answers for this question.  
Each place should be treated 
as a separate answer.  The 
first place should contain 1.  
If it does, award one point.  
The second place should 
contain log n.  If it does, 
award one point.  The third 
place should contain n.  If it 
does, award one point.  The 
fourth place should contain 
n2, and so on.  

60 1 Any one of: App, ID, Animal, Puppy, 
Toy 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

61 1 Student should circle the entirety of the 
constructor definition from the word 

public to the } .  There are constructors 
for App, ID, Animal (2 constructors 

present), Puppy, and Toy. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 



APPENDIX B  GRADING GUIDELINE FOR EXAM 363 

 

markings are illegible). 
62 1 Students should circle any statement 

that performs assignment (using =).  
The entire statement including the ; 
should be circled.  Examples are: 
_puppy =new Puppy( new 

Toy( ) ) ;  
_ani mal  = ani mal ;  

_col or  
=j ava. awt . Col or . BLACK;  

_col or  = col or ;  
_t oy = t oy;  

_col or  = 
j ava. awt . Col or . RED;  

i nt  count  = 0;  

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

63 1 Students can identify either a multi-line 
comment (indicated by the /*  and 

ended with * /) or an in-line comment 
(indicated by //).  The entire comment 

should be circled for full credit. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

64 1 The declaration of an instance variable 
is not the assignment of that variable to 

a value.  Examples of this include: 
pr i vat e Puppy _puppy;  

pr i vat e I D _i d;  
pr i vat e Ani mal  _ani mal ;  

pr i vat e Toy _t oy;  
pr i vat e St r i ng[ ]  _sounds;  

pr i vat e j ava. awt . Col or  
_col or ;  

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

65 1 The actual parameter is the value 
passed into a method call.  Therefore, 

this answer must be in a method call to 
be correct.  Some examples include: 
“ App const r uct or  cal l ed. ”  

new Toy( )  
t hi s 

puppy 
“ App const r uct or  end”  

t hi s. get Toy( ) . get Col or ( )  
col or . dar ker ( )  

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 



364 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

_sounds  
66 1 The formal parameter is the parameter 

declared in the method signature.  This 
declaration includes both the type and 
name of the parameter and both must 

be circled for full credit.  Some 
examples include: 

I D i d 
St r i ng[ ]  ar gs 

j ava. awt . Col or  col or  
App app 

Ani mal  ani mal  
Toy t oy  

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

67 1 Any statement that is of the form 
Syst em. out . pr i nt l n displays 

information to wherever out points to.  
The entire System.out statement should 

be circled for full credit. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

68 1 The access control modifiers for Java 
are publ i c , pr i vat e, and 

pr ot ect ed.  Circling any one of 
these will earn full credit. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

69 1 Accessors get information from the 
instance variables.  They commonly 
have the name getX.  The only three 
accessors are get Col or  defined in 
ID, get Toy  defined in Animal, and 

get Col or  defined in Toy.  The entire 
method definition from public to the }  

needs to be circled for full credit. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

70 1 Mutators set the information stored in 
the instance variables.  They 

commonly have the name setX.  The 

One point if code segment 
identified correctly, zero 
points if not identified 



APPENDIX B  GRADING GUIDELINE FOR EXAM 365 

 

only three mutators are set I D defined 
in App, set Col or  defined in ID, and 

set Col or  defined in Toy.  The 
entire method definition from public to 
the }  needs to be circled for full credit. 

correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

71 1 Objects are created by using the 
keyword new in Java.  Anytime new is 
used in code an object is created.  The 

examples in this code are: 
new Toy( )  

new I D( t hi s,  puppy)  
new App( )  

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

72 1 Examples of method calls in the code 
are: 

Syst em. out . pr i nt l n( “ App 
const r uct or  cal l ed. ” )  

 
t hi s. set I D( new I D( t hi s,  

puppy) )  
 

Syst em. out . pr i nt l n( “ App 
const r uct or  end. ” )  

 
_t oy. doSomet hi ng( )  

 
super ( t oy)  

 
t hi s. doSomet hi ngWi t hThi sCo
l or ( t hi s. get Toy( ) . get Col or

( ) ) ;  
 

t hi s. get Toy( ) . get Col or ( )  
 

Thi s. get Toy( )  
 

t hi s. get Toy( ) . set Col or ( col
or . dar ker ( ) )  

 
Col or . dar ker ( )  

 
super . somet hi ngShoul dHappe

n( )  

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 



366 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

 
t hi s. get Toy( ) . doNot hi ng( )  

 
Syst em. out . pr i nt l n( _sounds

)  
 

Any call to the constructor will also be 
accepted for full credit for this 

question. 
73 1 The method return type is specified in 

the method signature before the name 
of the method.  If the method does not 
return anything the keyword void is 
used.  In this code, return types are 

voi d, j ava. awt . Col or , and Toy .  
These words must be circled in the 
method signature to be given full 

credit. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

74 1 The name of the superclass of a class 
follows the keyword extends.  In this 
code, the only superclass is Ani mal , 

which is the superclass of Puppy. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

75 1 In this code, Puppy  is the subclass of 
Animal.  This is the only example of 

inheritance in the code given. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

76 1 The only interface declared in this code 
example is Col or abl e. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 



APPENDIX B  GRADING GUIDELINE FOR EXAM 367 

 

being identified for which 
question (ie – the numbers or 
markings are illegible). 

77 1 The only class that implements an 
interface in this code example is I D. 

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

78 1 In the class Animal, the constructor is 
overloaded, so either one can be 

identified for full credit.  In Puppy, the 
constructor is overloaded as well, so 
either one can be identified for full 

credit.  

One point if code segment 
identified correctly, zero 
points if not identified 
correctly.  Zero points if more 
than one segment identified 
for each question.  Zero 
points if it is not clear what is 
being identified for which 
question (ie – the numbers or 
markings are illegible). 

 

Subjective questions will be the most time consuming of the questions on the exam to 

grade.  All but four of these questions involve grading student code segments.  When 

grading a segment of student code, the syntax of the code is not what is graded.  

However, the syntax will be present the answer and will play some role in the grading by 

way of helping the rater to see if the student understands how to solving the problem. 

Grading will be using a triage system of grading.  Eight points is awarded for an 

answer that has all sufficiently used the main themes of the answer.  Each question’s 

themes are given in the chart following this section.  If some, but not all of the themes are 



368 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

present or adequately addressed, four points is awarded.  If none of the themes are 

present or adequately addressed, zero points are awarded. 

