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Abstract

As computational clusters increase in size, their mean-time-to-failure reduces drastically. After a fail-

ure, most MPI checkpointing solutions require a restart with the same number of nodes. This necessitates

the availability of multiple spare nodes, leading to poor resource utilization. Moreover, most techniques

require a central storage for storing checkpoints. This results in a bottleneck and severely limits the scal-

ability of checkpointing.

We propose a scalable fault-tolerant MPI based on LAM/MPI which supports user-level checkpointing,

migration, and replication. Our contributions extend the existing state of fault-tolerant MPI with asyn-

chronous replication, eliminating the need for central or network storage. We evaluate both centralized

storage and SAN-based solutions and show that they are not scalable, particularly after 64 CPUs. Our

migration strategy is the first to make no assumptions on restart topologies, eliminating the need for spare

nodes. We demonstrate the low overhead of our checkpointing and replication scheme with the NAS Par-

allel Benchmarks and the High Performance LINPACK benchmark with tests up to 256 nodes. We show

that checkpointing and replication can be achieved with much lower overhead than current techniques

and near transparency to the end user while still providing fault resilience.

∗This research was funded in part by NSF IGERT grant 9987598, NSF ITR grant 0081696, MEDC Michigan Life Science
Corridor Grant, Institute for Scientific Computing at Wayne State University, Sun Microsystems, and New York State Office of
Science, Technology and Academic Research.
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1 Introduction

Computational clusters with hundreds and thousands of processors are fast-becoming ubiquitous in
large-scale scientific computing leading to lower mean-time-to-failure. This forces the systems to effec-
tively deal with the possibility of arbitrary and unexpected node failure. Since MPI [19] provides no
mechanism to recover from a failure, a single node failure will halt the execution of the entire MPI world.
Thus, there exists great interest in the research community for a truly fault-tolerant MPI implementation
that is transparent and does not depend on a heavy-weight grid/adaptive middleware ([22, 39]).

Several groups have included checkpointing within various MPI implementations. MVAPICH2 now
includes support for kernel-level checkpointing of Infiniband MPI processes [20]. Sankaran et al. also
describe a kernel-level checkpointing strategy within LAM/MPI [8, 32, 33].

However, such implementations suffer from two major drawbacks: (1) a reliance on a common network
file system or dedicated checkpoint servers. (2) Failure recovery requires either the insertion of a replace-
ment node (to maintain topology) or an adaptive grid/middleware (e.g. Charm++/AMPI [25, 21, 22]).

We consider both the reliance on a network file system/checkpoint servers and the insistence on a com-
mon restart topology to be a fundamental limitation of existing checkpoint systems. Storing directly to
network storage incurs too great an overhead. Using dedicated checkpoint servers saturates the network
links of a few machines, resulting in degraded performance. And the reliance on a common restart topol-
ogy requires a set of spare nodes that may not be available.

Because most fault-tolerance implementations shown in the literature consider clusters of inadequate
size (typically fewer than 64 nodes, more often 8-16 nodes) or inadequately small benchmarks (class B
sizes of the NAS Parallel Benchmarks [38]) scalability issues regarding checkpointing are rarely consid-
ered. We specifically test the scalability of our implementation up to 256 nodes with individual node
memory footprints of 1 GB each.

We show that the overhead of checkpointing either to network storage or to dedicated checkpoint servers
is too severe for large-scale computational clusters. As such, we make two contributions in this paper:

• We propose and implement a checkpoint replication system, which distributes the overhead of
checkpointing evenly over all nodes participating in the computation. This significantly reduces
the impact of heavy I/O on network storage.

• We introduce our migration/restart technique which allows us to restart any checkpoint on any ma-
chine, regardless of its original location without requiring any spare nodes. In so doing, we are able
to effectively move the computation to the data. This provides for drastic improvements in restart
times over strategies that require data movement over the network.

The remainder of this paper is outlined as follows: in Section 2 we provide a brief introduction to
LAM/MPI and checkpointing. In Section 3 we discuss our user-level checkpointing solution within the
context of the LAM/MPI implementation. In Section 4 we compare existing checkpoint storage strategies
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and evaluate our proposed replication technique. In Section 5 we provide a brief overview of the work
related to this project. Finally, in Section 6 we present our conclusions.

