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Abstract— Our problem formulation is as follows. Given a
probabilistic graph G and routing algorithm A, we wish to
determine a delivery subgraph G[A] of G with at most k edges,
such that the probability Conn2(G[A]) that there is a path
from source s to destination t in a graph H chosen randomly
from the probability space defined by G[A] is maximized. To the
best of our knowledge, this problem and its complexity has not
been addressed in the literature. Also, there is the corresponding
distributed version of the problem where the delivery subgraph
G[A] is to be constructed distributively, yielding a routing
protocol.

Our proposed solution to this routing problem is multi-fold:
First, we prove the hardness of our optimization problem of find-
ing a delivery subgraph that maximizes the delivery probability
and discuss the hardness of computing the objective function
Conn2(G[A]) (which is not the hardness of Conn2(G[A]) itself);
Second, we present an algorithm to approximate Conn2(G[A])
and compare it with an optimal algorithm; Third, we model
mobility using a Semi-Markov Chain to estimate the pairwise
user contact probabilities; and Fourth, we propose an edge-
constrained routing protocol (EC-SOLAR-KSP) for intermit-
tently connected networks based on the insights obtained from
the first step and the contact probabilities computed in the third
step. We then highlight the protocol’s novelty and effectiveness
by comparing it with a probabilistic routing protocol, and an epi-
demic routing protocol proposed in literature for intermittently
connected networks.

I. INTRODUCTION

The mobility of users forming a mobile wireless network
causes changes in the network connectivity and may even
lead to intermittently connected networks. On one hand, nodal
mobility may increase the overall network capacity [15]. On
the other hand, it may make it challenging to locate users
and route messages within the network. Although, many
proactive, reactive, and hybrid approaches have been suggested
in the literature for various types of mobile wireless networks,
mobility of nodes is still considered a big threat to final
protocol performance.

While the authors in [36], [39] proposed data infusion tech-
niques suitable for intermittent connectivity, another direction
of research has been the better understanding of the underlying
user mobility itself, that may be leveraged upon in routing
decisions and location predictions. Researchers have analyzed
mobility traces to various ends and have suggested numerous
practical mobility models. The network knowledge thus gained
has also been instrumental in proposing several probabilistic
routing protocols [19], [26], [30]. At the same time, profiling
wireless users based on their mobility has also been proven

beneficial to routing. The suggested approaches to profiling
[27], [35] have however varied, as well as the details of the
mobility information required.

In our previous work [9] we had established a mobility
profiling framework based on the sociological influences on
wireless users’ movements and presented a technique for
processing sporadic mobility trace data more generally found
amongst real traces. We validated our sociological claims
via an empirical study of a year long mobility trace data
obtained from ETH Zurich campus. In particular, we observed
that most wireless network terrains (campuses) comprise of
a list of sociologically significant places (cafeteria, library,
dormitories) that we refer to as “hubs”, and most users move
amongst a few selected hubs over an extended period in time
that we refer to as the user’s sociological “orbit”. We applied
a Mixture of Bernoulli’s distribution using the Expectation-
Maximization algorithm to generate “mobility profiles” for
individual wireless users involving a probabilistic movement
among hubs, and highlighted the usefulness of our mobility
profiles in performing location predictions with higher accu-
racy. We further demonstrated its use in probabilistic routing
within Intermittently Connected Mobile Ad hoc Networks
(ICMAN) by proposing and analyzing a suite of Sociological
Orbit aware Location Approximation and Routing (SOLAR)
protocols in [10], [13].

In this work, we aim to provide in detail a mathematical
model for computing the contact probabilities and subse-
quently the delivery probabilities that were used by our SO-
LAR protocols, based on our mobility profile information and
the hub transitional probabilities. To facilitate our discussion,
we shall define a couple of terms:

1) contact probability: The probability of two nodes ever
coming within each other’s radio range (in contact)
during the entire observed time window.

2) delivery probability: The probability of a source deliv-
ering a packet to a destination via all possible paths
of intermediary nodes that come “in contact” with their
predecessors and successors in their respective paths.

The rest of this paper is outlined as follows. We start off
by formulating our routing problem in Section II and then
discuss its complexity in Section III. We then present an ap-
proximation algorithm for computing the delivery probability
in Section IV and compare its performance with an optimal
solution. In Sections V we present a mathematical model for
computing the pairwise user contact probability, and propose
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and analyze an edge-constrained routing protocol called EC-
SOLAR-KSP in Section VI which makes use of such contact
probabilities. In Section VII we discuss other related work and
finally conclude this paper in Section VIII.

