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Abstract— In a Triangulation-based coverage scheme, a group
of three mobile sensor nodes (MSN) position themselves to form
an equilateral triangle for a desired period of time. Such a
scheme has several applications in localization, environmental
monitoring and coordinated target tracking. In this work, we
introduce an efficient mobile traversal algorithm (MTA) that
profides a triangulation-based coverage of a field that can be
approximated as a rectangle. We analyze the energy consumption
of the MTA interms of the distance and time taken to complete
the full coverage of the field. The bounds on the minimum total
and individual energy consumption per MSN is determined. A
prior knowledge about the energy consumption can be useful to
charge the mobile seeds with the required amount needed for
the particular application.

I. I NTRODUCTION

A fundamental issue in sensor network is thecoverage
problem, which addresses how well sensors observe or monitor
a region. Due to the energy constraints of sensor nodes, an
energy-efficient coverage scheme is viable for the lifetime of
the sensor network. Several work exists in the literature on an
energy-efficient coverage of a sensor field [1]–[4]. In [2]–[4],
energy-efficiency is achieved through selective activation/de-
activation of sensor nodes with an optimum scheduling proce-
dure. In addition to scheduling the sensor’s sleep and awake
period, the sensing range of the sensors is also adjusted to
conserve power in [1]. A reduction in the transmitted data
achieves an energy-efficent target tracking scheme in [5].

In most of the prior works, the sensor nodes are stationary,
which restricts the application of such schemes. We believe
a mobile triangulation-based coverage scheme, in addition
to monitoring a region, can support various others applica-
tions like localization, search operation and coordinated target
tracking. For instance, in localization, angular positions or
bearing of the MSNs are used to determine the location of
the sensed nodes [6], [7]. In target tracking [8], MSNs move
in a triangular formation to maintain coordination among
themselves.

In this work, we propose a mobile traversal algorithm
(MTA) that employs three MSNs, equipped with location
devices such as GPS, to cover a field that can be approximated
by a rectangle. The MSNs can be deployed at a random initial
position in the field, and with the knowledge of their current
location with respect to the field to be covered, they will
form an equilateral triangle near the deployment site. Each
side of the triangle is assumed to ber units, wherer is an
application dependant parameter, often limited by the sensing

and communication ranges of the MSNs. After forming such
a triangle for a pre-determined (constant) period of time,
they will coordinate with each other, and according to the
proposed MTA algorithm, move to form another triangle to
cover another part of the field. A MSN(or MSNs) can enter
the sleep mode to conserve energy as the new triangle is
being formed. The proposed algorithm enables the MSNs to
minimize their (total and individual) travel distance or time
needed to provide a full coverage of the field. Note that since
the MSNs spent a constant amount of time performing sensing
or sending beacon signals (depending on the application) while
they are positioned as a triangle, the energy consumed by the
MSNs is proportional to the total distance or time taken to
complete the traversal. Accordingly, the proposed algorithm
and its performance bound are also useful in minimizing and
bounding the energy consumption of the MSNs.

This paper is organized as follows. In Section II, we for-
mulate the problem. The proposed mobile traversing algorithm
(MTA) is presented in Section III. In Section IV, bounds on
the total distance and time required to complete the traversal
process is derived. The minimum and maximum distance
travelled by any individual MSN to complete the traversal is
determined in Section V. Section VI concludes the paper.

II. PROBLEM FORMULATION

A rectangular sensor field of lengthL and widthW is divided
into smaller equilateral triangles of sidesr, where r is the
radio range of the MSNs andr ¿ L,W as shown in Fig. 1.
The stationary sensors in each triangular region reside at the
intersection of the radio range of all three MSNs. The total
number of such triangles is( 2(L+r)

r − 1) × (d 2W
r
√

3
e), where

( 2(L+r)
r −1) and(d 2W

r
√

3
e) are the number of triangles per row

and column respectively and derived as the ratio of the area
of a rectangular row or column to the area of a triangle. The
additional coverage of0.5r on either side of the rectangle
ensures that the SSNs at the boundary fall within the radio
range of all the MSNs. Finally, the extra triangle produced due
to the extension of the row needs to be discarded. In order to
identify a triangluar region, an index (X,Y) for X= 0. . .Xmax

and Y= 0. . .Ymax, is assigned to a triangle where,Xmax and
Ymax represent the maximum row and column index and have
valuesd 2W

r
√

3
e−1 and 2(L+r)

r −2 respectively. Additonally, the
shape of a triangle is identified byformationF0 or F1 where,
F1 has a vertex pointed upwards andF0 is a mirror image of
F1 (Fig. 1).
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Fig. 1. Segmentation of the field into equilateral triangles