However, the fundamental pieces of each question are the main themes addressed by 

each answer, not the intricate syntactic minutia of the particular language of 

implementation.  This means, that if the correct name for a method is add and the 

student writes i nser t  instead, points should not be deducted for this mistake, provided 

that an API was not given to help answer a particular question. 

These details are further elaborated in the grading guideline chart for each question 

given below.  Note that question 43, 44, 57, and 58 are not coding questions and have 

different point breakdowns. 

Question 
Number 

(SG) 

Total Points 
Possible for 

Question 
Further discussion of grading of question 

5 8 Student must demonstrate the ability to use an iterator or a for-each 
loop, and properly use the color when calling the setColor method.  If 
no iterator is used, zero points awarded.   
 
For an iterator, the exact method names (hasNext() and next()) are 
not necessary for full credit, but a loop stopping when there are no 
more elements and getting the next element are necessary.  (4 points) 
 
Inside the loop, student must call the setColor method passing the 
elements from the collection in as parameters. (4 points) 
 
If using a for-each loop, syntax does not have to be perfect, but 
student must demonstrate knowledge that the structure is for-each 
element of the collection named colorsForBackground (4 points), call 
setColor and pass in each element in the body of the for-each loop (4 
points). 

9 8 Creating a new array that is larger than the array passed in as a 
parameter (4 points). 
 



APPENDIX B  GRADING GUIDELINE FOR EXAM 369 

 

Copying contents of original array into new larger array (4 points).   
   
New array should not simply be one bigger than previous array.  
Preferable is an array that is twice as big as the original, but any 
significant growth will suffice (the benchmark was a growth of 10 
elements). 
If the new array is not sized big enough, award only 4 points.   

10 8 Creating a new array of the appropriate size (4 points). 
 
Inserting appropriate elements into array (4 points). 
 
Values that are inserted into the array are squares of the array index.  
The correct syntax for squaring a number should be something like: 
element *  element.  However, full credit should be awarded for 
variations like element^2 or element2. 
 

11 8 Basic find structure (ie looping through the structure and maintaining 
some sort of “ flag”  about the status of the search, and returning that 
value when the search is over). [4 points] 
 
In this case, it is important for the student to realize that this structure 
does not have an iterator and needs a system of nested loops to search 
it. [4 points]  
 
Of secondary importance is the actual syntax for dealing with a 2D 
array.  Syntax can be incorrect and student should still earn full 
points if all the above criteria are met. 
 
If only basic find structure is there, or if an iterator is used in one 
loop instead of nested loops, or if there is simply only one loop used, 
award only four points. 

12 8 The programmer must be sure to maintain the linkage of the nodes in 
the list after the node is removed. 
 
There are a few cases that must be given some sort of consideration 
in the code to receive full credit: 
 

- Finding the node that is to be removed (using a loop of some 
sort) 

- The case when the node to be removed is the head of the list 
- The case when the node to be removed is somewhere in the 

middle of the list or at the end of the list 
 
Missing one of the above bullet points constitutes a question only 
receiving half credit (4 points).  Missing more than one will result in 
receiving 0 points. 



370 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

 
In each of these cases, there is what we describe as a “null-check”  
that should be performed in order to successfully restore the links of 
the list.  For example, every call to getNext() or getPrev() should be 
preceded by a check to make sure that null is not returned.  These 
checks of the values in the list indicate a student that really has a 
mastery of the material, but is not an integral part of the nature of 
deleting a node from this structure.  Therefore, if a student does not 
provide adequate checking, but satisfies the bullet points above, they 
should not be deducted points.  

23 8 Students should receive full credit only if they express both the ideas 
that: 

− when a class inherits from a superclass, it inherits the 
superclass’  methods 

− a stack should only be LIFO and have methods push, pop, 
peek 

 
If only one of these ideas is adequately expressed, award only 4 
points. 

43 3 One point awarded for student indicating that the statement was false. 
 
Two points awarded for the correction of the Big-O statement, 
stating: 
n3 + 2n + 25 = O(n3) or any other proper Big-O bounds.   
 
If the student selects true, zero points awarded. 

44 3 The answer to this question is true, so three points are awarded if true 
is answered, zero points if false is chosen. 

57 4 Base case of recursion must be given.  
 
 The base cases are L(1) = 1 and L(2) = 1.  
  
If only one is given, award half credit.   
 
If only L(1) and L(2) are listed, award full credit. 
   
If the answer given is 1, do not award any credit. 

58 4 Recursive case of recursion must be given.   
 
The recursive case is L(n) = L(n-1) + L(n-2) where n > 2.  
 
 If all parts are correct and n>2 is the only thing missing, award full 
credit.  
 
 If L(n) is given as the recursive case and L(1) and L(2) are given as 
answers to 57, award full credit.  



APPENDIX B  GRADING GUIDELINE FOR EXAM 371 

 

 
 If the expression L(n-1) + L(n-2) is given, award zero points. 

59 8 Both base cases return the correct value (4 points). 
 
Recursive case correct computes the value (4 points). 
 
If the method is not recursive, award zero points. 

101 8 Loop through the file.  End of file not specified in API, so a 
reasonable guess as to how to know when the file is at end is 
acceptable for full credit (4 points). 
 
Place each line of the file in the array list (4 points).  Recall that 
exact name of insert method on ArrayList is not necessary for full 
credit. 
 
Note: If student writes something similar to this: 
While (in.readLine() != xxx) {  
//some code that calls readLine() again 
}  
Only award 4 points 

102 8 Loop through the collection of strings and keep count of number of 
strings that are correct size/length (4 points). 
 
The ability to find in the API the method that can be used to find the 
string’s length (4 points). 
 
While student were given the parameters for the correct size, the idea 
of correct size is more important than exactness.  For example, 
incorrect boundary conditions should still receive full credit. 
 
Students should not receive full credit for using incorrect method 
name for length in this case because the API for the String class was 
given to them.  Only award 4 points if student uses incorrect name. 
 

103 8 Loop through the collection of strings and look at each string in that 
collection to find the number of Ps in that string and then in the 
overall collection (4 points). 
 
The ability to find in the API the methods which would be most 
useful for finding the Ps in the string (4 points). 
 
If student performs operations correctly, but does not check for both 
upper and lower case p, full credit should still be awarded.  
 
Students should not receive full credit for using incorrect method 
names for length or other string operations they may choose to use in 



372 APPENDIX B  GRADING GUIDELINE FOR EXAM   
 

this case because the API for the String class was given to them.  
Only award 4 points if student uses incorrect names. 
 