II. A ROUTING PROBLEM ON RANDOM GRAPHS

In many different wireless network scenarios and appli-
cations (DTN, MANET, ICMAN, ...) the minimal piece of
information that a network node can gather locally is the
probability that it can deliver a packet to another node in
the network. This so-called “contact probability” can also be
estimated/predicted with a good mobility model, depending on
the specific application we are working on [27], [35]. Some
prior studies have used node contact probabilities to devise
routing protocols [10], [30].

In this section, we will rigorously formulate this problem. A
good solution to this problem can be used to devise provably
(near) optimal solution to the probabilistic routing problem.
Moreover, it can also be used as a benchmark to compare
probabilistic routing protocols in the literature.

Define a directed graph G = (V,E) whose vertices repre-
sent nodes in the network under consideration. For each pair of
nodes u and v, let p(u,v) denote the probability of u being able
to deliver a data packet to v given some practical constraint(s)
and/or some mobility model for nodes’ movements in the
network. For simplicity, we assume that all these contact
probabilities are independent. If not, the problem becomes too
complex to be useful. This assumption is not too restrictive,
as we will demonstrate with our routing protocol in a later
section.

(Note that, in this section we are not yet concerned about the
question of how to compute p(u,v). The problem of computing
the contact probabilities is orthogonal to the routing problem
on random graphs that we are formulating. In a later section,
we will present a model for estimating these probabilities.)

The edges of G are precisely those pairs e = (u, v) for
which pe > 0. Consider a source s and a destination t in
G, and the problem of finding the best way to deliver a
packet from s to t in the network. The obvious objective is to
maximize the delivery probability of the packet. A broadcast
(epidemic-like) routing algorithm seems to be best in terms
of maximizing the delivery probability; however, broadcasting
imposes a high cost in terms of data and processing overhead.
It is thus natural to formulate a problem investigating the
tradeoff between delivery probability and overhead.

Consider any routing algorithm/protocol A run by all nodes
in the network. Let G[A] = (V,EA) denote the subgraph
of G induced by A, i.e. (u, v) is an edge of G[A] if there
is a possibility that u delivers a packet to v under A. For
instance, if A is a naive broadcast strategy where each node
delivers a packet it receives to all nodes it meets within a time
interval T , then (u, v) is an edge of G[A] if the probability
that u meets v within T is positive. We will refer to G[A]
as the delivery subgraph induced by A. Note that G[A] along
with the probabilities pe, e ∈ EA define a probability space of
random graphs (the Erdős-Rényi model G(n, {pu,v}) [3]). The
probability that A successfully delivers a packet from s to t

is the probability that there is a (directed) path from s to t in
a random graph H chosen from this space. This probability is
often denoted by Conn2(G[A]) (or Rel2(G[A]) for undirected
graphs) in the network reliability literature [7]. The notation
implicitly assumes the source s and the destination t to be
known in advance. Also in this literature, G[A] is called a
probabilistic graph, so is G for that matter.

To this end, we have Conn2(G[A]) as the objective function
of our problem. We next define the constraints. As we have
mentioned earlier, the key to the problem is the tradeoff
between delivery probability and the data overhead. The
maximum number of packets that A could produce is precisely
the number of edges of G[A]. Thus, a very natural constraint
to our optimization problem is to give a threshold k on the
number of edges of G[A].

To summarize, the centralized version of our problem can
be formulated as follows. We are given a probabilistic graph
G, i.e. a graph along with a probability function p : E(G)→
[0, 1], where pe represents the probability that a packet can be
delivered along edge e at a random point in time. The problem
is to choose a delivery subgraph G[A] of G with at most k
edges, such that the probability Conn2(G[A]) that there is
a path from s to t in a graph H chosen randomly from the
probability space defined by G[A] is maximized. To the best of
our knowledge, this problem and its complexity has not been
addressed in the literature. Also, there is the corresponding
distributed version of the problem where the delivery subgraph
G[A] is to be constructed distributively, yielding a routing
protocol.

In this paper, we will present a practical solution to this
problem in the context of ICMAN, involving the following
steps: (a) proving the hardness of our optimization prob-
lem and the hardness of computing the objective function
Conn2(G[A]) (the hardness of Conn2(G[A]) is well-known,
but that does not imply the hardness of the optimization prob-
lem); (b) giving an algorithm to approximate Conn2(G[A]);
(c) devising a mobility model to estimate the contact prob-
abilities pe; and (d) designing a routing protocol for the
problem based on the contact probabilities computed in step
(c) and insights obtained from step (a), and showing the
protocol’s effectiveness by comparing it with other protocols
for probabilistic routing.

