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Abstract— In this paper, we analyze a year long wireless
network users’ mobility trace data collected on ETH
Zurich campus. Unlike earlier work in [9], [21], [35],
we profile the movement pattern of wireless users and
predict their locations. More specifically, we show that
each network user regularly visits a list of places, such as a
building (also referred to as “hubs”) with some probability.
The daily list of hubs, along with their corresponding visit
probabilities, are referred to as a mobility profile. We also
show that over a period of time (e.g., a week), a user
may repeatedly follow a mixture of mobility profiles with
certain probabilities associated with each of the profiles.
Our analysis of the mobility trace data not only validate the
existence of our so-called sociological orbits [13], but also
demonstrate the advantages of exploiting it in performing
hub-level location predictions. Moreover, such profile based
location predictions are found not only to be more precise
than a common statistical approach based on observed
hub visitation frequencies, but also shown to incur a
much lower overhead. We further illustrate the benefit
of profiling users’ mobility by discussing relevant work
and suggesting applications in different types of wireless
networks, including mobile ad hoc networks.

Index Terms— WLAN mobility trace analysis, Sociolog-
ical orbits, Mobility profiles, Location prediction, Mobile
wireless networks

I. INTRODUCTION

The mobility of users forming a mobile wireless
network causes changes in the network connectivity and
may even lead to intermittently connected networks.
On one hand, nodal mobility may increase the overall
network capacity [15]. On the other hand, it may make
it challenging to locate users and route messages within
the network.

Many researchers have tried to model practical mo-
bility in various ways to achieve different goals. Earlier
work on mobility modeling [8] was done mostly with
Mobile Ad hoc NETworks (MANET) in mind. For
example, some [27] used mobility pattern analysis to

minimize radio link changes via appropriate selection
of next hop within radio range. While the authors in
[32], [36] performed physical location prediction via
continuous short-term and short-range tracking of user
movement, we had leveraged on our assumptions on
“sociological orbits” to perform efficient routing within
MANETs [13], [14]. More recently, Intermittently Con-
nected Mobile Ad hoc Networks (ICMAN) (or in gen-
eral, Delay Tolerant Networks (DTN)) have received a
lot of interest. For example, researchers [7], [38] have
suggested the concept of controlled mobility to aid in
mobile ad hoc routing. Literature has also proposed
several work on mobility trace analysis within campus-
wide wireless networks, which we shall discuss at length
in Section VI to highlight the novelty of our work.

Our study of user mobility traces is motivated by the
need to extract practical mobility information, which
may potentially benefit applications such as location
approximation and routing within all types of networks
such as MANETs, DTNs, wireless access networks, etc.
More specifically, it is noted that wireless users belong
to a larger social environment and as such, their move-
ment behavior is subject to several location dependent
sociological constraints (in addition to speed limits and
specific walkways, as described in [4]). In particular, on
any given day, each user may visit a list of places of
some social importance (which we referred to as “hubs”
in [13]) in some probabilistic manner, creating what we
refer to in this paper as a “mobility profile”.

In this work, we not only validate the existence of such
mobility profiles via mobility trace analysis, but also
show that in practice, a user is usually associated with
more than one profile. In particular, we find evidence of
a probabilistic mixture of such profiles that stay valid for
a long period of time (i.e., several days or weeks), after
which a different mixture of profiles will be in effect.
The data analyzed in this paper is collected on the ETH
Zurich campus and is similar in content to that available
from the Dartmouth campus (both are obtained from Ac-
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cess Point system logs). However, compared to the most
related (and yet much different) work in [9], this paper
primarily focusses on the orbital parameters, in particular
on the user-centric parameters like the user mobility
profiles and its applications, whereas [9] focusses more
on AP-centric parameters. Our mobility profile based
hub-level location prediction is shown not only to be
more precise than a common statistical method, but also
to incur a much lower overhead. Note that although this
work analyzes data from a campus-wide wireless access
network (instead of a MANET, as data from former
is more readily available), our mobility profiling and
location prediction techniques are applicable to other
types of networks as well, since the movement of users
is ultimately influenced by their social environment.

The rest of this paper is organized as follows. In
Section II, we discuss a sociological orbit framework
and describe the major orbit (hub-centric and user-
centric) parameters to be studied. In Section III, we
study the distributions of the hub-centric parameters
from the analyzed data. In Section IV, we study the
user-centric parameters and in particular, we present a
clustering algorithm using a Mixture of Bernoulli’s to
analyze user mobility profiles. In Section V, we highlight
the advantages of profiling users’ mobility by comparing
profile based hub-level location predictions to predictions
based on a general statistical method. In Section VI, we
uphold the novelty of our work by comparing with other
related work on the analysis of wireless network users’
mobility traces, and also discuss potential applications
that may benefit from our work. Finally, we conclude
this work in Section VII.

