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Abstract. We investigate the problem of finding a fast and resilient propagation
topology and propagation schedule for worms and similar malcodes, given that
the malcode knows a little more information about the targets than just the IP
addresses. Resiliency means that the malcode is still able to propagate to a large
expected number of targets even when some targets are not infectable.
We first show that, under a moderately general network model,the problem of
optimizing propagation time isNP-hard. This fact justifies the need for a refine-
ment of the network model, which we present next. In the refined model, when all
nodes are infectable we present an optimal propagation topology. We also show
that for every preemptive schedule there exists a non-preemptive schedule which
is just as effective. This fact greatly simplifies the optimization problem.
With the presence of uncertainty (some targets may fail to beinfected with some
given probabilities due to network errors, security patches, etc.), there is a natural
trade-off between the expected total infection time and theexpected number of
infected targets. We investigate this trade-off by deriving the optimal expected
number of infected nodes and the corresponding propagationtopology. Next, we
give a propagation topology and schedule which can reduce the infection time
significantly while keeping the expected number of infectednodes exponentially
close to optimal.
To the best of our knowledge, this work is the first in the literature to formulate
and address the aforementioned trade-off, and also the infection time optimization
problem on a formal basis. We expect our problem formulations and solutions to
have applications in similar application-level source broadcast problems, such as
ones in P2P and overlay networks. Last but not least, our formulations leave open
a number of interesting and challenging problems.

1 Introduction

Since the first Internet worm incident in 1988 [10], network worms have evolved con-
siderably. Current worms are very speedy and destructive, posing a major problem
to security researchers. The spread of worms is often fast enough to render existing
signature-based anti-virus programs and intrusion detection systems useless. The scale
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and scope of the worms’ potential destructive impact pose serious problems not only for
local organizations or even for a single country, but also for the global Internet commu-
nity (the larger the scale of the Internet and the more popular some computing platforms
become, the more costly and more dangerous worms will be!).

In fact, the recent years since 2001 have arguably been the golden age of worms.
Multiple varieties of worms have appeared and brought unpleasant surprises to the Inter-
net community, including CodeRed [19], Nimda, Slapper [4],Slammer [17] and Witty
[24]. Consequently, researchers have spent a considerableamount of effort to study
worms’ mechanics and dynamics, such as modeling the dynamics of worms [9, 29],
monitoring and detecting worms[31], developing automatedworm containment mech-
anisms [21, 20, 30], simulating worm traffic [14], routing worms [32], etc.

Most of the aforementioned works focused on random-scanning worms. To the best
of our knowledge, very few studies have investigated hypothetical yet potentially super-
fast worm scenarios. Staniford et al. [27] were the first to investigate this kind of hy-
pothetical scenario. They later elaborated on a specific worm instance called “Flash
worm” [26], so named since these worms can span the entire susceptible population
within an extremely short time frame. (Our paper is inspiredby [26, 27]!) As a matter
of fact, fast worms/malcodes no longer just hide in the theoretical domain. The UDP-
based Slammer worm spread at an unprecedented rate: 90% of susceptible population
within 10 minutes [18]. Witty infected 110 hosts within 10 seconds. A super-fast worm
is now a very real and practical possibility!

Studying potentially super-fast worms/malcodes is fruitful for a variety of reasons.
Firstly, a sense of the doomsday scenario helps us prepare for the worst. Secondly, they
can be used to assess the worst case performance of containment defenses. Last but not
least, efficient broadcasting is a fundamental communication primitive of many modern
network applications (both good and malicious ones), including botnets’ control, P2P,
and overlay networks. For example, since the control of the botnet is gained through
efficient broadcasting [16], both the attacker and the system analysts strive to have the
most efficient and resilient strategy. Thus, studying worm propagation helps discover
improved solutions to security threats in network environments, both for defense and
counter-attack purposes.

There are several major challenges to designing and developing super-fast worms.
Firstly, the victim scanning time must be minimized or even eliminated because heavy
scanning traffic makes worms more susceptible to being detected, and scanning traffic
potentially self-contend with propagation traffic, resulting in slower propagation speed.
Various stealthy scanning techniques can be used as an alternative to amass information
for the attacking hour. Secondly, the collection of victim addresses is quite large. For a
population of 1 million hosts, for example, the IP address list requires roughly 4MB (for
IPv4). This much data if integrated within each worm instance and transmitted without
an efficient distribution scheme will severely impact the speed of propagation. Thirdly,
making the worm resilient while maintaining its swift effect is challenging. The list of
vulnerable addresses may not be perfect. Some of the nodes inthe list might be down or
no longer vulnerable. At and during the time of propagation,some intermediate nodes
might be patched and the worm instance is removed. Moreover,packets carrying the
worm code may be lost, leaving the targets uninfected. If an uninfected target is close



3

to the initial source in the propagation tree, all sub branches in the propagation tree will
not be infected. In the absence of more sophisticated and probably time-consuming
mechanisms (such as timeouts and retransmissions), one might have to reduce the num-
ber of levels in the tree and let the source (usually guaranteed to be infected) infect
many targets directly. This burdens the initial source node, slows the worm down, and
thus makes it much more prone to being detected. Last but not least, computational
and communication resources at the source and targets also greatly affect the worm’s
speed. The Flash worm described by Staniford [26] requires an initial node that can
deliver 750Mbps. Compromising a host with that much bandwidth may not always be
an option. A natural question that follows is whether the attacker can create the same
or similar effects as flash worms with limited resources. This paper will answer this
question in the affirmative.