 

To compute the student’s score on the exam, you should add up the total points 

earned and divide by the total number of points on the test (354 if using all the questions 

on the exam), and then multiplying by 100 to get a percentage score.



 

 373 

Appendix C  

Reviewer Questionnaire 

Thank you for agreeing to review this assessment instrument for CS1-CS2. 
 
As you may know, the exam is designed to be paradigm-independent, so a student who takes an 
objects-first, imperative-first, or functional-first CS1 should be able to successfully complete this 
exam. 
 
However, the creation of this exam presented two unique challenges.  First, there is a lot of 
material in the first year courses.  Some of the material may not be represented in the exam due to 
time considerations.  This is a three-hour, pencil and paper exam, which limited the scope and 
amount of questions that could be on the exam. 
 
Second, it is important to remember the nature of programming-first approaches to CS1-CS2.  
Many of the questions on this test needed code examples or require the student to write code.  
Therefore, a language needed to be chosen for the exam.  This version of the exam is a Java 
version.  It is expected that future instructors who use the exam will be able to change the 
language to one that is most appropriate for their students.   
 
To complete the review of this exam, I would appreciate your answers to the following questions.  
You only need to provide me with an electronic version of your responses to the questions, so 
please feel free to insert them directly into this document after each question.   
 
In addition, if you feel you have other comments to offer about the exam or about particular 
questions, please feel free to give comments directly on the exam itself (using the Word 
commenting features or whatever method you’d prefer).  If you have commented, please send the 
commented version back to me.  Otherwise, all you need to send is this questionnaire. 
 
Thank you again. 
 
 
 
 
 
 
 



374 APPENDIX C  REVIEWER QUESTIONNAIRE   
 

 
Name of Reviewer: 
 
Institution: 
 
Language used in CS1/CS2: 
 
Approach used in CS1/CS2 (objects-first, etc): 
 
 

1. What is your overall impression of this exam?  Please feel free to speak specifically about 
the difficulty of questions, the nature of the questions (analysis of code, versus code 
generation, etc), the type of questions (multiple-choice, short answer, etc) or any other 
impressions you have about the exam. 

 
2. Aside from any language issue, would you feel comfortable giving this exam at the end 

of your CS2 course?  With the present content, do you believe it adequately covers the 
material presented during your first year courses?  If you have reservations about giving 
the exam, what are they?  

 
3. Are there any topics that you feel are given too much coverage in the exam? 

 
4. Are there topics that you feel are missing that would dramatically improve the exam 

without extending it beyond the constraints of a three-hour paper and pencil exam? 
 

5. If you have any comments, criticisms, or suggestions about a particular question or 
directions for a particular question set, please indicate those here.  Please include 
question numbers. 

 
6. Please add any additional comments here



 

 375 

Appendix D  

Demographic Questionnaire 

Please take a moment to fill out these demographic questions before beginning the exam.  
Please do not place your name or person number on this demographic questionnaire.  If 
there is a question you do not feel comfortable answering, please leave the answer blank.  
There are a total of 15 questions. 
 
1. What is your gender? 

a. Male 
b. Female 

 
 
2. What is your age? 

a. 18 
b.  19 
c.  20 
d.  21 
e.  22 
f.   23 
g.  24 
h. 25 – 29 
i. 30 – 34 
j.  35 – 39 
k.  40 – 44 
l.  45 – 49 
m.  50 and over 

 
 
3. What is your year in school? 

a.  Freshman 
b.  Sophomore 
c. Junior 
d. Senior 



376 APPENDIX D  DEMOGRAPHIC QUESTIONNAIRE   
 

4. What is your major? 
a.  Computer Science 
b.  Computer Engineering 
c. Other (Please indicate) 
 

 
 ________________________________________________________________ 
 
5. If you are not a computer science/engineering major, are you planning to pursue a 
minor? 

a. YES 
b.  NO 

 
6. Did you take CSE 115 at UB? (If no, skip to question 9) 

a.  YES 
b.  NO 

7. Which semester did you take CSE 115? 
 
 
 
 
 
8. Did you ever fail CSE 115? 

a. YES 
b. NO 

 
9. If you did not take CSE 115 at UB, why not? 

a. AP credit 
b.  Transfer credit from another school  

   
Give name of school: _______________________________________________ 
 

c. Other (please state reason – like “not a major” ) 
 

 
 ________________________________________________________________ 
 

________________________________________________________________ 
 

10. Did you take CSE 116 at UB? (If no, skip to question 13) 
a. YES 
b.  NO 

 



APPENDIX D  DEMOGRAPHIC QUESTIONNAIRE 377 

 

11. Which semester did you take CSE 116? 
 
 
12.  Did you ever fail CSE 116? 

a. YES 
b. NO 

 
13. If you did not take CSE 116 at UB, why not? 

a. AP credit 
b.  Transfer credit from another school  

   
Give name of school: _______________________________________________ 
 

c. Other (please state reason – like “not a major” ) 
 

 
 ________________________________________________________________ 
 

________________________________________________________________ 
 

14. Please circle the number of years programming experience you had with the 
following languages prior to taking CSE 115 and CSE 116 (or equivalent courses).  If 
you did not program in that language prior to CSE 115 & CSE 116, do not circle any 
answer.  There is space at the end to insert other languages not given in the list. 
 
C  

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
C++ 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
Java 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 



378 APPENDIX D  DEMOGRAPHIC QUESTIONNAIRE   
 

HTML 
a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
Perl 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
JavaScript 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
VB 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
 
VBScript 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
Fortran 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
BASIC 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 



APPENDIX D  DEMOGRAPHIC QUESTIONNAIRE 379 

 

Assembly 
a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
Other (Give Name) 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
Other (Give Name) 

a.  1 year  
b. 2 years  
c.  3 years   
d.  4+ years 

 
 
 
 
 
15. What was the first programming language you programmed in ever? 

a. C 
b. C++ 
c. Java 
d. VB 
e. Basic 
f. Other (Please state): 



 

 380 



 

 381 

Appendix E  

Analysis of Raters of Exam 

Question 5 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Correc
ted 

Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 4 

2003 

2 0 

0 2 

The student did not demonstrate proper 
creation of iterator nor use it to cycle 
through the elements (called 
collectionName.getNext() instead of 
iterator.getNext()). 

1 4 
2009 

2 0 
0 2 Student did not use iterator at all.  