2 Background

2.1 LAM/MPI

LAM/MPI [8] is a research implementation of the MPI-1.2 standard [19] with portions of the MPI-2
standard. LAM uses a layered software approach in its construction [34]. In doing so, various modules are
available to the programmer that tune LAM/MPI’s runtime functionality including TCP, Infiniband [23],
Myrinet [28], and shared memory communication.

The most commonly used module is the TCP module which provides basic TCP communication be-
tween LAM processes. A modification of this module, CRTCP, provides a bookmark mechanism for
checkpointing libraries to ensure that a message channel is clear. LAM uses the CRTCP module for its
built-in checkpointing capabilities.

2.2 Checkpointing Distributed Systems

Checkpointing itself can be performed at several levels. In kernel-level checkpointing [20, 16, 8, 32,
33], the checkpointer is implemented as a kernel module, making checkpointing fairly straightforward.
However, the checkpoint itself is heavily reliant on the operating system (kernel version, process IDs, etc.).
User-level checkpointing [40, 41] performs checkpointing using a checkpointing library, enabling a more
portable checkpointing implementation at the cost of limited access to kernel-specific attributes (e.g. user-
level checkpointers cannot restore process IDs). At the highest level is application-level checkpointing [7,
6] where code is instrumented with checkpointing primitives. The advantage to this approach is that
checkpoints can often be restored to arbitrary architectures. However, application-level checkpointers
require access to a user’s source code and do not support arbitrary checkpointing. Thus, a user’s code
must be instrumented with checkpoint locations (often inserted by hand by the programmer) after which
a preprocessor adds in portable code to save the application’s state. Unlike kernel-level and user-level
checkpointing, application-level checkpointers are not signal driven. Thus, in order for a checkpoint to be
taken (in the application-level case), a checkpoint location must first be reached. Such is not the case with
kernel-level or user-level strategies.

There are two major checkpointing/rollback recovery techniques: coordinated checkpointing and mes-
sage logging. Coordinated checkpointing requires that all processes come to an agreement on a consistent
state before a checkpoint is taken. Upon failure, all processes are rolled back to the most recent check-
point/consistent state.

Message logging requires distributed systems to keep track of interprocess messages in order to bring
a checkpoint up-to-date. Checkpoints can be taken in a non-coordinated manner, but the overhead of
logging the interprocess messages can limit its utility. Elnozahy et al. provide a detailed survey of the
various rollback recovery protocols that are in use today [17].
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3 User-level LAM Checkpointing with Arbitrary Restart Structure

We are not the first group to implement checkpointing within the LAM/MPI system. Three oth-
ers [41, 33, 37] have added checkpointing support. We begin with an overview of the existing LAM/MPI
checkpointing implementations.

3.1 Existing implementations

Sankaran et al. first added checkpointing support within the LAM system [33] by implementing a
lightweight coordinated blocking module to replace LAM’s existing TCP module. The protocol begins
when mpirun instructs each LAM daemon (lamd) to checkpoint its MPI processes (see Figure 1). When
a checkpoint signal is delivered to an MPI process, each process exchanges bookmark information with
all other MPI processes. These bookmarks contain the number of bytes sent to/received from every other
MPI process. With this information, any in-flight messages can be waited on and received before the
checkpoint occurs.

After acquiescing the network channels, the MPI library is locked and a checkpointing thread assumes
control. The Berkeley Linux Checkpoint/Restart library (BLCR) [16] is used as a kernel-level check-
pointing engine. Each process checkpoints itself using BLCR (including mpirun) and the computation
resumes.

Local Disk

Node 0

Local Disk

Node 2

Local Disk

Node 1(1)

(1)

(1)

(2)
(2)

(2)

(3)

(3)(3)

Mpirun periodically invokes a checkpoint

(1) Mpirun instructs each lamd to 

      signal each MPI process to 

      checkpoint

(2) Each MPI Process coordinates 

      and checkpoints itself

(3) Checkpoints are saved to a high 

      speed local disk

MPI process

Lamd

MPI process

Lamd

MPI process

Lamdmpirun

Figure 1. Overview of the checkpointing module. A dashed line indicates asynchronous LAM commu-
nication, while a solid line indicates synchronous communication as well as checkpointing to disk.