Remark: if we also consider using Erasure Codes [32]
for dada transmission, we can add an additional constraint
in terms of the code rate, keeping the objective function the
same. Some previous work on routing in DTN has considered
this dimension [29], [42].

III. COMPLEXITY OF THE ROUTING PROBLEM

In this section, we will investigate the complexity of the
problem defined in Section II. The problem is to find a
subgraph G[A] of G so that Rel2(G[A]) is maximized.

Unfortunately, computing the connectedness probability in
a random graph is very hard (even for graphs with bounded
degree like in our case). There is a vast literature on this
problem. In the probabilistic sense, for example, Chapter 7
of [3] contains a partial set of references. It is unlikely that
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this probability is a simple function [25]. In the computational
complexity sense, the problem is #P-Hard, as it is precisely
the well-known reliability problem for two terminals [7]. A
minor point: when G is directed, the problem is often referred
to as the s,t-connectedness problem denoted by Conn2(G).
In the classic paper [40] Valiant was the first to establish that
both Rel2(G) and Conn2(G) are #P-complete [21].

The optimization problem, however, may not be hard even
though computing the objective function is hard. This point is
a little bit subtle. Given an integer a, computing the function
f(a) = 2a! takes exponential time; yet, the optimization
problem of finding which member a of a set A of integers
has the largest f(a) has the same complexity as sorting.
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Fig. 1. Construction of G′′ for proving the #P-hardness of maximizing
s,t-connectedness

To this end, we consider the optimization problem of finding
a delivery subgraph D = G[A] with at most k edges which
maximizes Conn2(D). We will show that1

Theorem 1: The routing problem on random graph is #P-
hard.

Proof: We will reduce the 2-terminal connectivity prob-
lem (Conn2) itself to our problem. Consider a generic instance
of Conn2 where we are given a directed graph D = (V,E)
along with a source s, a destination t, and all the edge
probabilities pij . The problem is to compute the probability
Conn2(D) that there is a path form s to t in a random graph
chosen from the probability space defined by D. Note that
all pij are rational numbers represented by a numerator and
a denominator which are integers. Let c be the least common
multiple of all the denominators, then the number of bits to
represent c (i.e. log2 c) is certainly polynomial in the input
size.

Consequently, if we have a procedure to decide if
Conn2(D) ≤ c′/c for any integer c′ ≤ c, then we can compute
Conn2(D) by a simple binary search. We will prove that an
algorithm solving our optimization problem can be used to
decide if Conn2(D) ≤ c′/c.

Construct a graph G as shown in figure 1, where the upper
part is D itself, and the lower part is a simple path from
s to t consisting of exactly k = |E(D)| edges. The edge
probabilities of the upper part is the same as those of D. The
edge probabilities of the edges e1, . . . , ek of the lower part
is chosen so that p1 · pk = c′/c + ε, where ε < 1/c. Our
optimization problem is to compute a subgraph H of G with
|E(H)| ≤ k so that Conn2(H) is maximized.

1We thank Prof. Charles Colbourn for fruitful discussions leading to this
proof.

Let A be any algorithm solving our problem. It is easy to
see that A will either return the upper part or the lower part
of G. If A does return the lower part, then Conn2(D) >
c′/c; otherwise, Conn2(D) ≤ c′/c + ε. But, by the way c
was chosen, Conn2(D) is exactly a multiple of 1/c; hence,
A returning the upper part implies that Conn2(D) ≤ c′/c.
Consequently, A can be used to decide if Conn2(D) ≤ c′/c,
implying that our problem is at least as hard as Conn2 by the
analysis above.

Given this negative result, one can envision two general
approaches:

1) Find a polynomial-time computable function p(G[A])
which approximates Conn2(G[A]) well. Then, devise
an algorithm A that maximizes p(G[A]). Note that,
p(G[A]) can also be used to compare the outputs of
different routing algorithms; thus, it is useful in its
own right whether or not we can devise an algorithm
optimizing p(G[A]).

2) Find a routing strategy (heuristic) A for which
Conn2(G[A]) can be reasonably computed or estimated.

In the following sections, we present our results on both
approaches.