1 4 
2049 

2 0 
0 2 Student did not use iterator at all. 

1 4 
2050 

2 0 
0 2 Student did not use iterator at all. 

1 8 
3030 

2 0 
4 Neither 

The mechanism for looping with the 
iterator is incorrect, but the other aspects 
are good. 

1 4 

3133 

2 8 

4 1 

Student does not demonstrate knowledge 
of what for-each loop does by their 
parameter to setColor, they are trying to 
access the element in the collection by a 
color (the type, not a value). 

1 8 

3253 

2 0 

0 2 

Student does not use iterator properly, 
using a counter for looping and does not 
call setColor appropriately or even pass 
in a parameter.  Too many errors 



382 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

1 0 

3261 

2 4 

0 1 

Student does not use iterator properly 
and does not access elements from the 
collection properly in neither case using 
the name of the collection, but rather the 
type. 

1 4 
3262 

2 0 

0 2 
Student uses name of collection as name 
of iterator, not proper looping with 
iterator, not proper call to setColor. 

1 8 
3276 

2 4 
8 1 

Student uses type instead of name of 
collection in for-each loop, but still 
knew the form of the loop. 

1 4 
3352 

2 0 

0 2 
Student not appropriately using iterator 
and loop combination.  Calling setColor 
and passing in the iterator. 

1 0 
3399 

2 4 

0 1 
Student uses name of collection as name 
of iterator, not proper looping with 
iterator, not proper call to setColor. 

 

Question 9 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Correc
ted 

Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 8 
2002 

2 4 
8 1 

Student penalized too harshly for not 
returning array. 

1 4 
2003 

2 0 

4 1 

Student creates new array of bigger size 
appropriately but does not demonstrate 
knowledge of copying elements from old 
array to new one. 

1 4 
2004 

2 8 
8 2 

Student penalized too harshly for not 
sizing array to double in the new array.  

1 4 
2007 

2 8 
8 2 

Student put [] in front of array, one 
grader took off half credit for this. 

2009 1 4 8 Neither Student penalized for using 



APPENDIX E  ANALYSIS OF RATERS OF EXAM 383 

 

2 0 
System.arrayCopy.  This is appropriate 
for this question.  

1 4 
2015 

2 8 

8 2 
Student penalized too harshly for not 
sizing array to double in the new array. 
The new size was still large enough. 

1 4 
2022 

2 8 
4 1 

Student does not correctly create the 
new, bigger array. 

1 4 
2025 

2 8 

8 2 
Student penalized too harshly for not 
sizing array to double in the new array.  
The new size was still large enough. 

1 4 
2028 

2 8 

8 2 
Student penalized too harshly for not 
sizing array to double in the new array.  
The new size was still large enough. 

1 4 
2030 

2 8 

8 2 
Student penalized too harshly for not 
sizing array to double in the new array.  
The new size was still large enough. 

1 4 
2038 

2 8 

8 2 
Student penalized too harshly for not 
sizing array to double in the new array.  
The new size was still large enough. 

1 8 

3109 

2 4 

8 1 

Student mixed array notation and 
method calls.  However, they created the 
new array appropriately and did move 
the elements, but in a syntactically 
incorrect way.  

1 8 

3124 

2 4 

4 2 

Student uses clone to copy array, which 
would be ok, if not perfect syntax except 
for the fact that they assign the reference 
from the new array to the clone of the 
original, thereby erasing the resizing.  
Student has some understanding, but not 
full understanding.   

1 4 
3131 

2 8 
8 2 

Student code has all required parts and is 
actually syntactically perfect as well.  
Simple grader error.  

1 8 
3135 

2 4 
8 1 

One grader too harsh about correct 
syntax for System.arrayCopy. 



384 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

1 4 
3185 

2 8 

4 1 
Student using for-each inappropriately 
with array.  Believes it loops through 
indices, but it does not. 

1 8 
3186 

2 4 
4 2 

Student did not appropriately 
demonstrate knowledge of copying from 
old array to new array. 

1 8 
3308 

2 4 
4 2 

Student did not appropriately 
demonstrate knowledge of copying from 
old array to new array.   

1 8 
3329 

2 4 
4 2 

Student did not appropriately 
demonstrate knowledge of copying from 
old array to new array. 

1 4 
3352 

2 8 
8 2 

Student penalized too harshly for not 
returning array.   

1 0 
3353 

2 4 
4 2 

Grader error – student should have 
received half. 

1 4 
3372 

2 0 

4 1 

Student has half of the themes – creating 
an array of bigger size, but did not 
demonstrate knowledge of copying from 
old array to new array. 

1 8 
3376 

2 4 
8 1 

Student penalized too harshly for not 
returning array.   

1 8 
3395 

2 4 
4 2 Student did not create the array.  

1 0 
3399 

2 4 

0 1 

Student has no clear understanding of 
syntax of arrays.  Brackets everywhere 
with no rhyme or reason.  Too much 
confusion – zero points. 

1 8 
3423 

2 4 
8 1 

Student penalized too harshly for not 
returning array. 

1 4 
3438 

2 0 

0 2 

Student clobbers over reference to array 
by reassigning it to old array – 
demonstrating lack of fundamental 
knowledge about arrays.   

1 8 
3460 

2 4 
4 2 

Student did not appropriately 
demonstrate knowledge of copying from 
old array to new array.   

1 4 
3475 

2 0 
4 1 

Grader error – student should have 
received half. 

 



APPENDIX E  ANALYSIS OF RATERS OF EXAM 385 

 

Question 10 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Correct
ed 

Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 4 
2007 

2 8 
8 2 

Student put [] in front of array name.  
One grader took off half credit for this. 

1 4 
3052 

2 0 

0 2 
Declares private variables in method, 
does not create array of appropriate size, 
does not use indices of array properly. 

1 8 

3069 

2 0 

4 Neither 

Creating an iterator that is not used in 
the code (not needed and not 
appropriate).  However, student created 
array of appropriate size and attempted 
to put the correct values in it, but using a 
method instead of the index, so half 
credit is most appropriate. 

1 8 
3177 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array. 

1 8 
3186 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.   

1 8 
3203 

2 4 
4 2 

Student inserted incorrect value into 
array. 

1 8 
3220 

2 4 
4 2 

Student inserted incorrect value into 
array. 

1 8 
3225 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.   

1 4 
3262 

2 0 
4 1 

Creates array incorrectly, but then 
inserts properly.  