When a node fails, the user restarts the checkpointed mpirun which automatically restarts the application
using an application schema to maintain the original topology. The MPI library is then reinitialized and
computation resumes.
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Zhang et al. describe a user-level checkpointing solution, also implemented within LAM [41]. Their
checkpointer (libcsm) is signal-based rather than thread-based. But otherwise, their implementation is
identical to that of Sankaran’s. Neither implementation includes support for automatic/periodic check-
pointing, limiting their use in batch environments.

A second problem with the above solutions is that both require exactly the same restart topologies. If,
for example, a compute node fails, the system cannot restart by remapping checkpoints to existing nodes.
Instead, a new node would have to be inserted into the cluster to force the restart topology into consistency
with the original checkpoint topology. This requires the existence of spare nodes that can be inserted into
the MPI world to replace failed nodes. If no spare nodes are available, the computation cannot be restarted.

Two previous groups have attempted to solve the problem of migrating LAM checkpoint images [10].
Cao et al. propose a migration scheme based on the BLCR work [33] by Sankaran et al. Their technique
towards migrating LAM checkpoints requires a tool to parse through the binary checkpoint images, find
the MPI process location information, and update the node IDs.

Wang, et al. propose a pause/migrate solution where spare nodes are used for migration purposes when
a LAM daemon discovers an unresponsive node [37]. Upon detecting a failure, their system migrates the
failed processes via a network file system to the replacement nodes before continuing the computation.
Their solution incorporates periodic checkpointing, but still requires compatible restart topologies.

Our solution diverges from the above in that: (1) we make no assumptions as to the restart topology
and, consequently, we do not require the use of replacement nodes. (2) We add support for automatic
periodic checkpointing through a checkpointing daemon. (3) Most importantly, we do not require the use
of a network storage facility for checkpointing or migration/restart.

3.2 Enhancements to LAM’s Checkpointing

Our checkpointing solution uses the same coordinated blocking approach as Sankaran and Zhang’s
techniques described above. To perform the actual checkpointing, we use Victor Zandy’s Ckpt, a 32-bit
user-level checkpointer [40].

In Figure 2 we provide an overview of the steps taken within each MPI process in order to ensure a
consistent checkpoint. Figure 2(a) is the same basic checkpoint strategy that is used in [33, 41]. Where
our implementation differs is in the “restart base” and “GPS coordinate update” portions of Figure 2(b)
where process-specific data is updated before continuation.

In the “restart base” portion of Figure 2(b) we update all process-specific information that has changed
due to a restart. This includes updating process IDs, environment variables, and rebuilding messaging
channels. In order to support process migration, we added a phase to LAM’s restart sequence. We depict
this as “update GPS coordinates” in Figure 2(b). LAM uses a GPS structure (Figure 3) to maintain vital
identification for each MPI process. Thus, for every process in the MPI world, there exists a GPS entry,
and each process maintains a local copy of the entire GPS array. A migration that varies the MPI topology
will alter elements of the GPS array as processes are assigned to alternate nodes (the gps node field in
Figure 3). Our strategy is to mimic an MPI Init upon restart in order to trigger a GPS cache update from
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Figure 2. (a) Checkpointing a LAM/MPI process, and (b) Restarting

struct _gps { 

int4 gps_node;     /* node ID */
int4 gps_pid;        /* process ID */
int4 gps_idx;        /*process index */
int4 gps_grank;    /*glob. rank in loc. world */

}; 

Figure 3. LAM GPS struct for process info

mpirun. This facilitates the arbitrary migration of MPI processes without relying on a tool to manually
parse checkpoints.

In allowing for proper checkpoint migration, we facilitate faster restart solutions than have previously
been possible. Because our solution does not rely on checkpointing to network storage, all checkpoints can
be read directly from the host’s faster local hard disk. Further, by indexing which checkpoints are stored
on which nodes, we can build a customized application schema that is based on the current location of
checkpoints within the cluster. After querying each node, we build an index of the checkpoints contained
on each node which ultimately forms the application schema. The application schema specifies that each
node should first start its previous checkpoint. Afterwards, any checkpoints that have not been started are
mapped onto the node with the (currently) lowest restart load. When all checkpoints have been accounted
for, the computation resumes. In the coming sections, we describe how our replication technique helps to
ensure that checkpoints will survive through multiple simultaneous node failures without the need to write
checkpoint images to network storage.
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4 Checkpoint Storage, Resilience, and Performance

In order to enhance the resiliency of our checkpointing we include data replication. While not typically
stated explicitly, nearly all checkpoint/restart methods rely on the existence of network storage that is
accessible to the entire cluster. Such strategies suffer from two major drawbacks in that they create a
single point of failure and also incur massive overhead when compared to checkpointing to local disks.