The triangulation-based coverage problem we consider in
this paper is as follows. For a random initial triangular
placement of three MSNs, how to derive a mobile traversal
algorithm (MTA) that minimizes the total distance and time
taken by the MSNs to visit all the triangles in the field. Addi-
tionally, how to determine the individual distance travelled by
each MSN. To ensure fairness, no single MSN should travel
a significantly more distance compare to the others.

III. M OBILE TRAVERSING ALGORITHM

Starting at any initial index, the mobile traversing algorithm
(MTA) splits the sensor field horizontally into two sub-
rectangles, termed as thetopblock and thebottomblock . We
assume that the starting index (X,Y) of the MSNs is known
as it can be computed with respect to the coordinates of the
rectangular field since the MSNs are assumed to be location-
aware themselves. The MSNs may enter the top block and visit
all the triangles in the block before moving to the bottom block
and the vice versa. For an initial placement (X,Y) of the MSNs,
the split can yieldCase (i) a top block of(0, 0), (X, Ymax)
and a bottom block of(X + 1, 0), (Xmax, Ymax) or Case (ii)
a top block of(0, 0), (X − 1, Ymax) and a bottom block of
(X, 0), (Xmax, Ymax). A single block is possible if X is either
0 or Xmax.

Within a block, the MSNs initially move either towards the
left or the right until an edge is reached. A row can be traversed
two ways such that, either the distance or the time required
to complete a move is minimized. The minimum distance
travelled by the MSNs to move between formationsF0 and
F1 and the vice versa along a row is a diagonal move of
distancer

√
3 by one of the MSNs as shown in Fig. 2(a)(i). In

such a move, only the required MSN needs to move while the
other two remain stationary. The MSN that makes the move is
selected through collaboration between the MSNs. The MSNs
select the one that has not participated in the last two moves
and whose movement will produce a new triangular formation
towards the desired traversal direction. On the other hand, to
minimize the time required to complete a move across a row,
two of the MSNs can simultaneously move in timer, along
the sides of the triangle to complete the move (Fig. 2(b)(i)). In
both cases, the stationary MSNs (or MSN) can enter the sleep
mode for the duration of the transition phase (proportional to
eitherr

√
3 or r) between formations to conserve energy.

At the edge, the MSNs move up or down along the edge
until they reach either the first or the last row. The MSNs
then traverse a row at a time until the end-point of the block
is reached. For movements along a column, a downward

(r
√ 3)

r

r

(i)F1 → F0 (ii)F0 → F1 (iii)F0 → F1 (i)F1 → F0 (ii)F0 → F1 (iii)F0 → F1

(b) Minimum traversal time(a) Minimum traversal distance

Fig. 2. Traversal between formations

movement fromF1 to F0 or an upward movement fromF0

to F1 (Fig. 2(a)(ii)) requires only one of the MSNs to travel
a distance ofr

√
3. On the other hand, such moves can be

completed in timer if two of the MSNs move in parallel
along the sides of the triangle (Fig. 2(b)(ii)). However, a
downward movement fromF0 to F1 (Fig. 2(a,b)(iii)) or an
upward movement fromF1 to F0 require two of the MSNs
to each move a distance ofr

√
3 in parallel to cover a new

triangular region. In such a case, the minimum time needed to
complete the move isr

√
3. After every two consecutive moves

across a column, each MSN has travelled exactly a distance of
r
√

3. The rotation among themselves for moves across a row
and a column prevent excessive burden on any single MSN.

At the completion of the first block, the MSNs enter the
second block and traverse it in a similar manner. The stop or
end point of traversal for the MSNs in a block is determined
from the number of rows and traversal direction in the block.
In a block of even rows, based on its initial traversal direction,
the MSNs either stop at the right or the left index horizontally
adjacent to its starting point in the block. On the other hand,
in a block of odd rows, an initial traversal towards the right or
left leads the MSNs to stop at either the first or the last column
of the starting row respectively. Fig.3 illustrates the proposed
MTA for a starting index of (3,4) with an initial movement
towards the left and the top block is traversed first (S1 andS2

represent the starting points andE1 andE2 the end-points of
the top and the bottom block respectively).
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Fig. 3. An illustration of the MAT algorithm