1 8 
3276 

2 4 

4 2 

Student did not do assignment into array, 
but knew that cubing was important.  
Too much confusion about issue for full 
credit. 

1 8 
3302 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.  

1 8 
3329 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.   

3372 1 8 4 2 Not appropriately using loop variable as 



386 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

2 4 
index and calling a weird getIndex() 
method.   

1 8 
3374 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.   

1 8 
3382 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.   

1 8 
3423 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.   

1 8 
3438 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.   

1 8 
3447 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.  

1 8 
3460 

2 4 
8 1 

Grader too harsh about syntactic issue 
with inserting into array.   

 

Question 11 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Correct
ed 

Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 4 
2025 

2 0 

8 Neither 
Basic find structure present using two 
loops even if syntax not perfect.  Graders 
too harsh about syntactic issues.   

1 8 
2034 

2 4 
8 1 

One grader believed that the code would 
not work – in fact it is syntactically 
perfect.   

1 8 
2036 

2 4 
8 1 

One grader believed that the code would 
not work – in fact it is syntactically 
perfect.   

1 4 

2038 

2 0 

4 1 

Student shows a nested looping structure, 
but believes that exceptions will be thrown 
if and if-statement does not evaluate to 
true.  Fundamental issues about code that 
deserved only half credit. 

1 4 
3076 

 
2 8 

8 2 

Basic find structure present using two 
loops even if syntax not perfect.  One 
grader was too harsh about syntactic 
issues.   



APPENDIX E  ANALYSIS OF RATERS OF EXAM 387 

 

1 4 3171 
 2 8 

8 2 
One grader too harsh about syntactic issues 
with looping structure.   

1 0 3217 
 2 4 

4 2 
Student believed that for-each loop would 
work and did not have two loops, but basic 
find structure is there.   

1 0 3261 
 2 4 

4 2 
Student believed that one loop would work 
if based on size of the structure, but basic 
find structure is there.   

1 8 
3374 

 
2 4 

4 2 

Student believed that one loop would work 
if based on size of the structure, but basic 
find structure is there – should have been a 
deduction for not using two loops.   

1 4 3395 
 2 0 

0 2 
Student using double as name of array, not 
array name.   

1 0 3438 
 2 4 

4 2 
Student believed that one loop would work 
if based on size of the structure, but basic 
find structure is there.  

1 0 
3447 

2 4 
4 2 

Student believed that one loop would work 
if based on size of the structure, but basic 
find structure is there.   

 

Question 12 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Corrected 
Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 0 
2007 

2 4 

0 1 

Student did not handle head case.  
Loop is present, but the reference does 
not seem to advance.  Does not link up 
around deleted node properly.   

1 0 
2009 

2 4 
4 2 

Student has loop for finding node in 
place, but other issues not properly 
addressed.   

1 8 
3005 

2 4 
4 2 

Not covering head case (missed by one 
grader) 



388 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

1 0 

3066 

2 8 

4 Neither 

Received zero points initially because 
the grader thought that the structure did 
not contain a loop to go through the 
list.  However, it does, but the 
fundamental structure of the code is an 
if-else, where the else case basically 
says loop if _head is null.  There is also 
a problem with the advancement of the 
reference throughout the list.  
However, there is enough internal to 
the code to award half credit, but not 
full credit because of the two above 
mentioned errors.  . 

1 0 
3076 

2 4 
0 1 

Student calling remove method from 
their code – this is the method they 
were supposed to write.   

1 0 

3120 

2 8 

0 1 

Student resetting this to go through the 
list, which would not be appropriate as 
the original this in the method points to 
a list and they are then assigning that 
reference to a node.  They are also not 
handling the head case, or checking for 
nulls.   

1 0 

3135 

2 4 

4 2 

Student used a construct described in 
class to solve this problem (a Visitor). 
This list does not support a visitor, 
which the student pointed out, but 
proceeded to use anyway.  However, if 
the list accepted a visitor, the code is 
almost perfect, warranting half credit.  
This is a case where domain 
knowledge of way the courses are 
taught comes in handy. 

1 4 
3164 

2 8 
4 1 Head case missing.. 

1 4 
3253 

2 0 
4 1 

Head case missing.  However, loops 
through and would work for other 
cases.   

1 4 
3312 

2 8 
8 2 

Has head case and looping structure.  
No null cases checked, but deserving of 
full credit. 

3321 1 8 4 2 Head case missing.  



APPENDIX E  ANALYSIS OF RATERS OF EXAM 389 

 

2 4 
1 4 

3359 
2 0 

0 2 No loop in code.  

1 8 
3409 

2 4 
4 2 Head case missing.  

 

Question 23 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Correct
ed 

Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 8 
2007 

2 4 
8 1 

Student demonstrates why the inheritance 
would break the stack invariant.   

1 8 
2011 

2 4 
8 1 

Student demonstrates why the inheritance 
would break the stack invariant.   

1 8 
2014 

2 4 
8 1 

Student demonstrates why the inheritance 
would break the stack invariant.   

1 8 
2025 

2 0 
4 Neither 

Student expresses what inheritance will do, 
but not what problems it would cause.   

1 4 
2028 

2 8 
4 1 

Student does not express the nature of the 
inheritance relationship accurately in the 
answer.   

1 8 
2038 

2 4 
8 1 

Student demonstrates why the inheritance 
would break the stack invariant.   

1 4 
2046 

2 0 
0 2 

Student does not express either idea 
appropriately.  

1 4 
2049 

2 8 
4 1 

Student expresses stack invariant property, 
but not enough about what would happen in 
the inheritance.   

1 0 

3081 

2 4 

0 1 

Student asserts that stacks are ordered and 
can be popped at the top or pushed at the 
bottom, demonstrating a fundamental 
misunderstanding of the concept of a stack.   

3095 1 4 4 1 
Student did not articulate clearly what the 
invariant of a stack should be or why the 
inheritance gives the “user too much power” .  



390 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

2 8 

However, there is some level of 
understanding that this would be 
inappropriate, so half is more appropriate. 

1 4 

3120 

2 0 

4 1 

Student expresses difference between stack 
and vector and that inheritance would not be 
appropriate because of inheriting methods.  
Ideas not articulated clearly enough to 
illustrate full understanding, but enough to 
allow for half credit. 

1 0 
3146 

2 8 
0 1 

Student does not show understanding of 
issue with why this is a problem.   

1 4 
3164 

2 8 
4 1 

Student demonstrates belief that this should 
not be allowed, but does not articulate why it 
would be inappropriate.   