A cluster that utilizes a network file system-based checkpoint/restart mechanism may sit idle should the
file system experience an outage. This leads not only to wasteful downtime, but also may lead to lost data
should the computation fail without the ability to checkpoint. However, even with fault-tolerant network
storage, simply writing large amounts of data to such storage represents an unnecessary overhead to the
application. In the sections to follow, we examine two replication strategies: a dedicated server technique,
and a distributed implementation.

We evaluate both centralized-server and network storage-based storage techniques and compare them
against our proposed replication strategy using the SP, LU, and BT benchmarks from the NAS Parallel
Benchmarks (NPB) suite [38] and the High Performance LINPACK (HPL) [15] benchmark. The remain-
ing benchmarks within the NPB suite represent computational kernels, rather than mini-applications. We
limited our NPB benchmarking focus to the mini-applications. The tests were performed with a single
MPI process per node. To gauge the performance of our checkpointing library using the NPB tests, we
used exclusively “Class C” benchmarks. For our HPL benchmark, we selected a matrix with a problem
size of 28,000. These configurations resulted in checkpoints that were 106MB, 194MB, 500MB, and
797MB for the LU, SP, BT, and HPL benchmarks, respectively. The LU and HPL benchmarks consisted
of 8 CPUs each, while the BT and SP benchmarks required 9 CPUs.

For our implementation testing we used a university owned cluster consisting of 16 dual 2.66 GHz
Pentium IV Xeon processors with 2.5 GB RAM, a 10,000 RPM Ultra SCSI hard disk and gigabit ethernet.
A 1 TB IBM DS4400 SAN was also used for the network storage tests. To test for scalability we tested
our implementation up to 256 nodes on a second university cluster consisting of 1600 3.2 GHz Intel Xeon
processors, with 2 processors per node (800 total nodes) and a 30 TB EMC Storage Area Network. The
network is connected by both gigabit ethernet and Myrinet. Gigabit ethernet was used for our tests.

As our baseline, we compare the three storage techniques against the checkpoint data shown in Figure 4.
Here we show the result of periodically checkpointing the NAS Parallel Benchmarks as well as the HPL
benchmark along with the time taken to perform a single checkpoint. Our implementation shows very
little overhead even when checkpointed at 1 minute intervals. The major source of the overhead of our
checkpointing scheme lies in the time taken in writing the checkpoint images to the local file system.

In Figure 4(a) we break the checkpointing overhead down by coordination time, checkpointing time,
and continue time. The percentages listed above each column indicate the overhead of a checkpoint
when compared to the baseline running time of Figure 4(b). The coordination phase corresponds to the
“exchange bookmarks/checkpoint base” segment of Figure 2(a). The checkpoint time consists of the time
needed to checkpoint the entire memory footprint of a single process and write it to stable storage. Finally,
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the continue phase corresponds to the “continue” portion of Figure 2(a). The coordination and continue
phases require barriers to ensure application synchronization, while each process performs the checkpoint
phase independently.

As confirmed in Figure 4(a), the time required to checkpoint the entire system is largely dependent
on the time needed to checkpoint the individual nodes. Writing the checkpoint file to disk represents
the single largest time in the entire checkpoint process and dwarfs the coordination phase. Thus, as the
memory footprint of an application grows, so too does the time needed to checkpoint. This can also affect
the time needed to perform the continue barrier as faster nodes are forced to wait for slower nodes to
write their checkpoints to disk. This suggests that the key to fast and light-weight checkpointing is in
minimizing the checkpoint/disk-writing time.

From Figure 4(b) we confirm that the memory footprint of an application is the dominating factor in
the overall checkpointing overhead. Nevertheless, checkpointing the 500MB BT benchmark every minute
resulted in less than 10% additional overhead. Reducing the checkpoint interval to 2 minutes further
reduced the overhead of the BT benchmark by more than half.