II. SOCIOLOGICAL ORBIT FRAMEWORK

In this section, we briefly describe and enhance the
sociological orbit framework we first proposed in [13].
In the real world, it is observed that users routinely spend
a considerable amount of time at a few specific place(s),
referred to as hub(s). For example, in a WLAN scenario
a hub may be a floor within a building or, the entire
building itself, depending on the scale of the network
model. Although, it is hard (and may be even against
privacy policies) to keep track of an individual at all
times, one can still take advantage of the fact that most
users’ movements are within, and in between, a list of
hubs.

Let us consider a graduate student who only has
classes on Monday, Wednesday and Friday, when he is
found on a school campus, spending most of his/her
time in either his/her laboratory, a seminar room, or
the cafeteria, each of which shall form a “hub” in this
example (as shown in Figure 1). The actual list of hubs
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Fig. 1. A hierarchical view of sociological orbits

visited by the student on the same day is called a “hub
list”. Even if such hub lists may vary from one day to
another, that variation is only marginal (as shown later
in Section IV). In most cases, a number of hub lists
over a period of days may be clustered together and
represented by a single “weighted hub list”, where the
weight associated with each hub denotes the probability
of the student visiting that hub within that period. In this
work, we shall refer to such a weighted hub list to be a
user’s “Mobility Profile”, and the movement in between
the hubs within a profile as an “Inter-hub Orbit” (IHO). If
one wishes to locate the student on a school day, knowing
this School Profile within the campus shall be helpful,
where one can most probably find him/her in either the
laboratory, or the seminar room, or the cafeteria, without
having to look all over the campus.

In real life, it is observed (and later verified from
the analyzed data) that a user over long periods of
time is usually associated with more than one mobility
profile, mixed with certain probabilities. This is shown
in Figure 1 as the Weekend Profile and the Home Profile
to account for the student’s remainder of the week. Such
a movement in between multiple profiles at a higher
level is referred to as the “Inter-profile Orbit” (IPO).
Over different periods of time, this mixture of profiles
may change, causing what we call an “IPO Timeout”.
The IPO and the IHO together constitute the hierarchical
sociological orbit at two different levels. In this paper,
such orbital mobility information is shown to be most
helpful in predicting the hub-level location of a user with
much more accuracy than a general statistical method at
a much lower overhead.

To formalize the sociological orbit framework, we
divide the orbital parameters into two categories: Hub-
centric, and User-centric, as listed in Table I. On the
hub-centric side, the Hub Form depends on the actual
definition of a hub in the network being modeled; Hub
Visits denotes the number of users visiting a hub in a
given period; and the Hub Stay Time is the amount of
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TABLE I
ORBITAL PARAMETERS

Category Parameters
Hub-centric Hub Form

Hub Visits
Hub Stay Time

User-centric Mobility Profiles
Hub List Size

time a user spends at one stretch within a hub. On the
user-centric side, the Mobility Profile Parameters include
a list of hubs and their corresponding weights, and the
Hub List Size refers to the number of unique hubs visited
by a user on a day. Although, the study in [9] is similar
to our study of the hub-centric parameters, to the best
of our knowledge this paper is the first to discuss and
analyze the user-centric aspects related to sociological
orbits.

In the following sections, we analyze wireless network
users’ mobility trace data collected on ETH Zurich
campus from 1st April, 2004 till 31st March, 2005.
There were a total of 13, 620 users, 43 buildings, and
391 Access Points (AP). The data was obtained as
system logs from the APs which recorded the associ-
ation, disassociation, missed polls, and roaming events
for users during the given period. First, to study the
observed distribution of the hub-centric parameters of
the framework, we setup an Oracle database with these
traces and employed standard SQL queries1. Second,
to analyze the user-centric parameters we employ a
clustering algorithm using a Mixture of Bernoulli’s. We
also develop efficient methods to model and analyze
mobility profiles to validate the existence of sociological
orbits. Finally, we use the mobility profiles to do hub-
level location predictions more precisely than a statistical
method, and at much lower overhead.

III. HUB-CENTRIC PARAMETER DISTRIBUTIONS

In this section, we shall define and discuss the major
parameters related to the concept of “hubs”.

A. Hub Form

Hubs are generally defined as places of social impor-
tance. However, the hub form (e.g., size, shape) is mostly
related to the type and scale of the network of interest.
For instance, in a campus-wide wireless network (like
the one we study in this paper), one could consider each
AP, or room, or floor, or the entire building to be a hub.
Different choices are driven by the specific interest in the

1We thank Nirmal Thangaraj for developing the SQL queries

granularity of the movement of the users. For example,
if one is only interested in identifying one building out
of many (which say are located far apart on the same
campus) to locate a user, and not the specific room or,
the floor within the building (which say has a local
network connecting all the rooms), then each building
should be considered as a hub. As such, this decision
also affects the time spent in each hub, and the total
number of hubs in the model. A reasonable approach
to decide upon a suitable hub form is to maximize the
benefit of a high level orbital information, without having
to monitor/update short-term or, short-range mobility
information.