1 4 
3171 

2 8 

4 1 

Student shows that you should not be 
allowed to access the stack internally, but 
does not clearly state why you would be 
allowed to do so using inheritance.   

1 0 
3174 

2 8 

4 Neither 
Student demonstrates that stack should not 
be accessed in the middle,but not articulated 
enough of the main ideas for full credit.   

1 4 
3177 

2 8 
8 2 

Student does demonstrate understanding of 
issues.   

1 8 
3187 

2 4 
4 2 

Student does not indicate why you would not 
want the stack to inherit the methods from 
vector.   

1 8 
3193 

2 0 

0 2 

Upon a second reading of the answer, the 
grader who gave full credit realized that 
student does not express either of 
fundamental ideas needed for full credit.   

1 4 
3220 

2 8 
4 1 

Student discusses how inheritance works, but 
not about the appropriate invariant for a 
stack.   

1 8 
3262 

2 4 
4 2 

Student demonstrates understanding of what 
inheritance will allow, but not why it is bad.   

1 0 
3382 

2 4 
4 2 

Student demonstrates understanding of what 
inheritance will allow, but not why it is bad. 



APPENDIX E  ANALYSIS OF RATERS OF EXAM 391 

 

1 0 
3389 

2 4 
0 1 

Student demonstrates facts about a stack, but 
cannot put them together to answer question.  
Zero appropriate. 

1 0 
3399 

2 4 
0 1 

Student demonstrates facts about a stack, but 
cannot put them together to answer question.  

1 4 
3401 

2 8 
4 1 

Student demonstrates understanding of what 
inheritance will allow, but not why it is bad.   

1 0 
3404 

2 4 
0 1 

Student demonstrates facts about a stack, but 
cannot put them together to answer question.  

1 8 
3409 

2 4 
8 1 

Student does express both ideas needed for 
full credit.   

1 4 
3447 

2 8 
4 1 

Student demonstrates knowledge of stack 
invariant, but not why inheritance will break 
that.   

 

Questions 57 and 58 

Exam 
Number 

Rater 
Number 

Original 
Grade 
(57) 

Original 
Grade 
(58) 

Correct
ed 

Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 4  

2004 

2 0  

4 1 

One of the graders did not give credit 
when student wrote n=1, n=2, they 
wanted the entire statement.  However, 
if students followed through on 58 
with n > 2, clearly indicating the 
difference between the base case and 
recursive cases. 

2007 1 4 4 
4 (57) 
4 (58) 

1 (57) 
1 (58) 

(57) One of the graders did not give 
credit when student wrote n=1, n=2, 
they wanted the entire statement.  
However, if students followed through 
on 58 with n > 2, clearly indicating the 



392 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

2 0 0 

difference between the base case and 
recursive cases. 
 
(58) Follow through due to answer on 
57. 

1 4  
2009 

2 0  

4 1 

Student uses the values of n as the 
answer, but shows the recursive case 
for 58, putting the three pieces in the 
correct positions. 

1 4 4 

2011 

2 0 0 

4(57) 
4(58) 

1 (57) 
1 (58) 

(57) One of the graders did not give 
credit when student wrote n=1, n=2, 
they wanted the entire statement.  
However, if students followed through 
on 58 with n > 2, clearly indicating the 
difference between the base case and 
recursive cases. 
 
(58) Follow through due to answer on 
57. 

1 4 4 

2014 

2 0 0 

4 (57) 
4 (58) 

1 (57) 
1 (58) 

(57) One of the graders did not give 
credit when student wrote n=1, n=2, 
they wanted the entire statement.  
However, if students followed through 
on 58 with n > 2, clearly indicating the 
difference between the base case and 
recursive cases. 
 
(58) Follow through due to answer on 
57. 

1 4 4 

2015 

2 0 0 

4 (57) 
4 (58) 

1 (57) 
1 (58) 

(57) Student uses the values of n as the 
answer and expresses n > 2 as 
recursive case, which puts the pieces 
in the correct places. 
 
(58) Follow through due to answer on 
57. 



APPENDIX E  ANALYSIS OF RATERS OF EXAM 393 

 

1 4 4 

2025 

2 0 0 

4 (57) 
4 (58) 

1 (57) 
1 (58) 

(57) One of the graders did not give 
credit when student wrote n=1, n=2, 
they wanted the entire statement.  
However, if students followed through 
on 58 with n > 2, clearly indicating the 
difference between the base case and 
recursive cases. 
 
(58) Follow through due to answer on 
57. 

1 4 4 

2034 

2 0 0 

4 (57) 
4 (58) 

1 (57) 
1 (58) 

(57) Student uses L(1) and L(2) for 57 
and L(n) for n > 2 for 58, showing the 
pieces in the correct places. 
 
 
(58) Follow through due to answer on 
57. 

1 4  
2036 

2 0  

4 1 
Student uses L(1) and L(2) for 57 and 
entire recursive case for 58, showing 
the pieces in the correct places. 

1 4 4 

2050 

2 0 0 

4 (57) 
4 (58) 

1 (57) 
1 (58) 

(57) Student uses L(1) and L(2) for 57 
and n > 2 for 58, again showing pieces 
in correct places. 
 
(58) Follow through due to answer on 
57. 

1  0 
3033 

2  4 
4 2 Grader error. 

1 4 0 

3186 

2 2 2 

4 (57) 
0 (58) 

1 (57) 
1 (58) 

(57) Student’s notation for base case 
weird, but idea expressed.  Full credit 
appropriate. 
 
(58) Student did not express n > 2, but 
rather that n != 1 and n!= 2, which 
demonstrates a fundamental mis-
understanding of sequences. 



394 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

1 0 0 

3187 

2 2 4 

2 (57) 
2 (58) 

2 (57) 
Neither 

(58) 

(57) Student gives one of the correct 
base cases, but not both.   
 
(58) Student not using correct notation 
for recursive case, simply writes L(n), 
but since did not get 57 correct, not 
sure if student has complete 
understanding of when the recursive 
case is appropriate. 

1  2 
3189 

2  0 
0 2 

Student lists all cases as recursive 
case.  No understanding of issue.  Zero 
appropriate. 

1  4 

3238 

2  2 

2 2 

Student not using correct notation for 
recursive case, simply writes L(n), but 
since did not get 57 correct, not sure if 
student has complete understanding of 
when the recursive case is appropriate. 