IV. APPROXIMATION ALGORITHM FOR COMPUTATION OF

DELIVERY PROBABILITY

In the light of the discussion in the previous section, we
propose an approximation algorithm for computing the de-
livery probability from source s to destination d in a network
that is modeled as mentioned before: a directed graph G =
(V,E), where edge e exists between two nodes u and v
with probability pe(u, v) = contact probability of u and v,
as shown in Figure 2(a). First, we construct another graph
Gk = (V,Ek) from the graph G by having each node (starting
from s onwards) choose at most k edges to downstream
neighbors, and deleting all other edges not chosen, as shown
in Figure 2(b). Second, we modify the weight of each edge in
Gk to be we = −1 ∗ log(pe(u, v)) for all nodes u and v, and
call this new graph as G′

k. Third, we construct a shortest path
tree Gsp = (V,Esp) from G′

k as shown in Figure 2(c), and
assign a level number to each node in a breadth first manner.
Fourth, we replace the weight of each edge we in Gsp with
pe(u, v), as in the original graph G. Finally, we add special
edges (dotted edges in Figure 2(d)) between any node v and
destination d in graph Gsp that were connected by an edge
e ∈ E in the original graph G, to get our delivery subgraph
G′ = (V,E′).

Let P d(u, v) denote the delivery probability of node u to
node v. We apply our Algorithm 1 to this graph G′ starting
with any node u �= d with maximum assigned level number,
to obtain the delivery probability P d(s, d) of the source s to
the destination d. For each chosen node u, we consider all
outgoing edges from u to nodes v1, v2, ...vk say, and get a list
of probabilities p1, p2, ...pk, where pi = we(u, vi) ∗P d(vi, d).
Then, we can compute the delivery probability from u to d as

P d(u, d) = 1−Πk
1(1− pi)
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Fig. 2. Steps in preparing a network graph for the application of Approximation Algorithm 1

This process is repeated with decreasing level numbers till
node s is reached, and the required probability P d(s, d) is
computed.

Algorithm 1 : Approximation of Delivery Probability

1: Input ← G = (V,E), s, d
2: P d(d, d)← 1
3: L← maximum assigned level number
4: while L ≥ 1 do
5: for all u ∈ V, u �= d with assigned level number L do
6: i← 1
7: for all outgoing edge e ∈ E from u do
8: v ← head of edge e
9: p← weight of edge e * P d(v, d)

10: P [i]← p
11: i← i + 1
12: end for
13: p1← 1
14: for j ← 1 to (i− 1) do
15: p2← 1− P [j]
16: p1← p1 ∗ p2
17: end for
18: P d(u, d)← 1− p1
19: if u = s then
20: print P d(s, d)
21: exit
22: end if
23: end for
24: L← L− 1
25: end while

The optimal approach for computing the delivery probability
from a source s to a destination d would include the following
steps:

1) Calculate all possible paths from s to d
2) Apply Algorithm 2 to compute the delivery probability

by rules of inclusion and exclusion
We simulated using Matlab [18] a small directed graph with
25 nodes with a given distribution of pair-wise contact proba-
bilities pe(u, v) to evaluate the performance of our suggested
approximation algorithm in comparison to the optimal algo-
rithm. We chose 12 distinct source-destination {s,d} pairs
and only computed the delivery probabilities P d(s, d) through
the two algorithms, without sending any actual traffic. Fig-
ure 3(a) shows the results of our simulation runs where our
approximation algorithm is seen to perform within 88% of
the optimal algorithm on an average. For each {s,d} pair, we

Algorithm 2 : Optimal computation of Delivery Probability
1: Input ← All paths PATH1, PATH2, ... from s to d
2: m← total number of paths
3: P d(s, d)← 0
4: for n← 1 to m do
5: coefficient ← (−1)n−1

6: for start ← 1 to m do
7: All edges are un-marked
8: for path-index← start to (start+n−1) modulo n do
9: Mark all edges in path PATHpath−index

10: end for
11: term ← product of all probabilities of marked edges
12: P d(s, d)← P d(s, d)+ (coefficient*term)
13: if n = m then
14: break
15: end if
16: end for
17: end for
18: print P d(s, d)

further simulated for 20 different pair-wise contact probability
matrices. Figure 3(b) shows the relative performance of the
approximation algorithm with respect to the optimal algorithm
for each {s,d} pair, averaged over all the runs with different
contact probability matrices for that {s,d} pair. Once again
we find our approximation algorithm to perform within 85%
to 90% of the optimal solution.

V. A MODEL FOR COMPUTING CONTACT PROBABILITY

In this section, we present a model for computing contact
probability of network nodes in the context of intermittently
connected mobile ad hoc networks. The model is based on
experimental data we gathered from real-world user move-
ments’ traces. Then, in the next section, the effectiveness of
this model is illustrated by its usage in our routing algorithm.

Consider a node X whose set of hubs is S. From our earlier
work in [9] we have verified that X’s staying time at a hub
h ∈ S roughly follow a power law distribution with exponent
λX

h . After staying at h, X moves to another hub h′ ∈ S with
hub transitional probability βX

hh′ > 0. Obviously,
∑
h′ �=h

βX
hh′ = 1, ∀h ∈ S.