Note that in a broadly defined network of people, a
hub is not required to have an AP (unlike in [9]), in
which case a hub may still be identified in a variety
of ways. The use of GPS service is the obvious first
choice. Alternatively, in the broader contexts of perva-
sive/ubiquitous computing [1], and Ambient Intelligence
(AmI) [26], localization in a cosmopolitan area will be
even more readily available.

For the data we analyze here, we consider each build-
ing within the entire ETH Zurich campus to be a hub.
There are a total of 43 buildings/hubs that we analyze
in the traces. We assign an unique “Hub ID” to each
hub. Some of these are academic buildings, libraries,
cafeterias, etc. Each building, has a number of floors,
and each floor has multiple rooms, some of which have
APs within them. Accordingly, a hub in our case may
be covered by multiple APs.

B. Hub Visits

In Figure 2(a), we plot the frequency with which
network users visit each hub on a daily, weekly, and
monthly basis to study the degree of social significance
for each hub. As can be seen from Figure 2(a), only a
few hubs (hub IDs 1 through 4) record large number
of user visits, making them most “socially popular”.
We find the fraction of total node visits recorded by
each hub to follow a power law distribution as shown
in Figure 2(b). Also, the distributions for daily, weekly,
and monthly visits are observed to be almost identical,
indicating a temporal consistency of the social signifi-
cance of each hub. For example, on either daily, weekly
or, monthly basis, hub 2 is always seen to have a hub
visitation probability of around 0.19. In Figure 2(c),
we plot the number of APs in each hub. Interestingly,
with the exception of hub 16, we observe the number
of APs in each hub to be proportional to the number
of its user visits. Larger number of APs could either
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Fig. 2. Hub visitations and AP distribution within hubs

indicate a larger size hub, or a hub with greater need
to support higher network load and connectivity, all
of which could indicate a hub’s social significance.
Overall, it is evident from Figure 2 that the number of
popular hubs grows very slowly with the total number of
hubs, and such information may be useful for efficient
information dissemination within a network by directing
information to one of these popular hubs first.

C. Hub Stay Time
The Hub Stay Time parameter signifies the absolute

time in between an association event, and either a
disassociation or, missed poll or, a roaming event as
recorded by an AP for a user. We prune all values
larger than 48 hours as they could indicate errors in the
system logs, and plot all other values in Figures 3(a)
and 3(b). As seen in Figure 3(a), hub stay time of 10
minutes occurred most often, and there is a sharp drop
and gradual decrease for 20 minutes or more. Figure 3(b)
plots the hub stay time distribution at the hourly level,
which is shown to follow a power law distribution. Most
users are seen to stay in a hub for 4 hours or less, with the
percentage of people staying in a hub for more than 12
hours being significantly lower. This fits in well with the
diurnal cycle of mobility of casual network users (i.e.,
work/roam in day, and stay at home at night). Figure 3(c)
displays the average hub stay time recorded by each hub.
It is interesting to note that the hubs that recorded a
lower number of user visits in Figure 2(b) seem to have
higher average hub stay times. This may be due to the
fact that while some hubs (e.g., cafeteria) record high
number of shorter visits, others (e.g., library) may record
lower number of longer visits. Such social influences on
mobility patterns of users around hubs may be efficiently
leveraged upon by applications such as routing.

IV. ANALYSIS OF USER-CENTRIC PARAMETERS

In this section, we shall analyze the user-centric pa-
rameters by examining individual network user’s move-

ment. To help select appropriate sample users, we first
divide all the users in different user groups based on
the number of days they are found to be “active” within
the network (i.e., associated with at least one AP in the
day). In Figure 4, we plot the fraction of total population
vs. the number of their active days. The x-axis shows a
range of values, i.e., 25 denotes up to 25 active days, 50
denotes anywhere between 26 and 50 active days, and so
on. 80% of the total population is seen to be active for
only 25 days or less in an year. Based on Figure 4, we
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categorize users in 6 different groups (Gj) as follows:

• G1 : Active for 0 to 25 days
• G2 : Active for 26 to 50 days
• G3 : Active for 51 to 75 days
• G4 : Active for 76 to 100 days
• G5 : Active for 101 to 125 days
• G6 : Active for 126 to 150 days

We wish to choose one user to represent each group
who is the “most active” within that group (i.e., we wish
to maximize both the number of active days and the the
hub list size within each group). For a given group Gj ,
let Dj

max and Lj
max be the maximum number of active

days and maximum average hub list size respectively,
across all users in Gj . Let the pair Dj

i and Lj
i denote

the number of active days and the average hub list size
for a particular user i in Gj . Then, to represent group
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Gj we need to find a user who can minimize