(a) % indicates the contribution of checkpointing (in
terms of overhead) over the base timings without check-
pointing (from Figure 4(b)).

(b)

Figure 4. A breakdown of checkpointing overheads.

4.1 Dedicated Checkpoint Servers versus Checkpointing to Network Storage

The two most common checkpoint storage techniques presented in the literature are the dedicated
server(s) [14] and storing checkpoints directly to network storage [32, 20]. We begin our evaluation with
a comparison of these two common strategies.

For our dedicated checkpoint server implementation we use the LAM daemons (lamd) to move check-
points from individual nodes to a dedicated checkpoint server. Each lamd was extended with an addi-
tional daemon that is used to both collect checkpoint information from each of its MPI processes, and
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asynchronously propagate the data to the dedicated server. We have also extended mpirun to include a
checkpointing daemon responsible for scheduling and receiving checkpoints.

(a) (b)

Figure 5. Runtime of NPB with checkpoints streamed to central checkpoint server vs. saving to SAN.

In Figure 5 we show the results of checkpointing the NAS Parallel Benchmarks with the added cost of
streaming the checkpoints to a centralized server or storing the checkpoints to a SAN. In the case of the
LU benchmark, we notice a marked reduction in overhead when comparing the SAN data in Figure 5(a)
to the checkpoint server data also presented in Figure 5(b). Indeed, the overhead incurred by streaming
an LU checkpoint every 4 minutes is less than 6% – a dramatic improvement over saving checkpoints to
shared storage, which results in an overhead of nearly 14% for LU and 25% for SP. The situation is even
worse for the BT benchmark which incurs an overhead of 134% at 4 minute checkpointing intervals.

However, we can also see that as the size of the checkpoint increases, so too does the overhead in-
curred by streaming all checkpoints to a centralized server. At 8 minutes checkpointing intervals the SP
benchmark incurs an overhead of approximately 4% while the overhead of BT jumps to nearly 16%. The
increase in overhead is due to individual lamds overwhelming the checkpoint server, thereby creating too
much network and disk congestion for a centralized approach to handle.

Nevertheless, the use of a dedicated checkpoint server shows a distinct cost-advantage over the SAN-
based solution. However, dedicated servers still suffer from being a single point of failure as well as
being network bottlenecks. Techniques using multiple checkpoint servers have been proposed to mitigate
such bottlenecks [14]. However, their efficacy in the presence of large checkpoint files has not been
demonstrated in the literature (NPB class B results are shown in [14]). Furthermore, if each checkpoint
server is collecting data from a distinct set of nodes, as is the case in [14], the computation will not be
resilient to failed checkpoint servers. Finally, as we show in Figure 5(b), dedicated server strategies simply
do not scale. With as few as 8 nodes checkpointing to a single server, overheads as high 16% are observed
for 8 minute checkpointing intervals. A technique to alleviate the impact of checkpointing directly to SANs
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is proposed in [37]. Wang, et al. combine local checkpointing with asynchronous checkpoint propagation
to network storage. However, they require multiple levels of scheduling in order to prevent the SAN from
being overwhelmed by the network traffic. The overhead of their scheduling has not yet been demonstrated
in the literature, nor has the scalability of their approach, where their tests are limited to 16 nodes.

4.2 Checkpoint Replication

To address the scalability issues shown in Section 4.1, we implemented an asynchronous replication
strategy that amortizes the cost of checkpoint storage over all nodes within the MPI world. Again we
extended LAM’s lamds. This time we used a peer-to-peer strategy between each lamd to replicate check-
points to multiple nodes. This addresses both the resiliency of checkpoints to node failure as well as the
bottlenecks incurred by transferring data to dedicated servers.

A variety of replication strategies have been used in peer-to-peer systems. Typically, such strategies
must take into account the relative popularity of individual files within the network in order to ascertain
the optimal replication strategy. Common techniques include the square-root, proportional, and uniform
distributions [27]. While the uniform distribution is not used within peer-to-peer networks because it
does not account for a file’s query probability, our checkpoint/restart system relies on each checkpoint’s
availability within the network. Thus, each checkpoint object has an equal query probability/popularity
and we feel that a uniform distribution is justified for this specific case.