In the data set we analyzed in [9], we were unable to gather
enough information about the inter-hub transition time. Hence,
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Fig. 3. Performance comparison of our approximation algorithm for delivery
probability with the optimal solution

in our model the time it takes for X to move from h to h′ is
assumed to be exponentially distributed with parameter λX

hh′ .
This assumption can be relaxed/changed when there is better
experimental data on users’ mobility. The model proposed in
[23] can be used, for instance. The following analysis can
easily be modify to adopt the new and supposedly more correct
distribution of hub transition times.

The movement pattern can be modeled with a Semi-Markov
Chain (SMC) [20] whose embedded Markov chain (EMC) has
state space

IX = S ∪ {(h, h′) | h, h′ ∈ S, h �= h′}.

Here, the states (h, h′) represent X being on the move from
hub h to hub h′. The sojourn times at the “hub states” h
are power-law distributed and the sojourn times at the “hub
transition states” (h, h′) are exponentially distributed. The
transitional probability pX

ij of the corresponding EMC can then
be computed as

pX
ij =

⎧⎪⎨
⎪⎩

βX
hh′ i = h and j = (h, h′)

1 i = (h, h′) and j = h′

0 otherwise,

where i, j ∈ IX and h, h′ ∈ S, h �= h′. The states in this SMC
when node X moves from hub h to hub h′ are illustrated in
Figure 4.

Suppose we have all these SMCs modeling the movements
of nodes within their respective hub lists. Consider two nodes
X and Y whose hub sets are S and T respectively. Define

i

, hλxh

4i

, λxh’ h’

βx

hh’i1i2
p
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=p
x

i4i3
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h’h

= 0p
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i i13

x
= 1p

i i42

3i

λh’h
x
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2i

λhh’
x

(h , h’)

1

Fig. 4. States of Markov Chain for movements between hubs h and h′

R = S ∩ T �= ∅. We would like to calculate the probability
that X meets Y at some particular time t in the future with t
sufficiently large (i.e., at equilibrium), and also the probability
that X meets Y at a particular hub h ∈ R at time t.

Let IX and IY be the state spaces of the SMCs capturing
the movements of X and Y , respectively. In order to track
the relative positions of X and Y together, define a SMC
{Zt | t ≥ 0} which is the Cartesian product of the SMCs
for X and Y . For any x ∈ IX , y ∈ IY , the sojourn time
of the state (x, y) of Z has the distribution of the random
variable which is the minimum of the sojourn times of x and
y. Since the sojourn times at x and y are either exponential or
power-law with known parameters, it is easy to compute the
distribution of the sojourn time at (x, y). We omit the detailed
formulae, which come from relatively simple exercises.

The corresponding EMC of (Zt) has state space I =
IX × IY . To characterize this process, we need to compute
the jumping probabilities from a state (i1, i′1) to another state
(i2, i′2), where either i1 = i2 or i′1 = i′2. (With probability
zero the two chains for X and Y jumps at the same time.)
Consider any state (i, i′). If the sojourn time Ti at state i of
X is smaller than the sojourn time Ti′ at state i′ of Y , then
with probability pX

ij the chain moves to state (j, i′), for some
j ∈ IX . Conversely, if Ti > Ti′ , then the chain moves to state
(i, j′), for some j′ ∈ IY . Consequently, we can compute the
jumping probabilities of the EMC for (Zt) by conditioning on
the event {Ti > Ti′} and its complement. Again, we omit the
detail case-by-case formulae.

The states of X and Y can be assumed to be overlapping.
(If the states are not overlapping, X and Y will never meet.)
The EMC of the Cartesian-product SMC as defined above is
ergodic as long as the EMC for X and Y are ergodic (under
most normal circumstances, otherwise we can disturb the chain
by adding a few transitions with infinitesimal probabilities). In
this case, we can easily compute the occupancy probabilities
at equilibrium of any state (i, j) of the product chain by
solving for the stationary distributions of the EMCs of X
and Y . We are interested in only the occupancy probabilities
πXY (h, h) of the states (h, h) where h ∈ R. This is precisely
the probability that X meets Y in h at equilibrium. Finally,
the probability that X meets Y at equilibrium is the sum of
πXY

h,h over all h ∈ R.
Suppose X holds a packet it would like to transmit to a

downstream neighbor towards a destination. It cannot hold the
packet forever due to limited buffer size (and possibly delay
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requirements). Some routing strategy may require X to try its
best to deliver the packet to (some of) the best neighbor(s)
within a pre-defined time interval T . Consequently, given a
time interval T and given that X is in some hub h ∈ R, we
are also interested in the probability that Y will be in h within
T . Computing this probability is the same as computing the
densities of the hitting times of the SMC corresponding to
Y (probability that Y hits h given some initial distribution).
There is no known general formula. Computationally however,
there are methods to compute these densities using Laplace
transforms [16] for larger chains or uniformization [2] for
smaller chains.