α.
Dj

max −Dj
i

Dj
max

+ β.
Lj

max − Lj
i

Lj
max

(1)

where, α and β are weights associated with each term.
The results of using (1) with α = 1 and β = 1
(we weigh both the number of active days and the
hub list size equally) is summarized in Table II. The
basic intuition behind selecting the “most active” user
from each group is the availability of more statistically
significant mobility data for such an individual. At the
same time, studying users from different groups help
represent most of the total population as seen in Figure 4.
Alternately, one may also select the sample users from
each group to find users that are either “least active” or,
“active on average”.

TABLE II
SAMPLE USERS FROM ALL GROUPS

Group MAC Di Li

G1 0004.2396.92ab 24 2.29
G2 0004.2398.82c0 71 4.08
G4 0020.e089.9376 98 2.46
G5 0004.2396.8ced 119 2.13
G6 0005.4e41.cf1d 126 2.63

A. Model for Analysis of Mobility Profiles

We now present a study on the mobility of these 6
sample users. We first plot their hub stay times in all
the hubs during their active period, as shown in the
3-D Figure 5. To filter out noises (i.e., very brief hub
stay durations), we run a horizontal plane parallel to the
threshold value of 5 minutes across the plots shown in
Figure 5 to obtain 2-D plots in Figure 6 showing only
which hub(s) is(are) visited by a user (for more than 5
minutes) on a given day.

Next, we define an n dimensional space, where each
dimension refers to a hub (i.e., n = 43 in our case). The
hub list for a user in any given day (which is nothing but
a binary vector of hub visits) may then be represented by
a point in this space. For a particular user, similar hub
lists on different days would generate several overlapping
points whereas, two hub lists that differed only in terms
of one or two hubs would generate points “close” to each
other in this space. We use a clustering algorithm that
helps define this concept of “closeness” by considering
hub lists that say only differ in a maximum of 1 or, 2
hubs to be “close” and to belong to the same cluster.
The mean of the cluster, which is a weighted hub list,
then represents a mobility profile, as is described in more
detail below.

B. Using a Mixture of Bernoulli’s to Profile Mobility

A suitable choice to model the binary hub visitation
vectors is a Mixture of Bernoulli distribution. In this
mixture model there shall be more than one mixture
component where, each component is considered an
unique mobility profile represented by the component
mean. Thus, a profile is nothing but a distribution over
the hub visitation probabilities (i.e., a weighted hub list).
We refrained from using the commonly used Mixture
of Gaussian model because the domain of the Gaussian
variable, being (−∞,∞), is clearly not suitable for bi-
nary valued vectors. Assuming that the current mobility
profile of a user is known, we model each hub visitation
by a user as an independent event. On the other hand, if
the current profile is not known, the general probability
of a user visiting a hub is dependent on the probability
associated with each mobility profile. The latter fact is
crucial, since it allows for the knowledge of a user’s
hub visits to help infer the current mobility profile and
therefore the probabilities of visits to other hubs on the
same and future days, as shown later in Section V.

More formally, we use h (1 ≤ h ≤ H) to denote
the unique hub id and i (1 ≤ i ≤ n) to denote the
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Fig. 6. Daily hub visitation patterns of all sample users

day index, where H and n are the total number of hubs
and days respectively. On each day i, we define a user’s
hub list to be a binary vector of hub associations y(i) =
[y(i)

1 , . . . ,y(i)
H ] where each element y(i)

h ∈ {0, 1} such
that y(i)

h is equal to 1 if hub h was visited on day i, and
zero otherwise. We denote the complete trace of hub
visits across all n days with the symbol Y , which is the
collection Y = {y(1), . . . ,y(n)}. The total probability of
Y is given by the product of a mixture of independent

Bernoulli distributions as follows:

p(Y ) =
n∏

i=1

p(y(i)) ,

where,

p(y(i)) =
k∑

j=1

p(j)
H∏

h=1

p(y(i)
h |ρj,h) .

Here, k is the number of mixture components (or,
mobility profiles); p(j) is the probability of following
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profile j; ρj,h is the probability of visiting hub h on
a day when following profile j. This framework is a
generative Bayesian model in the sense that it defines
a probability to every possible outcome, or pattern, that
can be produced for Y .