Consequently, designing a worm propagation topology and schedule that provides
both resiliency and time efficiency is an important and challenging problem. This paper
aims to investigate this problem. Specifically, we will address the following questions:

– Suppose the worm writer has decent estimates of a few parameters affecting the
worm’s speed, such as end-to-end delays and up-/down-link bandwidths of the in-
tended targets, how would he design the worm transmission topology and schedule
to accomplish the task as fast as possible?

– Furthermore, many real-life “glitches” may make some targets uninfectable. For in-
stance, some nodes may have their security holes patched or may simply be down,
and worm packets may be lost. If the worm writer has some estimate of the in-
fectability probabilities, how will this knowledge be usedto make the worm more
resilient to the glitches?

– There is an inherent trade-off between the expected propagation time (efficiency)
and the expected number of infected targets (resiliency). To be more resilient, some
redundancy must be introduced. For instance, because some nodev may fail to
infect another nodew, we may need to have several “infection paths” fromv tow on
the propagation topology. Unfortunately, redundancy increases propagation time,
hence necessitating the trade-off. Two related questions we will formally define
are: (a) how to design an efficient worm given a resiliency threshold, and (b) how
to design a resilient worm given an efficiency threshold.

We will not be able to answer all the questions satisfactorily. However, we believe that
our formulation and initial solutions unravel some layers of complexity of the problem
and open a door for further exploration. Note that, the aforementioned trade-off is not
just a by-product of the worm propagation problem. Efficientand error-resilient broad-
cast is fundamental in most network applications [3, 23, 5].However, even though the
objectives of efficiency and error-resiliency are similar,the operating constraints are
very different between our problem and application-layer broadcast problems.

Our main contributions are as follows:

– We first show that, under a moderately general network model,the problem of
optimizing propagation time isNP-hard. This fact justifies the need for a refined
yet still realistic network model, which we present next. Later simulation results
further validate the refined model.
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– In the refined network model, when all nodes are infectable, we present an opti-
mal propagation topology and schedule. We shall show that itis possible to devise
worm propagation topologies and schedules with infection time even shorter than
the Flash worms, provided that the worm designer has decent guesses of a few net-
work parameters of the targets. Moreover, it is also possible to retain the swift effect
of Flash worm when starting from a root node with much less bandwidth capacity.

– We also show that for every preemptive propagation schedule(i.e. a node can in-
terrupt the transmission to a target, starting transmission to other targets before re-
suming the initial transmission), there is a non-preemptive schedule (namely each
transmission is not interrupted until it is finished) which is just as good. This fact
greatly simplifies the optimization problem. However, thisresult does not apply to
transmission processes with interactive communication between two ends such as
the 3-way handshake in TCP. We will only consider UDP malcodes in this paper.

– Under uncertainty, i.e. nodes may fail to be infected with some given probabilities,
we investigate the trade-off between the expected infection time and the expected
number of infected targets. We derive the optimal expected number of infected
nodes along with the corresponding propagation topology. We then give a propaga-
tion topology which can reduce the infection time significantly while keeping the
expected number of infected nodes exponentially close to optimal.

The rest of this paper is organized as follows. Section 2 motivates and formulates
the problem in a rigorous manner, including the descriptionof our network model. It
is shown that the optimization problem on a simple network model is alreadyNP-
hard, justifying a further refinement of the network model, which is studied in Section
3 in greater depth. Section 4 presents our simulation results. Section 5 discusses some
related works and future research directions.

2 Problem formulation

2.1 Network model

In order to address the above questions rigorously, we first need a formal model cap-
turing various pieces of information about the underlying network. The most general
network model is the exact topology of the Internet itself, along with precise infor-
mation about routers, links, bandwidths, delays, connectivity, queue lengths, link/node
error probabilities, etc. However, a network model which assumes complete knowledge
of the Internet is both unrealistic and not very useful for our purposes.

Practically, although there has been a recent surge of research on measuring many
topological properties of the Internet [15, 13, 28, 25], complete information is still out
of reach, especially when measured with end-to-end means. More importantly, such a
general model makes the problem very complex to the point of not being tractable. To
illustrate this point concretely, we will show that our problem defined on a much less
general network model is alreadyNP-hard. Moreover, the description of an encom-
passing network model takes so much space that transmittingit would certainly slow
down the worm propagation, defeating the purpose.
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Fig. 1.A formal network model

A good network model has to berealistic andmanageable. It should berealistic so
that solving our problem on this model gives a good approximation of what actually
happens in the real-world. It should bemanageable(i.e. not too complex to the point of
being useless) so that interesting and useful problems can be defined and solved on this
model. We present a candidate for such network models in thissection.

Consider the situation where there aren hosts, or nodes, and nodev0 is initially
infected with the worm. The objective is to devise a propagation schedule and topology
for the worm to infect the other nodes subject to constraintsto be defined.