VI. EDGE CONSTRAINED SOLAR HEURISTIC

In this section, we present a Sociological Orbit aware
Location Approximation and Routing (SOLAR) heuristic that
makes use of mobility profile and hub transitional probability
based computations for contact and delivery probability.

A. Edge-Constrained SOLAR-KSP

We chose our Static SOLAR KSP (S-SOLAR-KSP) algo-
rithm proposed in [10] to form the base of this heuristic,
with some additional modifications. In general, in this version
of user-level routing protocol SOLAR-KSP, we assume that
each user knows of every other user’s mobility profiles and
each user distributively does the following: First, every user
computes the contact probability with every other user. In this
work, we compute these probabilities based on the simulated
mobility traces, as opposed to other various ways suggested
in [17], [22], [28], [36] for example. Second, we represent the
contact information between all users as a complete weighted
graph G = (V,E), where V is the set of all the users, and E
is the set of weighted edges between every pair of users that
have at least one hub in common. Let P (u, v) be the contact
probability of users u and v. Then the weight of edge (u, v) is
given by w(u, v) = log (1/P (u, v)). Now whenever a source
user s has a packet to forward to destination user d, it applies
the Algorithm 3 on the weighted graph to find a delivery
subgraph to d that has at most L(≤ |E|) edges. In other words,
s iteratively uses Dijsktra’s Shortest Path algorithm [8] to find
the shortest path from s to d. In a single iteration, if the number
of new edges encountered on the shortest path (that are not
already in the delivery subgraph formed so far) is less than the
remaining number of edges allowed under the edge constraint,
then those edges are added to the delivery subgraph and the
edge constraint parameter is adjusted accordingly. Also, to
ensure that a new path is formed in the next iteration, the
lowest weighted edge in the shortest path is deleted from the
working graph. This algorithm terminates either if the working
graph is exhausted, or if no more path exists between s and d,
or if the edge constraint is met. Once this delivery subgraph
is obtained, the source inserts this additional information into
the header of all the packets and waits for all the next hop
neighbors on all paths to appear. The intermediary users keep
forwarding in accordance with this delivery subgraph till the
destination is reached. We shall refer to this edge constrained
SOLAR version as EC-SOLAR-KSP.

Algorithm 3 : Edge constrained delivery subgraph

1: Input ← Complete weighted graph G = (V,E),
Edge constraint L, source s, destination d

2: DSG = (V ′, E′)← initial delivery subgraph
with V ′ ← V and E′ ← NULL

3: while |E| do
4: apply Dijkstra’s Shortest Path algorithm [8]

to find shortest path from s to d i.e., SPs,d

5: if SPs,d == NULL then
6: return DSG
7: end if
8: if |{e | e ∈ SPs,d, e /∈ E′}| ≤ L then
9: L← L − |{e | e ∈ SPs,d, e /∈ E′}|

10: E′ ← E′ ⋃
{e | e ∈ SPs,d, e /∈ E′}

11: end if
12: if L == 0 then
13: return DSG
14: end if
15: E ← E− the edge in SPs,d with least weight
16: end while
17: return DSG

B. Performance Comparison Results

We compare the performance of EC-SOLAR-KSP with
that of a probabilistic routing (referred to here as PROB-
ROUTE) based on [30] and Epidemic Routing (referred to as
EPIDEMIC) [39]. In PROB-ROUTE, users each go through
the “initialization” phase whenever they meet another user,
where upon their contact probability is updated. When a pair
of user do not meet for long, their corresponding contact
probability is “aged”. Also when a source has a packet to
send to a destination it may calculate transitional probability
through other users. The reader is referred to [30] for the
detailed description and equations. In our implementation of
PROB-ROUTE we used a value of 0.5 for all three parameters
Pinit, γ, and β, and allowed each user to forward a copy of
a packet to at most 3 different neighbors with higher delivery
predictability. We consider 3 variations of EC-SOLAR-KSP as
well: EC-SOLAR-KSP1 with L = |E|, EC-SOLAR-KSP2
with L = 0.8∗|E|, and EC-SOLAR-KSP3 with L = 0.6∗|E|.