We opted to randomly distribute the checkpoints in order to provide a higher resilience to network
failures. For example, a solution that replicates to a node’s nearest neighbors would likely fail in the
presence of a switch failure. Also, nodes may not fail independently and instead cause the failure of
additional nodes within their vicinity. Thus, we feel that randomly replicating the nodes throughout the
network provides the greatest possible chance of survival.

To ensure an even distribution of checkpoints throughout the MPI world, we extended the lamboot com-
mand with a parameter representing the degree of replication (number of replicas). lamboot is responsible
for computing and informing each lamd of its replicas.

Figure 6(a) shows the results of distributing a single replica throughout the cluster with NPB. As can
be seen, the overhead in Figure 6(a) is substantially lower than that of the centralized server shown in
Figure 5(b). In each of the three NAS benchmarks, we are able to reduce the overhead of distributing
a checkpoint by at least 50% when compared to streaming all checkpoints to a single server. For the
most expensive checkpoint (BT), we are able to reduce the overhead of checkpointing to 9% at 4 minute
intervals and 5.5% at 8 minute intervals (compared to 38% and 16% at 4 minute and 8 minute intervals,
respectively).

In Figure 6(b) we show the results of distributing a single replica every 4, 8, 16, and 32 minutes for
the HPL benchmark. We found that our network was unable to handle checkpoint distribution of HPL
at intervals shorter than 4 minutes, due to the size of the checkpoint files. We notice a steady decrease
in overhead as the checkpoint interval increases to typical values with a single checkpoint resulting in an
overhead of only 2.2%.
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(a) (b)

Figure 6. Benchmark timings with one replica.

To address the resiliency of checkpoint replication in the presence of node failure we insert multiple
checkpoint replicas into the system. In Figure 7 we compare the overheads of distributing 1, 2, and 3
replicas of each of our three NAS benchmarks every 4 minutes. As we would expect, the overhead incurred
is proportional to the size of the checkpoint that is distributed. For smaller checkpoints such as LU and SP,
distributing the 3 replicas represents minimal overhead. As the size of the checkpoint increases, however,
so too does the overhead as the BT data shows in Figure 7. Even so, we incur comparatively little overhead
given the amount of data that is exchanged at every checkpoint, with the LU and SP benchmarks adding
only 2% and 6% overhead respectively. On the other hand, the BT overhead for 3 checkpoints jumps to
nearly 21%. However, as we show in the scalability tests to follow (Section 4.5), such overhead drops
considerably as more typical checkpoint intervals are used.

4.3 The Degree of Replication

While the replication strategy that we have described has clear advantages in terms of reducing the
overhead on a running application, an important question that remains is the number of replicas necessary
to achieve a high probability of restart. To help answer this question, we developed a simple simulator
capable of replicating node failures, given inputs of the network size and the number of replicas.

From Table 1 we can see that our replication strategy enables a high probability of restart with seemingly
few replicas needed in the system. Furthermore, this strategy is ideal as supercomputing approaches the
petascale stage. As can be seen, our replication technique scales quite well with the number of CPUs.
With 2048 processors, we estimate that 111 simultaneous failures could occur while maintaining at least a
99.9% probability of successful restart and requiring only 4 replicas of each checkpoint. Combining this
with our migration system, we can simply absorb any node failures without requiring any replacement

nodes.
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Figure 7. NPB with multiple replicas.

1 Replica 2 Replicas 3 Replicas 4 Replicas
Allowed Failures for Allowed Failures for Allowed Failures for Allowed Failures for

Nodes 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9%
8 1 1 1 2 2 2 3 3 3 4 4 4
16 1 1 1 2 2 2 5 4 3 7 5 4
32 2 1 1 5 3 2 8 5 4 11 8 6
64 3 1 1 8 4 2 14 8 4 19 12 8
128 4 1 1 12 6 3 22 13 8 32 21 14
256 5 2 1 19 9 5 37 21 13 55 35 23
512 7 2 1 31 14 7 62 35 20 95 60 38
1024 10 3 1 48 22 11 104 58 33 165 103 67
2048 15 5 2 76 35 17 174 97 55 285 178 111

Table 1. Probability of successful restart with 1-4 replicas.

