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Abstract Multipath routing has long been studied
as an important routing strategy in networks. Many
multipath routing protocols schedule traffic among
multiple paths in order to distribute load. However,
existing multipath routing protocols with traffic as-
signment require that all nodes in the network follow
the protocol, which may not always be a valid as-
sumption. In this paper, we propose a traffic assign-
ment scheme to deal with selfish behavior, which is
shown to be strategy-proof. Evaluations demonstrate
that our scheme is very efficient.
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1 Introduction

Multipath Routing has long been studied as an
important routing strategy in networks. It provides
multiple paths for sending data from a source to a
destination to exploit the resources of the underly-
ing physical network. Previous research has demon-
strated that multipath routing can achieve route re-
silience, higher aggregate bandwidth, smaller end-to-
end delays, and better load balancing [1,2].

Multipath routing has been explored in both wired
and wireless networks. In wired network, multipath
routing is implemented as a feature of Asynchronous
Transfer Mode (ATM) networks [3] and Open Short-
est Path First (OSPF) protocol [4]. For Mobile Ad-
Hoc Network (MANET), multipath routing is also
extensively studied in recent years. A number of mul-
tipath routing protocols for MANETs have been pro-
posed. Some of them [5–8] maintain multiple routes
and utilize them only when the primary root fails.
Others [9–11] further schedule traffic among multiple
paths in order to distribute load. In this paper, we
are mainly concerned with the latter, i.e., multipath
routing protocols that assign the traffic among the
multiple paths.

We note that the existing multipath routing pro-
tocols with traffic assignment require that all nodes

in the network follow the prescribed protocol and
cooperate with each other. However, this assump-
tion is not valid when the network consists of selfish
nodes [12–25]. Since forwarding flows depletes scarce
resources such as power, and reduces available band-
width to the node itself, when nodes in the network
belong to different owners, they may not have in-
centive to forward others’ flows. In this paper, we
consider the selfish behavior of nodes in such net-
works. Specifically, a selfish node is an economically
rational node whose objective is to maximize its own
utility. So our question is how to design a multipath
routing protocol such that selfish nodes will behave
cooperatively.

To the best of our knowledge, there has not been
any work addressing selfish behavior for multipath
routing. However, there has been extensive study on
traditional unicast and multicast in selfish networks.
Considering the complexity and the subtlety of the
incentive issues, many researchers apply game-theore-
tic techniques to analyze and design protocols in wire-
less and wired networks. In wireless network, various
incentive-based approaches have been proposed to
solve packet routing or forwarding problem [12–19].
Wang et al. [20] and Yuen et al. [21] investigated
the problem of bandwidth allocation and multicast
tree formation in overlay networks. Feigenbaum et
al. [22,23] considered both unicast and multicast in
Internet. Felegyhazi et al. [24] and Halldorsson et al.
[25] studied the problem of sharing spectrum using
game theory.

Although the methods mentioned above can not
be directly used in the multipath routing scenario, we
believe that we can develop a game-theoretic solution
for multipath routing that can deal with the selfish
behavior of nodes. To design a multipath routing
protocol for selfish networks, instead of starting from
scratch, we consider some existing multipath routing
protocol and make it compatible with selfish behavior
by redesigning its traffic assignment scheme. That
is, we study how to assign the data traffic to the
multiple paths established by a given multipath rout-
ing protocol between the source and the destination,
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such that the participating selfish nodes will behave
cooperatively. First, we give a game-theoretic model
for this problem, which we call traffic assignment
game. Then, we propose an efficient scheme for traffic
assignment, which is shown to be strategy-proof in
the above model. Here intuitively, the scheme being
strategy-proof means that behaving cooperatively is
to the best interest of every node, regardless of other
nodes’ behavior. Furthermore, our scheme is guaran-
teed to compute the lowest cost traffic assignment.
Evaluations demonstrate that our scheme has very
good performance.