This mixture model is trained using the Expectation-
Maximization (EM) algorithm of Dempster, Laird and
Rubin [12]. By employing consecutive Expectation (E)-
and Maximization (M)- steps, the probability of the
entire data set Y is guaranteed to monotonically increase
(or, remain the same). The E-step consists of computing
the posterior probability of membership of a datum (or,
hub list) across the k mixture components (or, mobility
profiles). Intuitively, at this E-step we look at each hub
list and try to guess the mobility profile being followed
on that particular day. Formally, this corresponds to
computing the responsibilities of each component in the
mixture, denoted by r

(i)
j , such that

∑k
j=1 r

(i)
j = 1, and

are found using Bayes’ theorem:

E-step r
(i)
j ≡ p(j|y(i)) =

p(j)p(y(i)|j)
p(y(i))

(2)

∀i = 1, . . . , n and ∀j = 1, . . . , k .

The M-step of the EM algorithm updates the parameters
of each of the k components of the mixture model, in
light of the responsibilities r

(i)
j computed in the E-step.

In other words, at this M-step we look at the proba-
bilistic associations of the hub lists with each profile
computed in the E-step, and update both the probabilities
associated with each profile (i.e., mixing proportions),
and the probabilities associated with each hub visitation
within a profile. Thus, formally the parameters of the
mixture model are: the mixing proportions, denoted by
vector πππ = (π1, . . . , πk) where πk = p(k) such that∑k

j=1 πj = 1; and for each mixture component j, there
is a vector of dimension H of probabilities of each hub
being used, denoted by ρρρ(j) = (ρj,1, . . . , ρj,H). Thus
each component in the mixture represents a mode of a
user’s interaction with a subset of the H hubs available
(i.e., each profile is nothing but a weighted hub list). The
updates to the parameters in the M-step are as follows:

M-step,πππ πj =
1
n

n∑

i=1

r
(i)
j (3)

∀j = 1, . . . , k .

and

M-step, ρρρ ρj,h =

∑n
i=1 r

(i)
j y(i)

h∑n
i=1 r

(i)
j

(4)

∀j = 1, . . . , k and ∀h = 1, . . . , H .

For each user, one may choose the number of com-
ponents (i.e, profiles) for each mixture model by visual
inspection of the data distribution. An alternate approach
may include approximate Bayesian model selection tech-
niques, e.g. via the Bayesian Information Criterion (BIC;
[29]) or, other criteria. In this work, we run the clustering
algorithm for each sample user multiple times with
different number of randomly initialized cluster means
(i.e., profiles), and select the one where each profile has
moderate associativity with hub lists. Figure 7 shows the
pattern of mobility profiles over all the days. Table III
lists both the probability that a user is in a given profile,
and the probability that a hub is visited when following
a particular profile. As an example, from Figure 7(a) we
find that the sample user from group G1 is following
his/her mobility profile 1 on day 14. From Table III we
see that given profile 1 for that user, the hub visitation
probabilities indicate definite visits to hubs 1, 4, 15 and
18 on day 14, which may then be verified from his/her
actual hub list distribution shown in Figure 6(a).

C. Hub List Size Distribution

The results in Table III may seem to indicate that
several users tend to visit many hubs in any given day as
their mobility profiles include multiple hubs. Hence, to
study the distribution of the hub list sizes of our sample
users we generate daily hub lists for each of them over
their individual activation period based on their mobility
profiles. More specifically, for each day we first choose
one of their possible profiles at random following the
mixing proportions, and then generate visits to each hub
individually following the hub visitation probabilities in
that chosen profile. We then obtain the aggregated (i.e.,
across all sample users) Hub List Size distribution and
compare it with the actual distribution observed in the
trace data. As seen in Figure 8(a), both the observed
and the generated hub list sizes are distributed almost
identically, and shorter (≤ 3) hub list sizes occur most
often.

For a more comprehensive study, we also present the
hub list size distribution observed for all the nodes in the
analyzed data. Figure 8(b) shows the overall number of
occurrences of different hub list sizes on a daily, weekly,
and monthly basis. In these results below, each hub list
size denotes the unique number of hubs a user visits in
a day, week, or month. As seen in the figure, for all the
time scales (i.e., daily, weekly, monthly), shorter hub lists
sizes (≤ 3) occur most often, following which there is a
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Fig. 7. Daily distribution of mobility profiles

TABLE III
MOBILITY PROFILE PARAMETERS

Group 1 Profiles j Mixing Proportions πππj Hub ID h (Hub Visitation Probability ρj,h)
1 0.08 1(1.0), 4(1.0), 15(1.0), 18(1.0)

2 0.31 1(1.0), 4(0.83), 8(0.27), 10(0.54), 11(0.27), 13(0.13), 18(0.13)

3 0.61 1(0.38), 4(0.81), 5(0.07), 15(0.34)

Group 2 Profiles j Mixing Proportions πππj Hub ID h (Hub Visitation Probability ρj,h)
1 0.02 1(1.0), 9(1.0), 14(1.0)

2 0.14 1(0.14), 4(0.14), 5(0.49), 43(1.0)