For each nodev, let r
(u)
v andr

(d)
v denotev’s up-link and down-link bandwidths,

respectively. (For instance,v may be connected to the Internet with an ADSL service.)
When the up- and down-link bandwidths are equal, we userv to denote this band-
width. The effective bandwidth from nodev to nodew is thenmin{r

(u)
v , r

(d)
w }. Figure

1 roughly illustrates our network model.
We assume that nodev0 (i.e. the worm writer) knows other nodes’ bandwidths,

via some sort of educated guess, pre-infection data gathering, or end-to-end bandwidth
measurement. The task ofv0 is to devise the best propagation schedule making use of
this knowledge. We will be more specific about our optimization objectives later.

The capacity of the network core is assumed to be sufficientlylarge so that nodes
can communicate with each other simultaneously up to their available bandwidths. This
assumption is justified by two facts: (i) the total amount of traffic sent by the worm is
relatively small compared to the Internet core’s capacity,whereas the Internet backbone
is often lightly loaded (around 15% to 25% on average) due to over-provisioning [22],
and (ii) when some of the worm’s packets are lost, our resilient propagation topology
helps alleviate the problem. Note that our worm does not generate scanning traffic. This
significantly reduces the traffic intensity as compared to random-scanning worms. In
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fact, using the propagation topologies presented in the next sections, we have calculated
the total worm traffic at any given time in the network to be at most 500MBs or even
less than 10MBs.

Let Lvw denote the propagation delay from nodev to nodew. Let L denote the
average delay. The worm size is denoted byW . This can roughly be understood as the
number of bytes of the worm’s machine code. A somewhat subtlepoint to notice is
that sophisticated propagation mechanisms might increaseW . Most often, though,W
should be a constant independent ofn.

Beside the actual code of sizeW , the worm must also transmit a fixed number of
a bytes per target nodes. Each of these “blocks” ofa bytes contains the address of
a distinct target node (4 bytes for IPv4 and16 bytes for IPv6), and perhaps additional
information about distinct target nodes such as the up- and down-link bandwidths and/or
end-to-end delays from the node to other nodes in the network. Unlike W , a depends
on n theoretically. For example, to addressn nodes we will need at leastlg n bits.
However, in practice we can safely assume thata (a few bytes) is much less thanW (a
few hundred bytes). Lastly, letp be the probability that a randomly chosen target is not
infectable. Nodes are assumed to be infectable with independent probabilities.

To clarify the use of the above parameters, let us consider a typical worm infection
scenario. Starting fromv0, which keeps a list of addresses and other information about
the targets (bandwidths, delays), the worm picks out a subset of S target nodes to infect,
along with a transmission schedule for infecting these nodes. Furthermore,v0 will give
each nodev in S a setSv of targets forv to infect on its own. This way, upon receiving
the listSv, nodev can start infecting nodes inSv using the same algorithm. In the mean
time,v0 and other nodes inS which were infected beforev can also start their infection
simultaneously. The process is completed when the last target node is infected.Infection
time is the amount of time some worm traffic is still present in the network.

There are several natural optimization objectives which affect the way nodes choose
subsets of targets to infect and subsequently the infectionschedule. For example, we
may want to minimize the infection time subject to the constraint that at least 90% of
targets are infected. With the presence of uncertainty (i.e. p 6= 0), we may want to
maximize the expected number of infected targets given a threshold on the expected
infection time. Each infected nodev which is delegated with a subsetSv of targets will
use the same algorithm as the rootv0 for further infection. Thus, if we intend to make
use of bandwidth and/or delay knowledge, this information will have to be passed tov
along with the addresses of nodes inSv. This explain why the parametera contains not
only the size of a target’s address, but also some additionalbytes representing further
information about the target.

2.2 Rigorous problem definitions

We can use a directed acyclic graph (DAG)G = (V, E) to model the way nodes choose
subsets of targets to infect. The vertex setV consists of all target nodes, includingv0.
There is an edge fromv to w if v (after infected) is supposed to infectw. Since we do
not need to infect an already infected node, a DAG is sufficient to model the infection
choices. We refer to this DAG as theinfection topology. Obviously,v0 has in-degree0;
we thus refer tov0 as the “root” of the infection topology.
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Consider a nodev in theG. Let Sv be the set of all nodes reachable from nodev
via a directed path. Clearly,Sv is the subset of targets thatv was delegated the infection
task to. (Note that, for distinct nodesv andw, Sv andSw might be overlapping if we
introduce redundancy to cope with infection failures.) Now, consider a parent nodew
of v, namely(w, v) ∈ E(G). Nodew is expected to infectv and givev the list Sv.
Thus, each nodew must know how to effectively compute (in the piece of codeW ) the
subgraph ofG which consists of all nodes that can be reached fromw. The subgraph
will contain information aboutSv for all “children” v of w.

It is not sufficient for nodes to make infection decisions based on the infection
topology alone. The second crucial decision for a nodev to make is to come up with an
infection scheduleto infect nodes inSv (i.e. in which order the children nodes must be
infected). If nodes can regulate their transmission rates to a certain degree, the schedule
can even be preemptive.

Note that, even though the root can presumably pre-compute the entire infection
topology and transmission schedule for all nodes in the topology, giving this pre-computed
information to each target requires a large amount of data (of orderΩ(n2)) to be trans-
mitted, which considerably slows down the worm . Hence, we will only look at worms
whose codeW is capable of computing its own infection topology and schedule given
only the list of targets.

At this point, we are able to formally define our problems. Theworm aims to infect
the largest number of nodes in the fastest possible time. These two objectives form
an intrinsic trade-off. The two problems defined below correspond to optimizing one
objective while the other remains as a threshold constraint.