A. Minimizing Revisits

In some cases, a triangle may be visited by the MSNs
for more than once, resulting in “revisits” which translate to
overhead in terms of additional travel distance and time by
the MSNs. While revisits cannot be eliminated due to random
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initial deployment position (e.g., when the number of rows
and columns are both odd, and either X or Y but not both
are odd), the proposed MTA aims to reduce the additional
overhead. This subsection discusses our strategy to reduce
the overhead. Note that, owing to the fact that some vertical
movement e.g., those shown in Fig. 2(a) and (b)(iii), result in
more overhead than horizontal movement, it is not necessarily
true that in case of inevitable revisits, minimizing the number
of revisits will always minimize the overhead. For this reason,
we consider below only row-wise movements described earlier
in this section, and aim to reduce the number of revisits,
instead of considering more elaborate approaches that may
reduce the revisits by using more vertical movement.

Upon deployment, the MSNs determine the initial traversal
direction and block based on the starting index. The initial
traversal direction or block is determined according toXmax

and governs the number of triangles re-visited by the MSNs.
If Xmax is odd then both the blocks will constitute an even
number of rows only if the initial traversal block is chosen
correctly. As an illustration, in Fig. 3, had the MSNs chosen
to traverse the bottom block first then both the blocks would
constitute of an odd number of rows. In a block of even rows,
none of the triangles are revisited irrespective of the initial
traversal direction because the MSNs leave and re-enter the
starting row from opposite ends as depicted in Fig. 3. The
top block will constitute of an even number of rows and be
traversed first if the starting row index X is odd (since indexing
starts with 0) whereas, the bottom block is of even rows and
initially traversed if X is even. Fig. 4(a)(ii) illustrates that an
incorrect selection of the initial traversal direction can cause
almost half of the triangles in a row to be revisited (R denotes
revisits).

On the other hand, ifXmax is even then one of the blocks
will always constitute of an odd number of rows regardless
of which block is traversed first. In a block of odd rows,
the MSNs leave and re-enter the starting row from the same
end causing possible revisits of triangles. Therefore, if the
MSNs initially move towards the outermost column nearer to
its starting column index in the block, then the number of such
revisits will be minimized. In Fig. 4(b)(i,ii), the correct initial
traversal direction reduces the number of revisited triangles
by almost half. Note that the correct selection of the initial
traversal direction or block ensures that both the blocks do
not constitute an odd number of rows.

IV. D ETERMINING THE TOTAL DISTANCE AND TIME

The cost function,Ctot, for the minimum total distance and
time taken by the MSNs to provide a full coverage of the
field is presented in equation 1.Ctot is the sum of the cost of
traversing the rows and columns and possible revisits.

Ctot = C1Nrow + C2Ncol + C3Nrev (1)

In equation 1,Nrow and Ncol represent the total number
of moves across the rows and columns respectively, andNrev

accounts for the number of possible revisited triangles across
a row. Additionally,C1, C2 andC3 are the cost co-efficients.
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Fig. 4. Selection of the initial traversal block and direction

In the calculation of the total distance, each of the cost co-
efficients has a value ofr

√
3, the distance travelled per move

(as shown in Fig. 2(a)). On the other hand, in the calculation of
the total time,C1 andC3 have values r, the minimum time to
complete a move across a row (Fig. 2(b)(i)). However,C2 can
have values r andr

√
3. C2 is r for downward moves fromF1 to

F0 and upward moves fromF0 to F1 (Fig. 2(b)(ii)) and isr
√

3
for other vertical moves (Fig. 2(b)(iii)). We term the moves
in the former and the latter cases asNcol1 and Ncol2 moves
respectively. Therefore, the traversal cost across the columns
for the total distance and time arer

√
3(Ncol1 + 2Ncol2) and

rNcol1 + r
√

3Ncol2 respectively. For the total distance,Ncol2

is doubled because each of the two MSNs travel a distance of
r
√

3 to complete the move. In the following subsections, we
deriveNrow,Ncol andNrev.

A. Computation ofNrow

Nrow is computed as the sum of moves across the rows.
The total number of rows isXmax + 1 since indexing starts
with 0. The number of moves across the first and the last
row is Ymax, the number of triangles per row minus the one
from where the move has started in the row. However, for
the rows in between,Ymax − 1 moves are made across a row
since the outermost index has already been traversed by the
MSNs while reaching the first or the last row. Thus,Nrow is
computed according to equation 2.