The rest of this paper is organized as follows: In
Section 2 we introduce some preliminaries. In Section
3, we present our traffic assignment game model. In
Section 4, we go to the details of our traffic assign-
ment scheme and prove its optimality and strategy-
proofness. In Section 5, we show the results of eval-
uations. Finally, we conclude the paper in Section 6.

2 Technical Preliminaries

Before introducing our model, we need to recall
some notations from mechanism design. In the classic
model of mechanism design, there is a set of players
N = {1, 2, . . . , n}. Each player i has some private in-
formation ti called type, which determines its prefer-
ences over different outcomes of a game. The players’
type vector is denoted by t = (t1, t2, . . . , tn). For each
player i ∈ N , there is a set of available actions Ai. As
a notational convention, a−i represents the actions of
all players except player i. Note that (ai, a−i) is an
action profile, in which player i takes action ai and
the other players take actions a−i. The action profile
a decides the outcome o(a) and payment p(a) of the
game, where p(a) = (p1(a), p2(a), . . . , pn(a)) is the
vector of payment to each player. A valuation func-
tion vi(ti, o(a)) assigns a monetary value for player i
to each possible output o(a). Node i’s utility ui is a
function as follows:

ui(a) = vi(o(a)) + pi(a). (1)

Given above notations, now we can define a very
strong solution concept called dominant strategy [26].

Definition 1 A dominant strategy of a player is one
that maximizes its utility regardless of what strate-
gies other players choose. Specifically, ai is player i’s
dominant strategy if, for any a′i 6= ai and any a−i,

ui(ai, a−i) ≥ ui(a′i, a−i). (2)

A direct-revelation mechanism is a mechanism in
which the only actions available to players are to
make claims about their preferences to the mecha-
nism. That is, the strategy of player i is reporting

type t̂i = si(ti), based on its actual preferences ti. A
direct-revelation mechanism is incentive-compatible
(IC) if reporting truthful information is a dominant
strategy for each player. Another important property
of a mechanism is individual-rationality (IR) — each
player can always achieve at least as much expected
utility from participation as without participation.
Finally, we say a direct-revelation mechanism is strat-
egyproof if it satisfies both IC and IR properties.

3 A Model of traffic assignment Game

We give the detail of our traffic assignment game’s
model in this section. Consider a network represented
by G = (V, E), where V = {v1, v2, . . . , vn} is the set
of nodes and E = {e1, e2, . . . , em} ⊆ V ×V is the set
of undirected communication links, in which ek =
vivj means that node vi and vj can communicate
with each other directly. Each node vi ∈ V has a
fixed capacity Ci for sending and receiving data.

We model multipath routing with traffic assign-
ment as a mechanism design problem, which we call
the traffic assignment game. For a traffic assignment
game, suppose that source node is S and destina-
tion node is D. Then the player set of the game
is V − {S,D}. Each node vi ∈ V knows its cost
function fi(x) and current available bandwidth 0 ≤
bi ≤ Ci, which are defined as its type. Formally,
we have type ti =< fi(x), bi >. The cost function
fi(x) indicates the cost of forwarding one unit of
traffic when x units of bandwidth has been used.
It is a increasing and convex function, which grows
slowly at the beginning, and then increases more and
more rapidly. Intuitively, this means that the more
bandwidth a node allocates for forwarding traffic, the
less bandwidth it can use to send its own traffic. The
cost includes expense of power consumed, losing in
sacrificing bandwidth to send own traffic, and so on.
So a node will get increasingly reluctant to sell its
bandwidth when more and more bandwidth is used.
Suppose a new flow request wants to go through node
vi with bandwidth requirement q ≤ bi. Then the
overall cost of node vi for forwarding this flow is

ci =
∫ Ci−bi+q

Ci−bi

fi(x)dx.