3 0.31 1(1.0), 3(0.27), 5(0.8), 8(0.4), 9(0.53), 10(1.0), 13(0.6), 26(0.13), 27(0.2), 38(0.07), 43(0.07)

4 0.53 1(0.54), 3(0.08), 5(0.68), 8(0.04), 9(0.19), 13(0.08), 43(0.11)

Group 3 Profiles j Mixing Proportions πππj Hub ID h (Hub Visitation Probability ρj,h)
1 0.06 1(1.0), 2(1.0), 5(0.75), 6(0.5), 7(0.75), 8(0.75), 10(0.5), 13(0.25), 16(1.0), 17(0.25), 29(0.25)

2 0.25 1(1.0), 3(0.22), 4(1.0), 5(1.0), 7(0.06), 8(0.66), 10(0.94), 11(0.06), 13(0.28), 15(0.89), 19(0.22), 26(0.11), 43(0.11)

3 0.32 1(0.09), 2(0.62), 4(0.05), 5(0.28), 7(0.75), 10(0.04), 15(0.05), 16(0.44), 17(0.04), 19(0.04), 25(0.18), 26(0.04), 29(0.09)

4 0.37 1(0.53), 3(0.12), 4(0.83), 5(0.18), 6(0.04), 8(0.04), 10(0.08), 14(0.19), 15(0.6), 43(0.11)

Group 4 Profiles j Mixing Proportions πππj Hub ID h (Hub Visitation Probability ρj,h)
1 0.03 5(0.33), 8(1.0)

2 0.17 1(1.0)

3 0.80 1(1.0), 8(0.65), 10(0.9)

Group 5 Profiles j Mixing Proportions πππj Hub ID h (Hub Visitation Probability ρj,h)
1 0.06 1(1.0), 3(1.0), 4(0.51), 5(0.14), 6(0.43), 8(0.29), 9(0.85), 10(0.58), 11(0.14), 13(0.58), 25(0.43)

2 0.20 1(0.14), 2(0.12), 3(0.22), 4(0.04), 7(0.54), 10(0.04), 15(0.26), 16(0.04), 30(0.04)

3 0.74 1(1.0), 3(0.36), 4(0.12), 5(0.01), 8(0.09), 9(0.06), 10(0.02), 15(0.23), 17(0.01), 21(0.01)

Group 6 Profiles j Mixing Proportions πππj Hub ID h (Hub Visitation Probability ρj,h)
1 0.08 1(1.0), 3(1.0), 4(0.3), 5(0.4), 8(0.2), 9(1.0), 10(1.0), 11(0.9), 13(1.0), 18(0.1), 27(0.4)

2 0.21 1(0.03), 2(0.92), 12(0.19), 17(0.15)

3 0.26 1(0.87), 2(0.22), 4(0.7), 5(0.13), 8(0.31), 10(0.03), 11(1.0), 18(0.11)

4 0.45 1(0.56), 2(0.03), 3(0.045), 4(0.17), 5(0.35), 8(0.02), 10(0.05), 11(0.11), 18(0.36)

sharp decrease for hub list sizes of 4 or more. Figure 8(c) shows the fractional occurrences of the observed hub list
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Fig. 8. Hub list size distributions

sizes, which are almost identical across the daily, weekly,
and monthly values, and may be approximated as shown
with a power law distribution. Based on these results, we
may infer that the length of each hub list is determined
more by the social routine of each user, than by the actual
number of hubs present in the system, or the period for
which the user is active.

V. MOBILITY PROFILE BASED LOCATION

PREDICTIONS

In this section, we highlight another important contri-
bution of our work by showing how the mobility profiles
may be useful in making hub-level location predictions
with more accuracy than a general statistical method
and at a lower overhead. More specifically, we first
show an efficient way to apply the clustering algorithm
described in Section IV-B and identify the right mixture
of mobility profiles with lower overhead than compared
to that in a statistical method. We then focus on two types
of profile based predictions: Unconditional Prediction,
where given the hub visit information over a window of
n days, we wish to predict the hub visit patterns for the
next window of n days; Conditional Prediction, where
given that we can identify the current mobility profile
of a user (based on available information about a hub a
user either visited, or plans to visit), we wish to find the
probability of that user visiting another hub in that same
day.