Nrow = 2Ymax + (Xmax − 1)(Ymax − 1) (2)

B. Computation ofNcol

In MTA, the MSNs can change rows at the two outermost
columns on either sides of the rectangular field. An exception
may only occur when the MSNs switch blocks. In a block,
the moves across the columns can be determined from the
checking indexes. A checking index (CI) is an index such as
(Xi, Yj) from where the traversal across a column starts. The
formationF0 or F1 at a CI can determine the number of such
moves. In a block, the CI are the pair of indexes diagonally
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opposite to each other and are chosen according to the initial
traversal direction and position of the block. AssumingXs

to be the starting traversal row in a block, the pair of CI
for the top block can be either(Xs, 0) and (0, Ymax) or
(Xs, Ymax) and (0, 0) for an initial traversal towards the left
or right respectively. On the other hand, in the bottom block,
(Xs, 0) and (Xmax, Ymax) or (Xs, Ymax) and (Xmax, 0) are
the pair of CI for an initial traversal towards the left or right
respectively.Xs corresponds toX if the block is the first one
traversed otherwise, it isX−1 or X +1 for the top or bottom
block respectively.

In a block, the formations at the pair of CI can be deter-
mined from the formation at the starting index(Xs, Ys) of
the block.(Xs, 0) has the same formation as(Xs, Ys) if the
MSNs require an even number of row-wise moves to reach
the first column. Otherwise, it has the formation opposite to
(Xs, Ys). Similar terms apply to(Xs, Ymax) when the MSNs
traverse towards the last column of the rectangular field. The
formations at the other four pairs of CI can be determined
with respect to the first two.(0, 0) and (0, Ymax) have the
same formation as(Xs, 0) and(Xs, Ymax) respectively, if the
MSNs, starting at rowXs, can reach the first row with an
even number of column-wise moves. Under similar terms, the
formations at(Xmax, Ymax) and(Xmax, 0) can be determined
when the MSNs traverse towards the last row of the block. We
term (Xs, 0) or (Xs, Ymax) as the first checking index (FCI)
and the other as the second checking index (SCI) of a block.

1) Number of moves from FCI:In a block, the traversal
across the column starts at the FCI. From FCI, the MSNs
move either upward or downward (across either the first or
last column) until either the first or the last row is reached. In
the top block, a total ofX such moves are made to reach the
first row of the block. Whereas,Xmax−X moves are needed
to reach the last row in the bottom block. As illustrated in
Fig.2(a,b)(iii), every two consecutive moves across a column
accounts for aNcol1 and aNcol2 move. Therefore, if an even
number of moves are made from FCI thenNcol1 andNcol2 will
each be responsible for eitherX

2 or Xmax−X
2 moves depending

on the traversal block. Otherwise, based on the formation of
FCI and the traversal direction across the column, eitherNcol1

or Ncol2 will have an additional move. If FCI has formationF0

and the MSNs move upward, thenNcol1 will have dX
2 e moves,

compare to thebX
2 c moves made byNcol2 . The contrary holds

if the formation at FCI isF1. For a downward move from
FCI, the computation is reversed with the number of moves
for Ncol1 andNcol2 to bedXmax−X

2 e or bXmax−X
2 c.

As the MSNs traverse back towards the starting row in a
block (from either the first or last row), they change rows
alternatingly atCase(i)the column farthest from FCI (i.e. the
other outermost column) andCase(ii) the column adjacent
to FCI. The moves along the former and latter cases can be
determined from the formation at SCI and FCI respectively. In
the latter case, the traversal across the column starts from the
second outermost row and the total number of such moves is
eitherbX

2 c or bXmax−X
2 c. If the traversed block has an even

number of rows then the MSNs re-enter the starting row from
the column not adjacent to FCI. This implies that the MSNs do
not move from the formation at FCI to its complement at the

adjacent column (note the index horizontally adjacent to FCI
has the formation opposite to FCI). Therefore, the MSNs must
only change formation (to the formation at FCI) at alternate
rows. If FCI has formationF0 and the top block is being
traversed thenNcol1 corresponds tobX

2 c. On the other hand,
if the bottom block is being traversed, thenNcol2 corresponds
to bXmax−X

2 c. The opposite holds if FCI has formationF1.
On the contrary, in a block of odd rows, the MSNs re-enter the
starting row through the column adjacent to FCI. In such case,
MSNs move from the formation at FCI to its complement at
the adjacent column. Thus, if FCI has formationF0 thenNcol2

andNcol1 correspond tobX
2 c andbXmax−X

2 c for the top and
bottom block respectively.