For simulation, we consider an ICMAN built within a cam-
pus consisting of several buildings (hubs) in accordance with
the findings from our study [9] of an year long wireless users’
mobility traces on ETH Zurich campus. In the Probabilistic
Orbit model simulated, the users spend most of their time
within a number of hubs, and intermittently move between
hubs. To model realistic speeds of mobile users within such
a network, we consider the work in [24], [43] and fix the
Inter-Hub and Intra-Hub time/speed parameters, along with the
other simulation parameters and their default values or range
of values as shown in Table I. In this study, due to space
constraints we only present the protocol performances with a
varying number of users as it is a significant factor in ICMAN
settings, but we do study other variations as indicated in Ta-
ble I. We chose 2 metrics to evaluate the performance of each
protocol: data throughput = (data packets delivered)/(data
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TABLE I

SIMULATION PARAMETERS

GENERAL PARAMETERS
Simulation Duration (each run) 3000s Terrain Size 1000m x 1000m
Number of Users (Users) Vary, (Default= 100) Radio Range 125m
Cache Size Vary, (Default= 200 Packets) Cache Timeout Vary, (Default= 400s)
MAC Protocol IEEE 802.11 Mobility Model Probabilistic Orbit
ORBIT PARAMETERS
Total Hubs Vary, (Default= 15) Hub Size 50m x 50m
Hub Stay Time Power Law (k= 106/x3s) Hub List Timeout None
Hub List Size Power Law (k= 0.7/x2, 2 to Total Hubs) Inter-Hub Transition Time Exponential (Mean= 40s)
Intra-Hub Pause 1s Intra-Hub Speed 1m/s-10m/s
TRAFFIC PARAMETERS
CBR connections 30 (120 packets each) Random Data Payload 1460 bytes per packet

packets generated); and network byte overhead = (total bytes
transmitted)/(total data packets delivered);

As seen in Figure 5(a), EC-SOLAR-KSP1 performs the best
closely followed by PROB-ROUTE. Since EC-SOLAR-KSP1
has the additional knowledge of mobility profile based network
connectivity, it is able to compute the delivery probability via
neighbors it has not met yet, unlike PROB-ROUTE where
users have to meet at least once to update their initial contact
probability. EC-SOLAR-KSP2 and EC-SOLAR-KSP3 have
decreasing performances because of their increasing edge
constraints. Epidemic performs the worst in the face of limited
buffer. Also the fact that these results are observed within a
limited time of 3000s takes its toll on EPIDEMIC, which is
capable of “eventually” delivering all packets if time is not
a constraint. Overall, all protocols do well with increasing
number of users as it helps in finding a larger number
of deliverable paths from source to destination. Figure 5(b)
is not able to show the results for EPIDEMIC which has
alarmingly large overhead. Amongst the rest, PROB-ROUTE
incurs maximum overhead due to its arbitrary forwarding to
neighbors just on the basis of larger delivery predictability. EC-
SOLAR-KSP1 has lower overhead than PROB-ROUTE as it
only forwards within the edge constrained delivery subgraph.
The overhead in EC-SOLAR-KSP2 and EC-SOLAR-KSP3
is seen to decrease due to their increasing edge constraints.
Overall, this “edge constraint” parameter gives us a good
handle to a tradeoff between the desired throughput and the
corresponding overhead.

VII. RELATED WORK

None of the existing proactive, reactive or hybrid routing
techniques proposed in literature for mobile ad hoc networks
were deemed adequate in solving the routing problems within
intermittently connected wireless networks. To that end, cer-
tain protocols adopt a “store and forward” kind of philosophy,
wherein they hold on to data when a link is not available
and transmit again to someone else at a future point in
time. Authors in [39] proposed routing schemes using this
philosophy. Similar work ( [1], [14]) on data dissemination was
also done for sensor and ad hoc networks. For delay tolerant
networks, recent work in [19] assumed knowledge oracles and
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Fig. 5. Protocol performance with varying number of users

used a link capacity function to find minimum cost paths as
a cascade of time varying links. Their usefulness is however
limited by the practicality of their assumptions.