1  4 
3260 

2  0 
0 2 

Grader error – misread student 
response 

1 2  
3312 

2 4  
4 2 

Student mis-copied one of the base 
cases, one grader took off. 

1 2  
3423 

2 4  
4 2 

Student mis-copied one of the base 
cases, one grader took off. 

1  4 
3447 

2  0 
4 1 

Grader error – misread student 
response. 

1  0 
3460 

2  4 

0 1 

Student did not express n > 2, but 
rather that n != 1 and n!= 2, which 
demonstrates a fundamental mis-
understanding of sequences. 

 

Question 59 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Corrected 
Grade 

Correct 
Rater Discussion of Conflict Resolution 

2001 1 4 0 2 
Student confuses recursive definition 
and the name of the method.  Asks if 



APPENDIX E  ANALYSIS OF RATERS OF EXAM 395 

 

2 0 
L(1) = 1 and then does not call method 
again in recursive case, but calls L, 
zero points appropriate. 

1 4 

2007 

2 8 

8 2 

Student has valid recursive method, but 
a helper method that calls it.  Helper 
method would not return the 
appropriate value.  However, the 
student demonstrated the ability to turn 
the recursive formulas into a method. 

1 4 
2011 

2 0 
0 2 

Method is actually not recursive, even 
though base cases are there.   

1 4 
2014 

2 8 

4 1 

Uses the new switch-else construct.  
Even though it is a syntax issue, the 
students should know that those two do 
not mix.   

1 4 
2028 

2 8 

4 1 

Student mixes switch and if together, 
but also does not call method in 
recursive call, but rather copies 
formula.   

1 4 

2046 

2 0 

0 2 

Method does not return anything.  
Switch/otherwise construct used – does 
not call method, but copies the 
formula.  Too many errors – zero 
points. 

1 4 
3052 

2 0 

0 2 

Upon another look at code, there is no 
structure, no method header or body 
evident.  Base cases not used, and not 
really recursive.   

1 0 
3065 

2 4 
0 1 

Base cases not handled appropriately 
and method is not recursive.   

1 0 
3074 

2 4 
0 1 

The method is not recursive as both 
graders noted, but student not 
appropriately penalized.   

1 0 
3076 

2 4 

0 1 

Student not appropriately handling 
base cases, which points to a 
fundamental lack of understanding of 
how recursion works.   

3133 1 0 4 2 
Method is recursive and does have a 
test for a base case, but it is not the 
correct base case.  However, it is what 



396 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

2 4 
the student believes is the base case as 
evidenced by their answer to question 
57.   

1 0 
3171 

2 4 
0 1 

Method not recursive – grader noted, 
but did not deduct properly.   

1 0 
3220 

2 4 

0 1 

Student not appropriately handling 
base cases, which points to a 
fundamental lack of understanding of 
how recursion works.   

1 4 
3225 

2 8 

4 1 

Base case and recursive case switched 
in the code, demonstrating that student 
knew they were important, but has 
them in incorrect order.   

1 4 
3261 

2 8 
4 1 

There is a base case and recursive case 
present, but will not execute correctly, 
method has void return type.   

1 0 
3262 

2 4 
0 1 

The method is not recursive as both 
graders noted, but student not 
appropriately penalized.   

1 8 
3352 

2 4 

0 Neither 

Looking at the code again showed that 
the method was not recursive at all 
meaning that zero points is more 
appropriate. 

1 0 
3475 

2 4 
0 1 

The method is not recursive as both 
graders noted, but student not 
appropriately penalized.  

 

Question 101 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Correct
ed 

 Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 4 
2007 

2 0 
4 1 ReadLine called twice. 

1 8 
2009 

2 4 
4 2 ReadLine called twice.   

1 4 
2011 

2 0 
0 2 

Student not inserting into array list – 
throwing and catching exceptions – calling 
readLine twice and calling output.   

2030 1 4 4 1 Student had improperly inserted into array 



APPENDIX E  ANALYSIS OF RATERS OF EXAM 397 

 

2 0 list and was penalized too harshly for it.   

1 8 
2036 

2 4 
4 2 ReadLine called twice.   

1 4 
2038 

2 0 
8 Neither 

Student believed that readLine() will throw 
an exception at end of file, which is doesn’ t, 
but if it did, code would work.   

1 8 
2049 

2 4 
4 2 ReadLine called twice.   

1 8 
3033 

2 4 
4 2 ReadLine called twice. 

1 4 

3052 

2 0 

0 1 

Creating private, static and final variables 
inside a method.  Arbitrarily deciding that a 
file has a max size of 50.  Calling readLine() 
on the filename (a String), not the 
BufferedReader 

1 8 
3065 

2 4 
4 2 ReadLine called twice.   

1 4 
3069 

2 0 

0 2 
Not appropriately looping through file.  Not 
reading in appropriately (using charAt, which 
is not defined on a BufferedReader).   

1 8 

3074 

2 4 

4 2 

Looping on length of the string that 
represents the filename, not on the length of 
the file.  If student had run loop on in.length, 
full credit would have been appropriate, but 
in this case, half is appropriate. 

1 4 
3095 

2 0 
0 2 

No loop in code, a fact missed by one of the 
graders.   

1 4 
3185 

2 0 

8 Neither 
Student uses loop to go through file and uses 
readLine to read.  Inserts into array list with 
incorrect syntax.  Main points covered.   

1 0 
3225 

2 4 

0 1 
Student looping through the strings in the 
filename (a string), not the BufferedReader 
and not calling read method.   

1 4 
3257 

2 8 
4 1 ReadLine called twice.   

1 8 
3260 

2 4 
4 2 ReadLine called twice.   

1 8 
3262 

2 4 
4 2 ReadLine called twice.   



398 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

1 4 
3312 

2 8 
8 2 

Student believed that readLine() will throw 
an exception at end of file, which is doesn’ t, 
but if it did, code would work.   

1 4 
3323 

2 0 
0 2 

Student used for each loop (array : 
in.readLine()).  Fundamental structure not 
correct.   

1 8 
3399 

2 0 
0 2 

Student trying to read from filename, which 
is a string.   

1 4 
3401 

2 0 
4 1 

Student has loop for reading (although really 
far from correct) and call to readLine.   

1 8 
3423 

2 4 
4 2 

Student runs loop on length of the filename 
(a string) instead of the file.   

1 8 
3432 

2 4 
4 2 ReadLine called twice.   

1 4 
3447 

2 8 

4 1 

Student using eof (which is not Java) which 
would be fine for full credit if the condition 
was to keep reading until !eof, but the 
student keeps going on eof. 