2) Number of moves from SCI:As mentioned previously,
the formation at SCI can determine the number of moves
along the outermost column visited by the MSNs as they
traverse back towards the starting row of the block. In this
case, the traversal across the column starts from either the
first or the last row of the block. Thus, a total ofdX

2 e or
dXmax−X

2 e moves are possible. Like the moves across the
column adjacent to FCI,Ncol1 and Ncol2 can be similarly
computed according to the size and position of the traversed
block and the formation at SCI.

The computation ofNcol1 and Ncol2 under the different
traversal scenarios is presented in Procedure 1. In Procedure
1, Xs1 and Xs2 represent the starting row index for the top
and bottom block respectively. If the top block is traversed
first thenXs1 corresponds to X andXs2 is X+1. Otherwise,
Xs2 andXs1 correspond to X andX − 1 respectively.

C. Computation ofNrev

As explained in section III-A, in order to minimize the
number of revisited triangles in a block of odd rows, the MSNs
initially traverse towards the outermost column closer to its
starting index. Thus, for the starting column indexYs in a
block, Nrev is computed according to equation 3. The revisits
along the outermost two columns are ignored as they have
been considered inNcol.

Nrev = Minimum(Ys − 1, Ymax − Ys − 1) (3)

D. Bounds for the total distance and time

In the derivation of the bounds,Nrow remains constant for
both the lower and upper bounds since a move across a row
is completed within a contant time or travelling distance. On
the other hand,Nrev is 0 for the lower bound and an upper
bound is attained by settingYs in equation 3 toYmax

2 to attain
an upper bound ofYmax

2 − 1.
In order to derive the bounds onNcol, we first determine

the total number of moves across the columns. If the top block
is initially traversed thenNcol for the first and second block
are dX

2 e + bX
2 c + dX

2 e + bX
2 c or 2X and dXmax−X−1

2 e +
bXmax−X−1

2 c+ dXmax−X−1
2 e+ bXmax−X−1

2 c or 2(Xmax −
X − 1) respectively. Otherwise,Ncol for the first and second
block is2(Xmax−X) and2(X−1) respectively. In either case,
including the transition move between blocks, the summation
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Procedure 1Computation ofNcol

if FCI == F0 then
if TopBlock is Even andBottomBlock is Even then

Ncol1 ← Xs1 + bXmax−Xs2
2 c

Ncol2 ← bXs1
2 c+ Xmax −Xs2

else if TopBlock is Even and BottomBlock is Odd
then

Ncol1 ← Xs1 + 2bXmax−Xs2
2 c

Ncol2 ← bXs1
2 c+ dXmax−Xs2

2 e
else if TopBlock is Odd and BottomBlock is Even
then

Ncol1 ← dXs1
2 e+ bXmax−Xs2

2 c
Ncol2 ← 2bXs1

2 c+ Xmax −Xs2

else
if TopBlock is Even andBottomBlock is Even then

Ncol1 ← bXs1
2 c+ Xmax −Xs2

Ncol2 ← Xs1 + bXmax−Xs2
2 c

else if TopBlock is Even and BottomBlock is Odd
then

Ncol1 ← bXs1
2 c+ dXmax−Xs2

2 e
Ncol2 ← Xs1 + 2bXmax−Xs2

2 c
else if TopBlock is Odd and BottomBlock is Even
then

Ncol1 ← 2bXs1
2 c+ Xmax −Xs2

Ncol2 ← dXs1
2 e+ bXmax−Xs2

2 c
if SCI == F0 then

Ncol1 ← Ncol1 + dXmax−Xs2
2 e

Ncol2 ← Ncol2 + dXs1
2 e

else
Ncol1 ← Ncol1 + dXs1

2 e
Ncol2 ← Ncol2 + dXmax−Xs2

2 e

of Ncol for both the blocks is2Xmax − 1. A lower bound
on Ncol is attained whenNcol2 is minimized andNcol1 is
maximized.Ncol1 is maximized if the moves from SCI and
the column adjacent to FCI in both the blocks areNcol1 moves.
Then, including the transition move between blocks,Ncol1 is
dX

2 e + bX
2 c + dXmax−X

2 e + bXmax−X
2 c or Xmax. If the top

block is initially traversed then the minimumNcol2 move from
the FCI isbX

2 c+bXmax−X−1
2 c. If X andXmax are odd, then

Ncol2 has its minimum value ofX−1
2 +Xmax−X−2

2 or Xmax−3
2 .