In this game, each player node vi chooses an ac-
tion ai. The profile of all players’ actions is denoted
by a = (ai)vi∈V−{S,D}. This action profile determines
both the valuation function vi(o(a)) = −ci(o(a)) and
the payment pi(a). So the utility of each node is:

ui(a) = pi(a)− ci(o(a)). (3)



3

4 Traffic Assignment Scheme

In this section, we propose our traffic assignment
scheme and prove its strategy-proofness. Our scheme
is designed for assigning traffic among multiple node-
disjoint paths, which do not have any nodes in com-
mon except the source and destination. So our scheme
can be used for any multipath routing protocol that
schedules multiple node-disjoint paths (e.g., [4,7,8]).
In this paper, we assume that the network topology is
biconnected — there exist at least two node-disjoint
paths from any source node to any destination node.

4.1 Scheme
Given a new traffic demand q from a source node

S to a destination node D, there is a set of node-
disjoint paths P = {P1, P2, . . . , Pm} found by the
multipath routing protocol (e.g., [4,7,8]). Each player
node vi on any of these paths declares its cost func-
tion fi(x) and current available bandwidth bi.

Algorithm 1 Traffic Assignment Algorithm
Input: Set of paths P , cost functions and available

bandwidth < fi(x), bi >vi∈Pj∈P , and bandwidth
requirement q.

Output: Traffic assignment R = (r1, r2, . . . , rm).
1: R = 0m

2: W = ∅
3: ∀Pj ∈ P , define Fj(x) =

P
vi∈Pj

fi(Ci − bi + x)

4: while q >
Pm

i=0 ri do
5: if (P 6= ∅) then
6: k = argmin

Pj∈P
Fj(0)

7: cm = Fk(0)
8: else
9: cm = max

10: end if
11: Compute the largest r1, r2, . . . , rm, s. t.

∃c ≤ cm, ∀Pj ∈ W, Fj(rj) = c
∧∀Pj ∈ W,∀vi ∈ Pj , rj ≤ bi

∧PPj∈W rj ≤ q. (See Section 4.2 for detail.)
12: cp = c
13: if q >

P
Pj∈W rj then

14: Move Pk from P to W
15: end if
16: end while

After collecting all the information, the source
node (or the destination node) computes the traffic
assignment using Algorithm 1. Algorithm 1 first com-
bines the cost functions declared by nodes on each
path Pi ∈ P to get a integrated path cost function
Fi(x). Then it turns to work on these integrated path
cost functions. In each iteration, if there exist paths
in the set P , it sets cm to the smallest Fj(0) among

these paths; if there is no such path, then cm is set as
max (an upper bound of Fj(x)). Next, the algorithm
tries to assign to each path in the set W as much
traffic as possible, under the constraint that each
path Pi has the same cost after allocating additional
units of traffic and this cost is less than or equal
to cm. The result is a traffic assignment vector R.
We will give how to calculate the vector R in next
sub-section. If there is still some traffic has not been
allocated, move Pk to the set W and repeat the above
iteration. When the iteration stops, the vector R is
the final assignment of traffic.

4.2 Calculating Vector R

To calculate the assigned traffic vector R in each
iteration, we distinguish two cases:

1.
∑

Pi∈W F−1
i (cm) ≤ q: Set ri = F−1

i (cm) for each
path Pi ∈ W .

2.
∑

Pi∈W F−1
i (cm) > q: This time, we need to find a

c, such that cp < c < cm, and
∑

Pi∈W (F−1
i (c)) =

q. Algorithm 2 is designed to calculate such value
c. Then here ri = F−1

i (c) for each path Pi ∈ W .

Algorithm 2 Calculating c

Input: (F1, F2, . . . , Fm), cp, cm, and q.
Output: c.
1: top = cm

2: bottom = cp

3: Set ε // Set precision factor.
4: while bottom ≤ top do
5: c = (top + bottom)/2
6: if

P
Pi∈W (F−1

i (c)) > q + ε then
7: top = c
8: else if

P
Pi∈W (F−1

i (c)) < q − ε then
9: bottom = c

10: else
11: return c
12: end if
13: end while
14: return not found

When using Algorithm 2, we can set ε to different
values to satisfy various requirements of applications.
The smaller ε is, the higher precision we have, but the
amount of time consumed is also greater.