 

Question 102 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Correct
ed 

Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 4 
2011 

2 0 
0 2 

Student using readLine and not appropriately 
looking in collection.   

1 4 
2014 

2 0 
8 Neither 

Both graders putting too much emphasis on 
syntax.  Basic themes present.   

1 4 
2020 

2 8 
8 2 Code correct – grader error.   

1 4 
2028 

2 0 
8 Neither 

Both graders putting too much emphasis on 
syntax.  Basic themes present.   

1 4 
2036 

2 8 
8 2 Code correct – grader error. 

1 4 
2050 

2 0 
8 Neither 

Both graders putting too much emphasis on 
syntax.  Basic themes present.   

1 4 
3029 

2 8 
8 2 

Boundary conditions were given too much 
weight in question. 



APPENDIX E  ANALYSIS OF RATERS OF EXAM 399 

 

1 4 
3069 

2 8 
8 2 

Student used array index notation and one 
grader deducted for this mistake.   

1 8 
3124 

2 4 
8 1 Grader too harsh about returning.   

1 4 
3171 

2 8 
8 2 Grader too harsh about boundary conditions.  

1 0 
3186 

2 4 
4 2 

Weird indicator of the correct size of the 
string, but basic structure present.   

1 4 
3189 

2 8 
8 2 

Grader too harsh about syntax for inserting 
into arraylist.   

1 4 
3217 

2 8 
8 2 Grader too harsh about boundary conditions.  

1 4 
3253 

2 0 
4 1 

Goes through array list to find length of each 
string.  Syntax errors too great for full credit.  

1 8 
3262 

2 4 

4 2 

Knows to check length of string for bounds 
and increments count correctly, but does not 
have syntax even close for looping through 
the array list.   

1 4 
3321 

2 8 
8 2 Grader too harsh about boundary conditions.  

1 8 
3323 

2 4 
8 1 

Grader too harsh about correct access to 
array list.   

1 4 
3359 

2 8 
8 2 

Student used or instead of and, and was 
deducted.   

1 0 
3389 

2 4 
0 1 

Student not looping through collection 
properly or using length method – adding 
collection to another collection.   

1 4 
3401 

2 8 
8 2 Grader too harsh about returning.   

1 8 
3432 

2 4 
8 1 Grader too harsh about returning.   

1 8 
3438 

2 4 
4 2 

Uses collection name as the name of an 
iterator.   

1 4 
3475 

2 8 
4 1 

Student checking length on collection, not 
strings inside, so not looping properly.   

  



400 APPENDIX E  ANALYSIS OF RATERS OF EXAM   
 

Question 103 

Exam 
Number 

Rater 
Number 

Original 
Grade 

Correct
ed 

Grade 

Correct 
Rater Discussion of Conflict Resolution 

1 4 
2009 

2 8 
8 2 One grader took off for incorrect call to size. 

1 4 
2014 

2 0 
8 Neither 

Graders too harsh about syntax – basic 
themes present.   

1 4 
2020 

2 8 
8 2 Code correct – grader error.   

1 4 
2028 

2 0 
0 2 

Question not finished.  Not enough info to 
award credit.   

1 8 
2036 

2 4 
8 1 Code correct – grader error.   

1 4 
2038 

2 8 
8 2 Code correct – grader error.  

1 4 
2049 

2 0 
8 Neither 

Graders too harsh about syntax – basic 
themes present.   

1 4 
2050 

2 0 

4 1 

Student demonstrates knowledge that 
looping through collection is important and 
then looking for Ps important, but not using 
correct methods from API. 

1 4 
3029 

2 8 
4 1 

Loop counters not correctly 
incremented/reset.  Does not show proper use 
of loops. 

1 4 
3030 

2 8 
4 1 

API not used correctly, calling a method on a 
char that is really for a String. 

1 4 
3069 

2 8 

4 1 

API not used correctly because student 
believes that charAt returns a String, and 
begins looping through string indices at 1, 
which is not correct. 

1 4 
3091 

2 8 
8 2 

One grader being too harsh about the 
checking for both upper case P and lower 
case p. 

3109 1 8 8 1 

One grader felt that the student using a for-
each loop for a string was inappropriate.  
After considering the main themes of the 
question, it was felt is was reasonable for the 
student to make this error that would be 



APPENDIX E  ANALYSIS OF RATERS OF EXAM 401 

 

2 4 

caught by compiler because student knew 
that looping through each character of string 
was important step in looking for the letter p. 

1 4 
3120 

2 8 
8 2 

One grader being too harsh about the 
checking for both upper case P and lower 
case p. 

1 4 
3135 

2 8 
8 2 

One grader being too harsh about the 
checking for both upper case P and lower 
case p. 

1 4 
3164 

2 8 
8 2 

One grader being too harsh about the 
checking for both upper case P and lower 
case p. 

1 0 
3185 

2 4 
4 2 

Student only loops through the string, not 
each string in the collection.  

1 4 

3186 

2 8 

8 2 

Thought student was not looking for both 
cases of p.  Upon re-examination of the code, 
it was found that the student did not 
understand the question and was actually 
looking for the number of occurrences of the 
string “Ps”  in the strings.  The student did 
this correctly and should receive full credit 
for the question. 

1 4 
3189 

2 8 
8 2 

Grader too harsh about syntactic issues with 
accessing elements in array list.   

1 4 
3217 

2 8 
8 2 

  One grader being too harsh about the 
checking for both upper case P and lower 
case p. 

1 4 
3253 

2 0 
0 2 

Student writes a loop with a comment inside 
to “count P’s” , which is what they needed to 
demonstrate in the question.   

1 4 
3260 

2 8 
8 2 

One grader being too harsh about the 
checking for both upper case P and lower 
case p. 

1 4 
3302 

2 8 
8 2 

One grader being too harsh about the 
checking for both upper case P and lower 
case p. 

1 4 
3321 

2 8 
8 2 Code correct – grader error. 

3329 1 0 4 2 Only inner loop present to look for Ps in 



402 APPENDIX E     
 

2 4 
string, not to loop through all strings in 
collection.  

1 0 
3352 

2 4 
4 2 

Only inner loop present to look for Ps in 
string, not to loop through all strings in 
collection.  

1 4 
3368 

2 8 
8 2 

Grader did not notice that student was 
handling both cases of p.   

1 4 
3401 

2 8 
8 2 

One grader being too harsh about the 
checking for both upper case P and lower 
case p. 

 