Problem 1 (Minimum Time Malicious Propagation – MTMP) Given a lower-bound
threshold on the expected number of nodes to be infected, finda propagation topology
and the corresponding propagation schedule minimizing theexpected infection time.

Problem 2 (Maximum Expansion Malicious Propagation – MEMP) Given an upper-
bound threshold on the expected infection time, find a propagation topology and the cor-
responding propagation schedule maximizing the expected number of infected nodes.

In this paper, we will focus on the first problem and leave the second problem open
for future research. The generalMTMP problem when the latencies are not uniform is
NP-hard as shown in Theorem 1 (see Appendix A.1 for a proof). This result justifies a
further refinement of the model.

Theorem 1 When the latenciesLwv are not uniform,MTMP isNP-hard even forp = 0

2.3 A propagation topology revisited

In this section we revisit the 3-level tree infection schemeof a Flash Worm [26] in
order to illustrate the ideas and problems discussed above.Figure 2 depicts theinfection
topologyof this scheme, which is a directed 3-level tree whose root isthe sourcev0. The
source first infectsm intermediate nodes (fromv1 to vm), each of which continues to
infectK other nodes (in total, infect nodes fromvm+1 to vn−1). Theinfection schedule
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Fig. 2.A 3-level tree infection topology of a Flash Worm

was not provided in the original paper, but for our purpose, we can assume a parent
node sends the infecting packets to its children in sequential order.

In this example, to illustrate the use of our network model weassume the source has
the same bandwidth as the other nodes, and the up- and down-link bandwidths are the
same for all nodes, and are equal tor. Finally, as in the original example, the pairwise
end-to-end delays are the same, denoted byL. We can now compute the minimum
propagation time for this topology. Note thatn = m(K + 1) + 1 or m = (n−1)

(K+1) . The
total infection time is then

t1 =
m(W + aK)

r
+L+

KW

r
+L ≥

(n − 1)a

r
+2L−

W

r
+2

√

W (W − a)(n − 1)

r
.

(1)

3 A refined network model: uniform bandwidth and latency

Since the general problem is hard, in this section we furtherrefine the model by using
the average bandwidthr as up- and down-link bandwidth, and the average latencyL as
the pair-wise latency.

In the example considered in Section 2.3, we implicitly assumed that a non-preemptive
propagation schedule was used, namely each node infects each of its targets one at a
time and sequentially. It turns out that for UDP-worms we do not need to consider
preemptive schedules as Theorem 2 shows (a proof is in Appendix A.2). The theorem
allows us to restrict our search for optimal schedules to thespace of non-preemptive
ones only.

Theorem 2 For every preemptive schedule from a node to a set of targets,there is a
non-preemptive schedule in which every target is infected at time no later than in the
preemptive schedule.

We next consider two scenarios: (a) all target nodes are infectable, and (b) some
nodes could fail to be infected. Recall that we usep to denote the probability that a
node fails to be infected, and that nodes fail to be infected independently.
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3.1 The case of absolute certainty (p = 0)

When there is no error, any topology in which all targets are reachable from the root
would be sufficient to infect the entire population. Thus we can focus on minimizing
the infection time. If only some percentage of targets need to be infected, then we can
further reduce the total infection time using the same technique developed here. Also
note that, as there is no error each node needs to be infected only once. Therefore tree
topologies (arborescence) are sufficient.

Thanks to Theorem 2, we only need to consider non-preemptiveschedules. Every
propagation scheme following a tree topology ofn nodes can thus be viewed as a com-
bination of two sub-trees of sizen1 andn2. Note thatn1 andn2 also count the root
nodes, thusn = n1 + n2, as shown in Figure 3. LetT (n) be the minimum total in-
fection time forn nodes. ThenT (n) can be recursively computed in a straightforward
manner as follows.

T (n) = min
1≤n1≤n−1

{

W + a(n1 − 1)

r
+ max{T (n1) + L, T (n2)}

}

= min
1≤n1≤⌊n/2⌋

{

W + a(n1 − 1)

r
+ max{T (n1) + L, T (n2)}

}

(2)

Here we use the fact thatT (n) is monotonically increasing, thusT (n − n1) ≥ T (n1)
whenn1 ≤ ⌊n

2 ⌋. It is easy to see thatT (n) can be computed withinO(n2) time. Once
the optimal value ofn1 is determined, the infecting node can forward the information
aboutn1 − 1 nodes in the first sub-tree to the first target and continue to infect the
residualn2 − 1 nodes analogously.

If every newly infected node recomputes its sub-tree topology, then this would pose
several disadvantages to the infection process. Firstly, the computation makes the worm
more prone to being detected due to prolonged resource consumption. Secondly, signif-
icant delay is added to the infection process, especially whenn is large. One solution
is to compute this information off-line before the infection process. The optimal val-
ues ofn1 corresponding to different values ofn can then be transmitted along with the
topology information. This strategy adds a fixed number of bytes to be transmitted per
target, and thus can be included in the block ofa bytes per target.