4.3 Payment to Each Node
To calculate the payment to each node vi in each

path in P , we call the Algorithm 1 twice. Suppose vi

is on path Pj ∈ P . The first execution of Algorithm
1 is exactly what we have described in Section 4.1. In
the second execution, we remove the path Pj from the
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network. Let R and R′ be the traffic assignment com-
puted by the two executions of Algorithm 1. Then the
payment pi to vi is defined as follows:

pi =
∑

Pk∈P−{Pj}

∫ r′k

rk

Fk(x)dx

−
∑

vh∈Pj−{vi}

∫ rk

0

fi(Ci − bi + x)dx.

(4)

If a node is not in any path in P , it does not receive
any payment.

4.4 Optimality

Theorem 1 Our traffic assignment scheme computes
the most cost efficient traffic assignment if truthful-
ness is guaranteed.

Proof Suppose that R is the traffic assignment com-
puted by our algorithm and R′ is any traffic assign-
ment for traffic demand q. Then we have:

∑

Pj∈P

r′j =
∑

Pj∈P

rj = q

We divide P into two subsets P (1) and P (2), such
that P = P (1) ∪ P (2), P (1) ∩ P (2) = ∅, and

{
∀Pj ∈ P (1), rj ≥ r′j ,
∀Pj ∈ P (2), rj < r′j .

(5)

Now we consider the cost difference between the
two traffic assignment.

∑

Pj∈P

(
∫ rj

0

Fj(x)dx−
∫ r′j

0

Fj(x)dx)

=
∑

Pj∈P1

∫ rj

r′j

Fj(x)dx−
∑

Pj∈P2

∫ r′j

rj

Fj(x)dx

≤
∑

Pj∈P1

c(rj − r′j)−
∑

Pj∈P2

c(r′j − rj)

= c(
∑

Pj∈P

rj −
∑

Pj∈P

r′j)

= 0

⇒
∑

Pj∈P

∫ rj

0

Fj(x)dx ≤
∑

Pj∈P

∫ r′j

0

Fj(x)dx

So the cost of traffic assignment R is less or equal
to that of R′.

Now we consider the utility ui of each node vi in
each path in P :

ui = pi − ci

=
∑

Pk∈P−{Pj}

∫ r′k

0

Fk(x)dx−
∑

Pk∈P

∫ rk

0

Fk(x)dx.

Since the traffic assignment computed by our algo-
rithm is optimized, we have ui ≥ 0.

4.5 Strategy-Proofness
In our scheme, the actions available to each node

in the network are to declare its private type. Obvi-
ously it is a direct-revelation mechanism. To show it
has the incentive compatible (IC) property, we will
prove that if our scheme is used, telling the truth is
a dominant strategy.

Theorem 2 If our scheme is used, declaring the true
type (cost function and available bandwidth) is a dom-
inant strategy for each node.

Proof We will show that a node vi can not increase
its utility by cheating. That is to say, truth telling is
a dominant strategy. If the node vi is not on any path
in P , it will definitely get zero utility. If the node vi

is on one of the path Pj in P , we distinguish three
cases:

1. The node vi cheats to increase the amount of
traffic passing through itself by ∆rj > 0. The
traffic on path Pk ∈ P − {Pj} is decreased by
∆rk (where some ∆rk may be less than or equal
to 0). But the node’s new utility u′i = p′i − c′i can
not be more than ui because:

u′i − ui = (p′i − c′i)− (pi − ci)
= (p′i − pi)− (c′i − ci)

= (
∑

Pk∈P−{Pj}

∫ rk

rk−∆rk

Fk(x)dx

−
∑

vh∈Pj−{vi}

∫ rj+∆rj

rj

fh(Ch − bh + x)dx)

−
∫ rj+∆rj

rj

fi(Ci − bi + x)dx

=
∑

Pk∈P−{Pj}

∫ rk

rk−∆rk

Fk(x)dx

−
∫ rj+∆rj

rj

Fj(x)dx

Since ∀Pk ∈ P−{Pj}, Fk(rk) = Fj(rj) when rk >
0 and

∑
Pk∈P−{Pj}∆rk = ∆rj , we have u′i−ui ≤

0.
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Fig. 1 Computation time of using 4 kinds of cost functions as a function of number of paths and average hops.