In such case,Ncol1 will have one extra move in each block
thanNcol2 for a total of Xmax+1

2 moves in the two blocks. A
similar bound is achieved if the bottom block is traversed first.
Therefore,Ncol1 and Ncol2 have a lower bound ofXmax−3

2

and an upper bound of3Xmax+1
2 respectively.

By substitutingNrow, Ncol andNrev in equation 1 with the
above bounds, we obtain a lower and an upper bound on the
total distance and time. In the following theorems,Xmax and
Ymax are replaced byd 2W

r
√

3
e− 1 and 2(L+r)

r − 2 respectively,
to obtain the bounds interms of the dimension of the sensor
field and r.

Theorem 1: In a rectangular field of length L and width
W, tiled into equilateral triangles of sides r, three MSNs
require a minimum total travelling distance of2

√
3Ld 2W

r
√

3
e+

3r
√

3
2 (d 2W

r
√

3
e − 2) or a total time ofr(d 2W

r
√

3
e( 2L

r + 1
2 ) + 1) +

r
√

3
2 (d 2W

r
√

3
e − 4) to provide a triangulation-based coverage of

the field.
Theorem 2: In a rectangular field of length L and width W,

tiled into equilateral triangles of sides r, three MSNs require
a maximum total travelling distance of2

√
3L(d 2W

r
√

3
e + 1

2 ) +
r
√

3
2 (5d 2W

r
√

3
e−6) or a total time ofr(d 2W

r
√

3
e( 2L

r − 1
2 )−1)+L+

r
√

3
2 (3d 2W

r
√

3
e−2) to provide a triangulation-based coverage of

the field.
The bounds are verified by simulation as follows. In a

sensor field of dimension5000 × 2000 and r set to 50, 100
random initial starting index and formation of the MSNs are
chosen. For each starting index, the actual total distance and
time are calculated according to equation 1 and the bounds
are determined according to the above theorems. The results
are presented in Fig. 5 and Fig. 6 to justify the tightness of
the computed bound. In the following section, the individual
traversal distance of a MSN is computed from the tight bounds
on the total distance.
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V. DETERMINING THE BOUNDS ON INDIVIDUAL

TRAVERSAL DISTANCE

In this section, we determine the minimum and maximum
distance travelled by a MSN to complete the traversal process.
Since a constant time is spent as a trianglular formation, the
energy dissipated by an MSN is proportional to the distance it
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travels. In the following subsections, we determine the best or
most faircase and the worst orleast fair case of movements
by the MSNs across the rows and the columns. In the most
fair case, the difference in the distance travelled by any two
MSNs is the minimum. The contrary holds for the least fair
case.

A. Moves across the rows

The traversal pattern of the three MSNs (M1,M2 andM3)
for moves across a row is presented in Fig. 7(a). According to
the pattern, only six configurations (CF0-CF5) can represent
the possible positioning of the MSNs after a move. Also note
that, each MSN has moved once in every three consecutive
moves. Thus, fairness is achieveable if the number of moves
across a row is a factor of 3. In other cases, unfairness results
in one or two of the MSNs to make an extra move than the
third one. SinceXmax − 1 inner rows are present (equation
2), in the most fair case, each of the MSNs is responsible
for a total of exactly(Xmax − 1)(Ymax−1

3 ) moves across all
the inner rows. However, the extra move per outermost row
requires one of the MSNs to make two more moves than the
other two for a total of2( (Ymax−1

3 +1) moves. The other two
make 2(Ymax−1)

3 moves. Therefore, under the most fair case,
one of the MSNs makes only two extra moves than the other
two.
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Fig. 7. Traversal patterns of the MSNs

On the other hand, in the least fair case (assuming the
number of moves across an inner row not be a factor of 3),
each MSN makes a total of atleast(Xmax−1)(Ymax−2

3 ) moves
and two of them are required to make an extra move per row.
For the outermost rows, an additional move per row allows
each to participate in exactly2Ymax

3 moves. Therefore, in the
least fair case, two of the MSNs each makeXmax − 1 more
moves than the third one. For the moves across the rows, the
least fair case examplifies the minimum and maximum number
of moves made by any single MSN.