We now compare the infection time of this optimal topology with the 3-level tree
topology in Section 2.3. We consider multiple variations ofW andL to observe the
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Fig. 4.The infection times of the 3-level topology and the recursive topology (topo.A)

difference. In particular, we use two values ofW : 404 and1200 bytes, corresponding to
actual packet sizes of Slammer and Witty worms [1, 2]. Figure4 shows the propagation
time of the two topologies. As is demonstrated in the figure, the difference between
two topologies is reduced asL increases. The reason for this is that whenL is large, the
optimal tree becomes shorter, making it closer to the 3-level tree topology. However, the
3-level tree is not optimal whenL is sufficiently large (whenL is very large, the optimal
topology is a 2-level tree). On the other hand, the recursiveequation (2) is guaranteed
to yield the optimal topology.

The optimal value ofn1 according to (2) depends a lot on the value ofL. At one
extreme, whenL > W (n−1)

r , we haven1 = 1 for all n, yielding a two level tree
topology whose root is the source. The intuition is that, when the propagation time is
too large the source can actually send all worm packets to alltargets within the time
span for the first target to be infected. At the other extreme,whenL = 0 or very close
to zero, the optimal topology is a very unbalanced tree, as shown by the following result,
whose proof is in Appendix A.3.

Theorem 3 WhenL = 0, the optimal value ofT (n), attained atn1 = ⌊n
2 ⌋, is

T (n) = ⌈log n⌉

(

W − a

r

)

+ (n − 1)
a

r
. (3)

3.2 The case under uncertainty (0 < p < 1)

For each infection topologyG onn nodes, let EGN (n) and EG
T (n) be the expected num-

ber of infected nodes and the expected total infection time,respectively. Somewhat
abusing notation we define

EN (n) = max{EG
N (n) | G is an infection topology onn nodes},

ET (n) = max{EG
T (n) | G is an infection topology onn nodes}.

The first question we address is: what is the maximum expectednumber of infected
nodes, and which topology achieves this? This maximum expectation shall be used
as a benchmark to investigate the trade-off between the expected number of infected
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nodes and the infection time of a topology. For instance, corresponding to the maximum
expectation there is a propagation topology which has a fairly high infection time. If we
only need EN to be some percentage of the maximum EN , is it possible to reduce ET
and if so how far can we reduce it? The next lemma, whose proof is in Appendix A.4,
answers the first question.

Lemma 4 The topologyG which maximizesEG
N (n) is a star rooted at the source. More-

over,EN (n) = 1 + (n − 1)(1 − p).

Figure 3.2(a) illustrates the topology of Lemma 4. We will refer to this topology as
topologyB. The expected infection time ofB is then

EB
T (n) = (n − 1)W/r + L. (4)

This topology, while achieving the best expected number of infected nodes, is very
inefficient in terms of infection time. It is now natural to address the following question:
how much can we improve in terms of the infection time if we arewilling to “let go”
a few percents of the expected number of infected nodes? The most obvious strategy
is to choose any subset ofn′ < n nodes and apply the same topologyB as above,
wheren′/n is the percentage of the optimal EN we are willing to accept. This way, the
reduction in EN is linear and the reduction in ET is also linear.

Fortunately, there is a significantly better strategy than the simple approach above.
With a linear reduction in ET , we can still keep EN exponentially close to optimal! This
is, in a sense, the best one can hope for. (The converse is alsodesirable, where a linear
sacrifice in EN gives an exponential reduction in ET . We leave this problem open.) Our
infection topology is described below.

We consider a topology of three levels (including the original source) in which each
nodexi (1 ≤ i ≤ x) in level 2 infectsk′ nodeyj (1 ≤ j ≤ y) in level 3. Each nodeyj

will be infected byk nodesxi. This topology is similar to the example 3-level tree we
consider in Section 2.3, but now each node at the last layer might be infected for more
than once. Figure 3.2(b) illustrates the topology fork′ = 3, k = 2. We will refer to this
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topology astopologyC. We havex + y = n − 1 andk′x = ky; thus,x = n−1
1+c where

c = k′

k . The expected number of infected nodes can be computed as follows.

EC
N (n) = x(1− p)+1+ y(1− p)(1− pk) = (n− 1)(1− p)

(

1 −
c

1 + c
pk

)

+1 (5)

Computing ECT (n) is significantly more complicated, even for such a simple topol-
ogy. The proof of the following lemma can be found in AppendixA.5.

Lemma 5 We have

EC
T (n) =

W + k′a

r

[

x(1 − pl + p2l)
]

+
W + k′a

r

[

lpl +
p(pl − 1)

1 − p

]

(1 − pl)

+ Lpl + (1 − pl)2
(

k′W

r
+ 2L

)

.

In particular, the following limit and theorem follows immediately.

lim
n→∞

EC
T (n)

EB
T (n)

= (1 − pl + p2l)

(

1

1 + c
+

k′a/W

1 + c

)

. (6)

Theorem 6 For sufficiently largen, infection topologyC yields an expected number of
infected nodes exponentially close to optimality, yet reduces the expected infection time
by a linear factor of 1

1+c + kca/W
1+c .