4.4 Restarting Computation

We provide two mechanisms for restarting the computation. The first, based on the use of an application

schema was described in Section 3.2. For comparison, we also provide a peer-to-peer lookup implemen-
tation. The advantage of the peer-to-peer lookup strategy over the application schema strategy is we can
guarantee a load-balanced restart. However, the disadvantage is that the lookup scheme is more time
consuming.

From the analysis performed by Lv et al. [27] we can describe the average search size to find a replica
within our cluster as:

Size =
m∑

i=1

qi
m

ρ
=

m

ρ
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Figure 8. Restart overheads with application schema and peer-to-peer lookup. AS = Application
Schema.

Where m is the number of checkpoints (one per MPI process) in the cluster, ρ is the average number
of replicas of each object per lamd, and qi is the popularity of a given object. In a uniform distribution,
objects are uniformly popular. So we can replace qi with 1

m
. Summing over all m nodes, we are left simply

with m
ρ

[27].
Using this formula, a user can choose to either optimize for the lowest overhead during the runtime

of an MPI computation (ρ near zero), or choose a more fault-tolerant number of replicas which will also
reduce the time to restart.

The restart times described in Figure 8 consist of two metrics: the acquisition/loading of the checkpoint
image (labeled “acquire/load checkpoint” in Figure 8) and a mock-MPI Init (labeled “init” in Figure 8).
The acquisition/loading phase includes the time necessary to find and transfer any checkpoint images,
while the “init” phase consists of reinitializing the MPI library.

In Figure 8 we demonstrate the time to restart a failed computation using the LU benchmark. We
compare both our peer-to-peer lookup as well as our restart application schema-based strategy (AS in
Figure 8) with up to 128 processes. To simulate a failure/restart, we checkpointed the application, killed
the job and measured the time necessary to both find the correct checkpoint and restart it. In all cases, the
MPI universe is reduced from 8 nodes to 4 nodes, simulating a 4 node failure and restarting with multiple
processes per node1. Clearly, our strategy of using an application schema results in much faster restarts
- checkpoints need not be moved around the network, and instead can simply be restarted. However, as
we noted earlier, some applications may tolerate an increased restart time in favor of more ideal resource

1Limited resources required the use of only 8 nodes for all tests, up to 128 processes
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allocation. As such, we include both mechanisms.

4.5 Scalability Studies

Because our checkpointing engine, Ckpt [40], is only 32 bit while the second cluster’s Xeon processors
are each 64 bit, we simulated the mechanics of checkpointing with an artificial 1 GB file that is created
and written to local disk at each checkpoint interval. Aside from this slight modification, the remaining
portions of our checkpointing system remain intact (coordination, continue, file writing, and replication).

(a) HPL with one replica per checkpoint. (b) HPL with two replicas per checkpoint.

(c) HPL with three replicas per checkpoint. (d) HPL with four replicas per checkpoint compared with
EMC SAN.

Figure 9. Scalability tests using the HPL benchmark.

In Figure 9 we demonstrate the impact of our checkpointing scheme. Each number of nodes (64,
128, and 256) operates on a unique data set to maintain a run time of approximately 1000 seconds. For
comparison, we also present the overhead of checkpointing to the EMC SAN in Figure 9(d). Large scale
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evaluation of the centralized server technique was not possible due to the limited disk capacity of the
compute nodes. We chose to evaluate our system for up to 4 checkpoints as the results of our failure
simulation (see Table 1) suggest that 4 replicas achieves an excellent restart probability.

The individual figures in Figure 9 all represent the total run time of the HPL benchmark at each cluster
size. Thus, comparing the run times at each replication level against the base run time without checkpoint-
ing gives us a measure of the overhead involved for each replication level. From Figure 9(a) we can see
that the replication overhead is quite low - only approximately 6% for 256 nodes or 3% for 64 nodes (at
16 minute checkpoint intervals). Similar results can be seen at 2, 3, and 4 replicas with only a minimal
increase in overhead for each replication increase.

The most important results, however, are those shown in Figure 9(d). Here we include the overhead
data with 4 replicas as well as with checkpointing directly to the SAN (a common strategy in nearly all
MPI checkpointing literature). As can be seen, the overhead of checkpointing directly to a SAN not only
dwarfs that of our distributed replication strategy but also nullifies the efficacy of additional processors for
large clusters.