2. The node vi cheats to decrease the amount of
traffic passing through itself by ∆rj > 0. The
traffic on path Pk ∈ P − {Pj} is increased by
∆rk. The node’s new utility u′i = p′i − c′i can not
be increased because:

u′i − ui = (p′i − c′i)− (pi − ci)
= (p′i − pi)− (c′i − ci)

= (−
∑

Pk∈P−{Pj}

∫ rk+∆rk

rk

Fk(x)dx

+
∑

vh∈Pj−{vi}

∫ rj

rj−∆rj

fh(Ch − bh + x)dx)

+
∫ rj

rj−∆rj

fi(Ci − bi + x))dx

=
∫ rj

rj−∆rj

Fj(x)dx

−
∑

Pk∈P−{Pj}

∫ rk+∆rk

rk

Fk(x)dx

Since ∀Pk ∈ P−{Pj}, Fk(rk) = Fj(rj) when rk >
0 and

∑
Pk∈P−{Pj}∆rk = ∆rj , we have u′i−ui ≤

0.
3. The node vi cheats, but does not change the amount

of traffic passing through itself. Since both the
payment to vi and the cost for forwarding the
traffic does not change, the node vi still gets the
same utility as that of telling truth.

From the definition of payment, we can see that
whenever participating in the game, a node will get
non-negative utility under our scheme. If a node stays
out of the game, its utility will remain to be 0. So

participating is not worse than staying out, which
satisfies the individual rationality (IR).

Since our scheme satisfies both IC and IR, we
have the following theorem:

Theorem 3 The traffic assignment scheme presented
in this paper is a strategy-proof mechanism.

5 Evaluations

Now we evaluate the efficiency of our scheme in
terms of communication overhead and computational
overhead.

The overall communication overhead is NpNh(Lf

+ Lb) bits, where Np is the number of node-disjoint
paths from S to D, Nh is the average number of hops
of these paths, and Lf and Lb are the numbers of
bits needed to encode the cost function and available
bandwidth, respectively.

To evaluate the computational overhead, we have
implemented our traffic assignment scheme and run it
on a laptop with 1.4GHz Centrino CPU and 768MB
memory. In our evaluations, we have tried various
cost functions, including linear function (Case 1, f(x)
= 2x + 5), quadratic function (Case 2, f(x) = x2 +
1), reciprocal function (Case 3, f(x) = 2

C−x ), and
exponential function (Case 4, f(x) = ex). We test
the performance of our scheme in a series of setups:
the number of candidate node-disjoint paths ranges
from 2 to 8, and the average hops per path ranges
from 1 to 16. We set ε to 10−5. This precision is
much more than needed in most applications.

Figure 1 shows the performance for each cost func-
tion under different number of paths and different
average number of hops. Generally, running time of
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Case 1 and Case 2 is less than that of Case 3 and
Case 4. This is because it is easier to compute the
inverse function of Fj(x) =

∑
vi∈Pj

fi(x) when fi(x)
is a linear or quadratic function. For the other two
cases, binary search is needed to compute F−1

j (x),
which needs more time.

Figure 2 compares running time of our scheme
using four different cost functions illustrated above,
when the number of candidate paths is 3 and the
average hop number is 16. Even in Case 4 we can
finish the computation in 26ms. So the computational
overhead is low when our scheme is used.

From these results of evaluation, we can see that
our scheme is very efficient.

6 Conclusion

In this paper, we propose a game-theoretic so-
lution for multipath routing to deal with the selfish
behavior of nodes. Our scheme can be used to modify
any existing multipath routing protocol that sched-
ules traffic among node-disjoint paths such that the
protocol becomes incentive compatible. The evalua-
tion results show that our scheme is very efficient.