We next illustrate how this theorem can be applied. To reducethe infection time
for this topology, we want the limit (6) to be as small as possible, subject to some
desired threshold in terms of the expected number of infected nodes. For instance, if we
want the expected number of infected nodes to be at least a fraction q of the optimal
EB

N (n) = (n − 1)(1 − p) + 1, then we need to choose our parametersk andk′ to
minimize the limit

(1 − pl + p2l)

(

1

1 + c
+

k′a/W

1 + c

)

= (1 − pl + p2l)

(

1

1 + c
+

c(a/W )k

1 + c

)

,

subject to the condition that

(n − 1)(1 − p)(1 −
c

c + 1
pk) + 1 ≥ q[(n − 1)(1 − p) + 1],

which is equivalent to

k ≥
− ln

[

(1 − q)(k′

k + 1)/(k′

k )( 1
(n−1)(1−p) + 1)

]

ln( 1
p )

(7)

This can be done in a variety of ways, one of which is to choose arelatively large ratio
c = k′/k (thus reducing the infection time), then choosek to satisfy constraint (7). This
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Fig. 6.The infection time of 3-level and recursive topology withW = 404 bytes

lower bound, however, is relatively small ifc is small, as shown in Figure 6(a).As can
be seen from the figure, we can selectc < 10 even whenq is large (we setq = 0.9). We
will selectc = 5 for all other graphs.

To haveqn as the expected number of infected nodes, we could have used topology
B with a sub-population ofn′ = qn nodes only. However, this topology is not nearly as
efficient as topologyC, and the gap increases asq gets larger, as shown in Figure 6(b).
TopologyC, however, is efficient only ifn is sufficiently large. Figure 6(c) shows the
gap between the actual ratio compared to the limit ratio (6).This gap is small even when
n is only about tens of thousands. For values ofn at six figures, the gap is negligible
and we need only to work with the limit ratio (6).

We also look into the dependence of the limit ratio on the infection failure probabil-
ity p. Figure 6(d) shows the values of the limits with 4 different values ofp: 0.5, 0.4, 0.01,
and0.001. It can be seen thatp doesn’t have much effect on the ratio. Asp becomes
sufficiently small, the ratio is essentially independent ofp.

4 Simulation results

To avoid the obstacle ofNP-hardness, we refined our model by assuming uniform
bandwidths and latencies. The obvious question is whether such a simple model can
yield practically useful results.

For the bandwidth assumption, if the uniform bandwidth is taken to be the lower
bound of all actual bandwidths, then the theoretical infection time computed from the
model is a worst-case time bound for the worm designer.
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The uniform latency assumption, however, seems to be too strong. How does it hold
water in practice? Our simulation result shows that one can simply set the uniform
latency to be the average of real-world latencies and get good propagation time.

We simulated the propagation of the worm in a network with varied latencies. These
latencies were generated by the empirical latency distribution in the Skitter data set [8].
We generated100 sets of latencies, corresponding to100 network configurations. For
each network configuration, we computed the optimal propagation topology based on
relation (2), using the average latency as the uniform latency in the model. We then sim-
ulated the propagation following this topology, and compared it with the propagation
following the 3-level topology on the same network. Due to the extensive computation
of the simulation, we setN = 100, 000 nodes instead of1 million nodes. We kept
r = 1 Mbps as before. The average latencies were around201ms. Figure 8(a) depicts
the distributions of the propagation time over100 configurations for both topologies.
It can be seen that the recursive structure computed by (2) using the average latency is
still superior to the 3-level topology.

Another advantage of the recursive topology is that it can retain similar time effi-
ciency as the Flash worm starting from a root node with much less bandwidth capacity.
Figures 7(a) and (b) show the minimum bandwidth at the root ofthe 3-level topology
(of the Flash worm) required in order for the Flash worm to propagate as fast as our
worm, whose starting node has only1Mbps capacity. The figures plot this required
root’s bandwidth as a function of the total number of nodesN for two empirical val-
ues ofW . We also variedL to see the effect of latencies on the efficiency of the Flash
worm and our worm. As can be seen, the result is consistent with our previous analysis.
The required root’s bandwidth for Flash worms stays at peak for small values ofL and
reduces gradually asL increases. In particular, atL = 0.1s, the Flash worm needs a
significantly larger bandwidth of60 Mbps (compared to the uniform bandwidth1 Mbps
using our recursive topology). This number even grows to more than100 Mbps when
W increases, as shown in Figure 7(b).

We also simulated the worm traffic generated during the propagation process. Figure
8(b) summarizes the total traffic for the recursive topologywith 4 average values ofL.
For this simulation, we setN = 1 million nodes. As can be seen from the figure, the
total traffic has a peak value of400 Mbs, independent of the latencies. This number is
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significantly smaller than the traffic generated by some actual worms such as Slammer
(165 Gbs). This is because the worm we consider is not a random-scanning worm, and
thus can eliminate significantly the traffic for scanning. Another note is that, for this
amount of total traffic the worm is unlikely to cause any significant instability in the
network core, validating our assumption for the network model. Super-fast worm thus
is a very practical possibility, even under limited target resources!

5 Discussions and Future Works

The propagation of a malicious code in many ways resembles a broadcast problem
[6, 7]. However, there are many differences between these problems and our problem.
For instance, [6] did not consider variation of bandwidths as in our problem. In more re-
cent works in P2P and overlay network contexts such as [7, 11], the intermediate nodes
also took advantage of the P2P/overlay network structure tobroadcast. In our prob-
lem, however, only the source can determine the broadcast topology and the broadcast
schedule.