A. Determining a Mixture of Mobility Profiles

From Figure 7, it becomes lucid that the seemingly
random movements of a user as seen from Figure 6
can now be systematically described via a mixture of
mobility profiles over a period of time. However, since
this mixture will eventually change, we still need an
efficient method to identify the right mixture of profiles
describing the user’s movement pattern over a given
period. One may use the mobility traces of hub visits col-
lected over 7 days (i.e., a week) to determine the possible

mobility profiles and their corresponding mixing propor-
tions using the Mixture of Bernoulli’s described in Sec-
tion IV-B. It is then possible to identify the appropriate
mixture to include all the profiles with a corresponding
mixing proportion greater than some specified threshold
(which is 10% in our case, as shown in Figure 9). One
may then choose to only consider this specific mixture
for the next 7 days, when the next mixture update is
performed. Considering the sample user from group G6

as an example, we find that a mixture update (due to a
change in the mixture from one window to the next)
is required on days 14, 21, 56, 70, 77, 84, 91, 112, and
119, which amounts to only 9 updates for a 125 days
activation period. Later in this section, we show that
even with such infrequent updates (i.e., low overhead)
our mobility profiles are able to predict daily hub-level
locations with more accuracy than a common statistical
method, which in contrast would require a hub visitation
information update every day.

B. Unconditional Prediction

In this part, we study the accuracy of the unconditional
profile based hub-level location prediction, and compare
it with that made from statistical observation alone. We
again consider only the sample users.

1) Statistical based prediction: In this method, one
initially collects the mobility traces of a sample user for
n days, and then determines the user’s hub visit prob-
abilities based on those n days. Using this probability
distribution, one can then predict the user’s hub list for
day n + 1, and compare it with the observed hub list
for day n + 1 to compute the daily Statistical based
Prediction Error (SPE) rate as

SPE =
Incorrect number of hub predictions

Total number of hubs
(5)

After day n+1, the sample user’s hub visit probabilities
are recomputed based on the past n + 1 days and then
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Fig. 9. Windows of 7 days to find mixture of mobility profiles

used to predict the hub list for day n + 2, and so on till
the end of the activation period for the sample user is
reached.

2) Profile based prediction: In this approach, one
initially collects a sample user’s mobility traces for a
window size of n days, and then applies the clustering
algorithm described in Section IV-B to find out a mixture
of mobility profiles and their associated probabilities
(as was shown in Figure 9). Based on this profile
information, one not only predicts the hub list for the
next day (i.e., day n + 1, similar to the statistical based
prediction), but also for the entire next window of n
days (i.e., day n + 1 till 2n). To be more precise, for
each day, one first randomly chooses one mobility profile
out of the mixture of profiles based on their mixing
proportions and then predicts the day’s hub list based on
that chosen profile. For each day within the window, one
compares the hub visit predictions with the observed hub
visit values to compute the daily Profile based Prediction
Error (PPE) rate similar to that shown for SPE in (5).

After the next window of n days, one re-computes the
mixture of mobility profiles based only on the hub visit
information of the last n days (unlike in the statistical
method, where the entire past history is considered) and
uses the new mixture information to predict the hub lists
for days 2n + 1 till 3n, and so on till the end of the
user’s activation period is reached. Note that the number
of re-computations required for each sample user in the
profile based method is thus only 1/n times that in the
statistical method.

In our experiment, we choose a window size of n = 7
to be consistent with the results shown in Figure 9. In
Figure 10, we plot the percentage values for SPE and
PPE. For both SPE and PPE, each error value is an
average over 1000 runs. As seen in Figure 10, PPE
has lower values than SPE in almost all cases. The
few cases where PPE has higher values than SPE is
mostly attributed to a substantial change in the mixture
of mobility profiles, where the old and new set of
profiles had very different hub associations. To quantify
the improvement in location prediction achieved by our
profile based method over that by the statistical method,
we define

Prediction Improvement Ratio(PIR) =
SPE − PPE

SPE

and present its distribution parameters in Table IV. As
seen, the mean values (considering the standard errors)
are all positive, indicating a much better overall perfor-
mance of our profile based hub-level location predictions
as compared to the statistical approach and at a much
lower overhead. (1/7 times that of statistical method in
this case). This is one of the most critical contributions of
our concept of profiling mobility based on sociological
orbits.

C. Conditional Prediction

In this section, we show how the current mobility
profile information may improve the performance of
certain hub-level predictions. The authors in [9], [10]
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Fig. 10. Unconditional prediction comparisons

TABLE IV
THE DISTRIBUTION OF PIR (%)

Group Mean ± Standard Error
G1 20.6± 2.3
G2 18.9± 2.0
G3 12.9± 2.0
G4 27.2± 3.0
G5 21.5± 1.4
G6 21.2± 1.5

have shown that a common statistical approach (similar
to the one described in Section V-B) is capable of
keeping track of a user’s visits to different locations (via
the system logs on APs). Consequently, it is possible to
provide a probabilistic view of finding the user in any
location at any time based on the past history of that
user’s hub visits. Taking the user from group G2 as an
example, we find that he/she visited hub 43 on 11 days
in a 49 day activation period as seen in Figure 6(b).
If we were to assume that this mobility pattern over 49
days is going to repeat itself, then the general probability
of finding that user in hub 43 would be 11