References

1. Suzuki, H., Tobagi, F.A.: Fat bandwidth reservation
scheme with multi-link and multi-path routing in atm
networks. In: IEEE INFOCOM. (1992)

2. Cidon, I., Rom, R., Shavitt, Y.: Analysis of multi-
path routing. IEEE/ACM Tran. on Networking 7(6)
(1999) 885–896

3. CORPORATE The ATM Forum: (ATM user-
network interface specification (version 3.0))

4. Moy, J.: OSPF (version 2), RFC 2328 (1998)
5. Park, V.D., Corson, M.S.: A highly adaptive dis-

tributed routing algorithm for mobile wireless net-
works. In: IEEE INFOCOM. (1997)

6. Lee, S., Gerla, M.: AODV-BR: Backup routing in ad
hoc networks. In: IEEE WCNC. (2000)

7. Marina, M., Das, S.: On-demand multi path distance
vector routing in ad hoc networks. In: IEEE ICNP.
(2001)

8. Ye, Z., Krishnamurthy, S.V., Tripathi, S.K.: A frame-
work for reliable routing in mobile ad hoc networks.
In: IEEE INFOCOM. (2003)

9. Lee, S., Gerla, M.: Split multipath routing with
maximally disjoint paths in ad hoc networks. In:
IEEE ICC. (2001)

10. Papadimitratos, P., Haas, Z., Sirer, E.: Path-set
selection in mobile ad hoc networks. In: ACM
MobiHoc. (2002)

11. Pearlman, M.R., Haas, Z.J., Sholander, P., Tabrizi,
S.S.: On the impact of alternate path routing for
load balancing in mobile ad hoc networks. In: ACM
MobiHoc. (2000)

12. Anderegg, L., Eidenbenz, S.: Ad hoc-vcg: a truthful
and cost-eftcient routing protocol for mobile ad hoc
networks with seltsh agents. In: ACM MobiCom.
(2003)

13. Srinivasan, V., Nuggehalli, P., Chiasserini, C.F., Rao,
R.: Cooperation in wireless ad hoc wireless networks.
In: IEEE INFOCOM. (2003)

14. Wang, W., Li, X.Y., Wang, Y.: Truthful multicast in
selfish wireless networks. In: ACM MobiCom. (2004)

15. Zhong, S., Li, L., Liu, Y.G., Yang, Y.R.: On designing
incentive-compatible routing and forwarding proto-
cols in wireless ad-hoc networks. In: ACM MobiCom.
(2005)

16. Zhong, S., Chen, J., Yang, Y.R.: Sprite, a simple,
cheat-proof, credit-based system for mobile ad-hoc
networks. In: IEEE INFOCOM. (2003)

17. Wang, W., Eidenbenz, S., Wang, Y., Li, X.Y.: Ours:
Optimal unicast routing systems in non-cooperative
wireless networks. In: ACM MobiCom. (2006)

18. Salem, N., Buttyan, L., Hubaux, J., Jakobsson, M.: A
charging and rewarding scheme for packet forwarding
in multi-hop cellular networks. In: ACM MobiHOC.
(2003)

19. Eidenbenz, S., Resta, G., Santi, P.: Commit: A
sender-centric truthful and energy-efficient routing
protocol for ad hoc networks with selfish nodes. In:
IEEE IPDPS. (2005)

20. Wang, W., Li, B.: Market-driven bandwidth alloca-
tion in selfish overlay networks. In: IEEE INFOCOM.
(2005)

21. Yuen, S., Li, B.: Strategyproof mechanisms for dy-
namic multicast tree formation in overlay networks.
In: IEEE INFOCOM. (2005)

22. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.:
Sharing the cost of multicast transmissions. J.
Computer and System Sciences 63(1) (2001) 21–41

23. Feigenbaum, J., Papadimitriou, C., Sami, R.,
Shenker, S.: A bgp-based mechanism for lowest-cost
routing. In: ACM PODC. (2002)

24. Felegyhazi, M., Hubaux, J.P.: Wireless Operators in
a Shared Spectrum. In: IEEE INFOCOM. (2006)
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