To gain more insight into the underlying user mobility, many
researchers tried to model practical mobility in various ways
to achieve different goals such as reproduce user movement
in simulations [38], or use the mobility information in per-
forming intelligent routing decisions [10]. Preliminary work
on mobility modeling [5] was done mostly with Mobile Ad
hoc NETworks (MANET) in mind. For example, some [33]
used mobility pattern analysis to minimize radio link changes
via appropriate selection of next hop within radio range.
While the authors in [37], [41] performed physical location
prediction via continuous short-term and short-range tracking
of user movement, we had leveraged on our assumptions
on “sociological orbits” to perform efficient routing within
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MANETs [11], [12] and ICMANs [10], [13].
Literature has also proposed several work on mobility trace

analysis within campus-wide wireless networks. Authors in
[27], [35], base their computational models on empirical
mobility data that are filtered to provide stable mobility data
sets spanning regular intervals of consecutive days. In most
real systems however, we observe lots of irregularity in terms
of wireless users’ usage pattern of the network, where a user
may not be present in the network consistently for the entire
period of observation. To that end, our study of wireless
users’ sporadic mobility trace data [9] provided a technique
for profiling users based on their socially influenced movement
within wireless networks, which was shown to be beneficial
to applications such as location approximation and routing.
Compared to the most related (and yet much different) work in
[6], our work primarily focussed on the “orbital” parameters,
in particular on the user-centric parameters like the user
mobility profiles and its applications, whereas [6] focussed
more on AP-centric parameters.

In an effort to use the mobility information in routing
decisions within temporally disconnected networks, literature
suggests study on how mobility (controlled or not) affects
routing protocols and network performance (e.g., network
capacity) in various types of ad hoc networks including sensor
networks with mobile sinks (or base stations), and delay
tolerant networks [4], [15], [34], [44]. However, they did not
deal with specific user mobility patterns. In [17], [22], [28],
[36], the main focus was on the so-called “contact probability”
of two users, which is oblivious to the specific locations (or
“hubs”) they visit.

The concept of Epidemic Routing was extended upon by
the authors in [30], where they proposed a probabilistic
routing scheme whereby each node maintains the so-called
“delivery predictability” to each known destination, and uses
this metric to make routing decisions. However, their delivery
predictability may decay with time, unlike our contact proba-
bility information that remains valid for a longer time by virtue
of the hub based mobility profile of nodes extracted from
the underlying orbital mobility. In [31], the authors proposed
a context-aware adaptive routing algorithm that takes into
account the suitability of a node for carrying a message based
on context information of the node at multiple dimensions.
More recently, the authors in [26] suggested an algorithm that
relies on vehicles to act as mobile routers, which connect
disconnected sensor networks to a known destination.

In our work [10], we successfully used our mobility pro-
filing techniques proposed in [9] to propose a suite of So-
ciological Orbit aware Location Approximation and Routing
(SOLAR) strategies to deal with intermittently connected
networks. In that work, although we used well known concepts
of “contact probability” between pairs of users and “delivery
probability” between a source and destination user, the way
we compute these values is different. We base all our compu-
tations on the wireless user’s mobility profiles and their “hub”
transition probabilities in accordance with our sociological
orbit framework [11]. This current work is the first to formally
address the problem of routing in probabilistic graphs formed
out of intermittently connected networks. This paper gives a

model specifically for ICMAN, based on prior SOLAR works.

VIII. CONCLUSION

Mobility of wireless users poses as one of the main
challenges in effective routing of packets in any mobile
wireless network. The added constraint of intermittent con-
nectivity makes it even more difficult to employ traditional
reactive protocols well suited for general Mobile Ad hoc
Networks (MANET). Literature suggests several protocols
based on the concepts outlined in [36], [39] which aims to
infuse information within a network like an epidemic. Others
[19], [26], [30] studied network characteristics and proposed
probabilistic routing techniques. At the same time, profiling
wireless users based on their mobility has also been proven
beneficial to routing. The suggested approaches to profiling
[27], [35] have however varied, as well as the details of
the mobility information required. In our previous work [9]
we too established a mobility profiling framework based on
the sociological influences on wireless users’ movements and
further demonstrated its use in probabilistic routing within
Intermittently Connected Mobile Ad hoc Networks (ICMAN)
[10], [13].

In this work, we aim to analyze our probabilistic routing
framework mathematically and provide some insight into
the computational complexity of both the contact probability
and the delivery probability, that is used by our previously
proposed routing protocols [10], [13]. We present a novel for-
mulation of the routing problem as one where given a random
graph, we aim to find an optimal routing algorithm that will
generate an optimal delivery subgraph so as to maximize the
connectivity between a source and destination pair. We study
and analyze of the hardness of computing such an optimal
delivery subgraph given a graph and a routing algorithm. We
then propose an elegant algorithm to approximate the delivery
probability of a delivery subgraph and present its performance
study in comparison with the optimal algorithm. We then
present a mathematical model for analyzing mobility and
computing the pairwise user contact probabilities. Finally, we
propose an edge-constrained routing algorithm EC-SOLAR-
KSP which makes use of such contact probabilities and
highlight its novelty and superiority over other probabilistic
and epidemic routing approaches proposed in literature to
address the routing problem within intermittently connected
wireless networks.
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