5 Related Work

Checkpointing at both the user-level and kernel-level has been extensively studied [29, 16]. The official
LAM/MPI implementation includes support for checkpointing [32] using the BLCR kernel-level check-
pointing library [16]. A more recent implementation by Zhang et al. duplicates the functionality of LAM’s
checkpointing, but implements the checkpointing at the user-level [41]. Wang, et al. have implemented
additional pause/restart functionality in LAM [37]. However, all current LAM implementations rely on
network storage and a similar process topology.

Other MPI implementations have been similarly enhanced with checkpointing support. MPICH-GM, a
Myrinet specific implementation of MPICH has been extended to support user-level checkpointing [24].
Similarly, Gao et al. [20] demonstrate a kernel-level checkpointing scheme for Infiniband (MVAPICH2)
that is based on the BLCR kernel module [16].

DejaVu [30] implements an incremental checkpoint/migration scheme that is able to incrementally cap-
ture the differences between two checkpoints to minimize the size of an individual checkpoint. However,
DejaVu is currently unavailable and results presented in the literature are limited to 16 nodes making the
scalability of their system unknown.

MPICH-V [5] uses an uncoordinated message logging strategy with checkpointing provided by the
Condor checkpointing library [26]. CoCheck [35] also uses the Condor checkpointing library as the basis
for the tuMPI checkpointing system. More recent work has demonstrated a blocking coordinated protocol
within MPICH2 [14]. Their observations suggested that for high speed computational clusters blocking
approaches achieve the best performance for sensible checkpoint frequencies. Our scalability results from
Section 4.5 lend additional evidence supporting their claim.

Using Charm++ [25] and Adaptive-MPI [21, 22], Chakravorty et al. add fault tolerance via task mi-
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gration to the Adaptive-MPI system [11, 13, 31, 12]. Their system relies on processor virtualization to
achieve migration transparency.

MPICH-GF [39] is a grid-enabled version of MPICH that runs on top of the Globus grid-middleware.
It uses a user-level coordinated checkpointing strategy to ensure consistent recovery in the case of node
failure. MPICH-GF supports task migration; however, such migration relies on the Globus toolkit.

Other strategies such as application-level checkpointing have also been extended to MPI checkpointing,
particularly the C3 [7, 6] system. Application-level checkpointing carries advantages over kernel-level or
user-level in that it is more portable and often allows for restart on varying architectures. However they do
not allow for arbitrary code checkpointing and require access to a user’s source code.

Network-specific fault-tolerance schemes have also been addressed [2, 3]. These address the delivery
of messages in the face of node failures. FT-MPI [18] implements these network fault-tolerance protocols,
but requires that the user supply an application-level checkpointing package in order to facilitate the restart
of computations. LA-MPI [4] similarly requires that users perform self-checkpointing.

Scalable MPI job initializing has also been studied [36, 9]. While typical MPI implementations, includ-
ing LAM/MPI, are unable to quickly start jobs where the number of processes number in the hundreds or
thousands, work has been proposed in the literature to facilitate such scalability. Our work goes hand-in-
hand with such enhancements.

Our work differs from the above in that we provide task migration and redistribution on the standard
LAM/MPI implementation. We handle checkpoint redundancy for added resiliency in the presence of node
failures. Our checkpointing solution does not rely on the existence of network storage for checkpointing.
The absence of network storage allows for improved scalability and also reduced checkpoint intervals
(where desired). Unlike others [24, 20], we focus on ethernet based communication due to its prevalence
in large computational cluster [1].

6 Conclusions and Future Work

We have shown that it is possible to effectively checkpoint MPI applications using the LAM/MPI im-
plementation with very low overhead. Previous checkpointing implementations have typically neglected
the issue of checkpoint replication and process migration. We addressed both of these issues with an em-
phasis on transparency to the end-user and low-cost/low-overhead. Our checkpointing implementation has
proven to be highly effective and resilient to node failures.

Our migration system allows a computation to be restarted with varying topologies, allowing for the
elimination of “spare” nodes for checkpoint restarts. Further, we showed that our replication strategy is
highly scalable. Where previous work discussed within the literature typically tests scalability up to 16
nodes, we have demonstrated low overhead up to 256 nodes with more realistic checkpoint image sizes of
1 GB per node. Our work enables more effective use of resources without any reliance on network storage.
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