B. Moves across the columns

The traversal pattern of the MSNs in Fig. 7(b) suggests
that the MSNs toggle between only two configurations as they
move across the column. Furthermore, each MSN completes a
move in every two consecutive moves across a column. Since
a lower and an upper bound is possible forNcol, the fairness
degree in each is examined separately. A lower bound onNcol

is achieved when a single MSN (i.e.Ncol1 moves) makes
Xmax moves from SCI and the column adjacent to FCI in
both the blocks. In the most fair case, the moves are divided

equally among the MSNs (Xmax

3 per MSN) whereas, a single
MSN may be responsible for allXmax moves in the least fair
case. From FCI, a lower bound is achieved when the number
of Ncol1 moves per block is one more thanNcol2 (section
IV-D). In the most fair case, two different MSNs make the
extra move in each block such that, each account for a total
of Xmax−1

2 moves. The third MSN, in this case, is responsible
for Xmax−3

2 moves. However, in the least fair case, one of the
MSNs makes the additional move in both the blocks for a total
of Xmax+1

2 moves. In comparison, the other two MSNs make
Xmax−3

2 moves each. To summarize, under the most fair case,
two of the MSNs make one extra move than the third whereas,
a single MSN may completeXmax + 2 more moves than the
other two in the least fair case. Thus, the minimum number of
moves made by a MSN to complete the traversal across the
columns isXmax−3

2 (in the least fair case).

An upper bound onNcol is possible if the moves from SCI
and the column adjacent to FCI are bothNcol2 moves. In the
most fair case, a different MSN participates in all the moves
for the two blocks and a different pair must traverse each
column of a block. Then, the difference in number of moves
between any two MSN isXmax

2 . In contrast, the least fair case
is possible if the same pair of MSNs make allXmax moves.
An upper bound from FCI is achieved if the number ofNcol2

moves per block is one more thanNcol1 . Then, in the most
fair case, two different pairs of MSNs can make the extra
move in each block. This allows two of the MSNs to each
make Xmax−1

2 moves whereas, the third one (that participated
in both the extra moves) account forXmax+1

2 moves. In the
least fair case, the same pair of MSNs may make additional
moves in both the blocks for a total ofXmax+1

2 moves. The
third MSN, in this case, makesXmax−3

2 moves. To summarize,
under the most fair case, two of the MSNs are responsible
for Xmax

2 + 2 and Xmax−X
2 + 2 more moves than the third

one whereas, the number of such additional move for each is
Xmax+2 in the least fair case. Then, the maximum number of
moves required by any MSN to complete the traversal across
the columns isXmax + Xmax+1

2 or 3Xmax+1
2 moves in the

least fair case.

C. Determining the Bounds

In order to complete the bound on the maximum individual
traversal distance, the least fair case for the upper bound on
Nrev is considered. In such case, two of the MSNs make an
extra move across the row for a total ofYmax

6 moves. We derive
the theorem for the bounds on individual traversal distance as
the sum of the minimum and maximum distance traversed by
any MSN across the rows, columns and due to revisits.

Theorem 3: In a rectangular field of length L and width
W, tiled into equilateral triangles of sides r, it takes any
of the three MSNs a minimum total travelling distance
of 2

√
3Ld 2W

r
√

3
e − r

√
3

2 (3d 2W
r
√

3
e + 4) and a maximum of

2
√

3L(d 2W
r
√

3
e+ 1

6 ) + r
√

3
2 (5d 2W

r
√

3
e− 6) to provide a complete

coverage of the field.
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VI. CONCLUSION

We have presented a mobile traversal algorithm for a
triangulation-based coverage of a field. MTA has two dis-
tinctive advantages. First, starting at a random initial starting
index, MTA minimizes the total traversing distance or time
required by three MSNs to cover the field. Second, the bounds
on the total and individual traversing distance and time can be
computeda priori with respect to the number and dimension of
possible triangular formations. Furthermore, in MTA, a MSN
(or MSNs) enter the sleep mode during the transition phase
between formations to conserve energy. Due to the limited
number of MSNs, MTA incurs variable latency in coverage
of each region of the field. However, sub-sectioning the field
into smaller regions and deploying more MSNs would reduce
such latency.
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