As a solution to our problem, propagation topologyC is a decent topology in the
sense that it sacrifices the expected number of infected targets a little bit, while it im-
proves the expected infection time relatively well. However, the structure is probably
far from the best one can hope for. The main reason we chose topology C to analyze
is the feasibility of its analysis. The key idea behind a resilient propagation topology is
that there must be multiple paths to a target, and the graph should be “expanding” to
allow for concurrent propagation. The obvious choice wouldseem to be some sort of
expanders [12], which are graphs with very high connectivity and relatively low diam-
eters, thus reducing propagation time while keeping a high level of resiliency. This line
of attack is wide open for further research.

For the general latency case, we have shown that the problemMTMP is NP-hard.
The obvious open problem is to devise a good approximation algorithm for this prob-
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lem. If the approximation ratio is sufficiently good, the difference between the opti-
mal solution (say, a few milliseconds), and the approximated solution (say, a few more
milliseconds) is practically insignificant. It is important to also study how current con-
tainment policies such as that in [20] can thwart these infection schedules. Finally, the
second problem we formulated –MEMP – has not been addressed at all.
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A Appendix

A.1 Proof of Theorem 1

We will reduce SET COVER to MTMP. Consider an instance of the decision version of
SET COVER where we are given a collectionS of m subsets of a finite universeU of n
elements, and a positive integerk ≥ m. It is NP-hard to decide if there is a set cover
of size at mostk.

An instance ofMTMP is constructed as follows. Seta = W = c, wherec is an
arbitrary integer as long aslg c is a polynomial inm andn, so thatc can be computed
in polynomial time. The set of targets isV = {v0} ∪ S ∪ U , wherev0 is the initially
infected node. The up- and down-link bandwidths are as follows.

rv0
= r

(d)
S = R1 := c, ∀S ∈ S

r
(u)
S = re = R2 := 2nc, ∀S ∈ S, ∀e ∈ U.
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(Recall that, for any nodev ∈ V , rv = R meansr(u)
v = r

(d)
v = R.) The latencies are:

Lv0S = L1 := 1, ∀S ∈ S

LSe = L2 := m − k, ∀S ∈ S, ∀e ∈ S

Lvw = L := m + n + 2. for all other pairs of nodes(v, w).

Lemma 7 TheSET COVER instance has a set cover of size at mostk if and only if the
MTMP instance constructed above has a propagation structure andschedule with total
infection time at most(m + n + 3/2). Consequently,MTMP is NP-hard.

Proof. For the forward direction, suppose there is a sub-collection C ⊆ S of at mostk
members such that∪S∈C = U . SinceC is a set cover, we can choose arbitrarily for each
memberS ∈ C a subsetTS ⊂ S such that

⋃

S∈C TS = U and theTS are all disjoint.
(This can be done with a straightforward greedy procedure.)

Consider the propagation structureG = (V, E) defined as follows. The rootv0

will infect all nodes inS, i.e. (v0, S) ∈ E, for all S ∈ S. Each nodeS in the cover
C infects the nodese ∈ TS, namely(S, e) ∈ E, for all S ∈ C ande ∈ TS. Now,
the transmission schedule for the rootv0 is such thatv0 infects all nodes inC first
in any order, and then all other nodes inS − C. Then, for eachS ∈ C, S infects
nodes inTS in any order. The time it takes for the last node inS to be infected is
T1 = (na + mW )/R1 + L1 = n + m + 1. The last nodeS in C will receive the worm
W and its data (for nodes inTS) at time at most(na + kW )/R1 + L1 = n + k + 1.
Up on receiving the worm, each nodeS ∈ C will infect nodes inTS , which takes time
at most|TS |W/R2 + L2 ≤ nW/R2 + L2 = 1/2 + m − k. Because these infections
happen as soon as each nodeS receives its worm, the last node inU receiving the worm
at time at mostT2 = (n + k + 1) + (1/2 + m − k) = m + n + 3/2. Thus, the total
infection time is at mostmax{T1, T2} = m + n + 3/2, as desired.

Conversely, suppose there is a propagation structureG = (V, E) and some trans-
mission scheduling such that the total infection time is at mostm + n + 3/2. Note that
(v0, e) /∈ E for all e ∈ U , because the latencyLv0,e is m + n + 2 > m + n + 3/2.
For the same reason,(S1, S2) /∈ E for anyS1, S2 ∈ S; (e, S) /∈ E for anye ∈ U and
S ∈ S; and if e /∈ S, then(S, e) /∈ E. Consequently, the only possible edges ofG are
of the form(v0, S) for S ∈ S, and(S, e) for e ∈ S. Now, letTS = {e | (S, e) ∈ E} be
the set of out-neighbors ofS in G. LetC = {S | TS 6= ∅} be the set ofS with non-zero
out-degrees. It is clear thatC is a set cover of the original SET COVER instance, other-
wise not all nodes inU are infected. We show thatC has at mostk members. Suppose
C has at leastk + 1 members, then the last memberS of C receiving the worm at time
at leastT1 = (na + (k + 1)W )/R1 + L1 = n + k + 2. This last member will have
to infect nodes inTS (there is at least one node in this set), which takes time at least
T2 = W/R2 + L2 = 1/(2n)+ m− k > m− k. Consequently, the total infection time
is at leastT1 + T2 > n + m + 3/2.

A.2 Proof of Theorem 2

Consider a node that starts to infectm targets at time0 following a preemptive schedule.
For each targetvi, let Ti, 1 ≤ i ≤ m, be the time the source finishes transmission tovi
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in the preemptive schedule. Also, letWi be the amount of data transmitted tovi (which
includes the base malicious codeW and other information). Without loss of generality,
supposeT1 ≤ T2 ≤ · · · ≤ Tm. The actual time forvi to be infected would then be
Ti + L. Denotefi(t) as the amount of bandwidth reserved for the transmission tovi at
time t. We then haveWi =

∫ Ti

0
fi(t)dt, and

∑m
j=1 fj(t) ≤ r.

Now consider the non-preemptive schedule following the same order(1, 2, · · · , m),
in which the source infects one node at a time using the whole bandwidth capacity. For
1 ≤ i ≤ m, let T ′

i be the amount of transmission time the source uses to infectvi. The
total amount of time untilvi is infected isT ′

i + L. To finish the proof, we need to show
thatT ′

i + L ≤ Ti + L. We have:

T ′
i + L =

i
∑

j=1

Wi

r
+ L =

i
∑

j=1

∫ Tj

0 fj(t)dt

r
+ L

=

i
∑

j=1

∫ Tj

Tj−1

(
∑i

k=j−1 fk(t))dt

r
+ L ≤

i
∑

j=1

∫ Tj

Tj−1

rdt

r
+ L

= T1 + (T2 − T1) + · · · + (Ti − Ti−1) + L = Ti + L

A.3 Proof of Theorem 3

We show this by induction. Whenn = 1, T (1) = 0 since the source is already infected.
Suppose (3) holds for alln ≤ k − 1. Forn = k, we have

T (k) = min
1≤n1≤⌊ k

2
⌋

{

W − a

r
+

an1

r
+ T (k − n1)

}

= min
1≤n1≤⌊ k

2
⌋

{

(1 + ⌈log(k − n1)⌉)

(

W − a

r

)

+ (k − 1)
a

r

}

= (1 + ⌈log(k − ⌊k/2⌋)⌉)

(

W − a

r

)

+ (k − 1)
a

r

= ⌈log k⌉

(

W − a

r

)

+ (k − 1)
a

r
.

This value is achieved atn1 = ⌊n/2⌋.

A.4 Proof of Theorem 4

Consider an arbitrary infection topologyG. For each nodevi (0 ≤ i ≤ n − 1), where
v0 is the source, letZi be the random variable indicating ifvi is infected using this
topology. Then, clearly Prob[Zi = 1] ≤ 1 − p. Thus, by linearity of expectation,

EG
N (n) = E

[

n−1
∑

i=0

Zi

]

=

n−1
∑

i=0

E[Zi] ≤ 1 +

n−1
∑

i=1

E[Zi] = 1 + (n − 1)(1 − p) (8)

Equality holds if and only if Prob[Zi = 1] = 1 − p, which means that there is a direct
edge fromv0 to vi. Otherwise, there is a positive probability that every pathfrom the
root tovi has a node not infectable, implyingvi not infectable.
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A.5 Proof of Lemma 5

Recall that infection time is the amount of time starting from when the source sends out
its first bit until the last bit of the worm is gone from the network.

Firstly, the time it takes until the last packet from the source completely disappears
from the network is

Z1 = x
W + k′a

r
+ L.

Secondly, letxI be the last node at level2 which is infected. Note that,I is a random
variable taking values from0 to x, where the value of0 indicates that no node at level
2 is infected. It follows that

Prob[I ≤ j] = px +

j
∑

i=1

(1 − p)px−i = px−j (9)

Prob[I > j] = 1 − px−j (10)

If I > 0, the total amount of time until the last bit fromxI disappears from the network
is

Z2 = I
W + k′a

r
+ L +

k′W

r
+ L = I

W + k′a

r
+

k′W

r
+ 2L

If I = 0, set Z2 = 0. Depending on the relationship between various parameters
(k, k′, L, . . . ), the source might still be transmitting whenxI has finished, or vice versa.
The total time the worm is on the network isZ = max{Z1, Z2}, whereZ1 is a constant
while Z2 is a random variable. We wish to compute

EC
T (n) = E[Z] = Z1 Prob[Z1 ≥ Z2] + E[Z2 | Z1 < Z2] Prob[Z1 < Z2]. (11)

Note thatZ1 ≥ Z2 is equivalent toI ≤ x −
⌈

k′+Lr/W
k′a/W+1

⌉

. Assumingn is large, thenx

is greater than the constantl =
⌈

k′+Lr/W
k′a/W+1

⌉

. From (9) and (10), we have Prob[Z1 ≥

Z2] = pl, and Prob[Z1 < Z2] = 1 − pl. It remains to compute E[Z2|Z1 < Z2]. Since
Z1 < Z2 is equivalent toI > x − l, we have

E[Z2|Z1 < Z2] =

x
∑

j=x−l+1

E[Z2 | I = j] Prob[I = j]

=
x

∑

j=x−l+1

(

j
W + k′a

r
+

k′W

r
+ 2L

)

(1 − p)px−j

=
W + k′a

r

[

x(1 − pl) + lpl +
p(pl − 1)

1 − p

]

+ (1 − pl)

(

k′W

r
+ 2L

)

Combined with (11), we get

EC
T (n) =

W + k′a

r

[

x(1 − pl + p2l)
]

+
W + k′a

r

[

lpl +
p(pl − 1)

1 − p

]

(1 − pl)

+Lpl + (1 − pl)2
(

k′W

r
+ 2L

)

. (12)
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