49 = 0.22.
From within our profile based framework, we not only
are capable of providing similar general information but,
given the current mobility profile, also can be much
more specific. For instance, given the same example and
assumption as above, the general statistical probability
P (h) of finding the user in hub h on any given day may

be calculated equivalently through our approach as

P (h) =
k∑

j=1

πππj ∗ ρj,h (6)

Using (6) and the data in Table III, the general proba-
bility of finding the user from group G2 in say “target
hub” Ht = 43 on day D = 16 of his activity would
be given as: (0.02) ∗ (0.00) + (0.14) ∗ (1.0) + (0.31) ∗
(0.07) + (0.53) ∗ (0.11) = 0.22 (which is the same
as that noted before). However, as soon as the user
ventures into say “identifier hub” Hi = 4 on day 16
(see Figure 6(b)), our method shall identify the current
profile (Pnow) to be 2, as it is the only one with hub
4 in it. With this additional knowledge, our approach
would then be able to re-compute the probability of
finding the user in hub 43 on day 16 to be ρ2,43 = 1.
From Figure 6(b), we find that the user did indeed go to
hub 43 on day 16 (i.e. y(16)

43 = 1), which makes our
profile based prediction more precise. Several similar
cases for each user type are listed in Table V, where
we find that the conditional probability ρj,Ht

(obtained
based on mobility profiles) is closer to the actual event
y(D)

Ht
than the general probability P (Ht) (obtained from

the common statistical approach). In particular, as seen
in the cases for the users from groups G2, G3, G4 and G6

our predictions are completely accurate, whereas those
from the statistical method are far from correct.

Essentially, the mobility profiles help us group the
hubs in separate (but, potentially overlapping) sets of
hubs on the basis of visits occurring to them within
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TABLE V
CONDITIONAL PREDICTION COMPARISON

Group Ht D P (Ht) Hi Pnow ρj,Ht
y(D)

Ht

G1 11 13 0.08 8 2 0.27 1
G2 43 16 0.22 4 2 1 1
G3 7 7 0.3 14 4 0 0
G4 1 15 0.97 5 1 0 0
G5 7 53 0.11 2 2 0.54 1
G6 3 63 0.1 9 1 1 1

the same period of time (i.e., following some mobility
pattern), unlike in the statistical method where all the
hubs are treated independently and identically. Note that
in practice it may not always be possible to uniquely
identify the current mobility profile based on the hubs
visited so far (i.e., identifier hubs), as one hub could
belong to 2 (out of say 4) profiles. However, as shown
earlier in Section V-B, as long as the identifier hub is
able to suggest a proper subset (or, a mixture) of the
user’s mobility profiles for a given period, we are able
to predict hub visits more precisely than a common
statistical method and at a lower overhead.

VI. OTHER RELATED WORK AND APPLICATIONS

In this section, we discuss relevant work (in an ap-
proximately decreasing order) to highlight the novelty of
our sociological orbit aware approach on users’ mobility
pattern analysis and also discuss related applications of
our approach.

In earlier work [13], [14], we intuitively assumed a
basic sociological orbit framework and proposed orbit
aware routing protocols within MANETs. However, we
did not provide any empirical evidence to validate the
existence of such sociological orbits. This current pa-
per makes unique contributions via the orbit validation
through empirical data analysis, mobility profiling and
hub-level location prediction methods. One of the earliest
attempt to understand the 802.11-based network access
patterns, traffic load and user preference of wireless over
wired networks was made by the authors of [22], [33],
[34]. However, the main focus of these projects were not
on the mobility pattern of individual users.

An extensive campus-wide 802.11 based wireless net-
work testbed was setup in Dartmouth College, and its
traces has been studied by the authors in [17], [20],
[21], focusing more on AP-centric parameters. In par-
ticular, they studied amongst many things, the number
of periodic visits to a particular AP or building, the
length of such periods, and the frequency with which
any sequence of 2 locations were visited in succession.

However, for such information on periodic and sequen-
tial visits to location pairs to be useful in statistical
location prediction for a set of n hubs, one would need
all nP2 = n ∗ (n − 1) permutations of visit sequences.
In contrast, our proposed methods for profiling mobility
based on sociological orbits only requires information on
up to n hubs to be collected with a much lower frequency
of updates as mentioned earlier in the paper.

There have been several other related work on analyz-
ing 802.11-based wireless access patterns at ETH Zurich
[35], University of North Carolina at Chapel Hill [10],
University of California at San Diego [5], [24], MIT [6]
and University of Saskatchewan [28], just to name a few.
Most of these work focussed on topics such as: training
mobility models for use in network simulation; taking
wireless network load measurements for general resource
allocation and capacity planning; understanding the user
mobility in terms of periodic visits to APs; improving
web-caching, QoS-routing, etc.

However, none of these work explored the notion of
sociological orbits and in particular, mobility profiles.
As a result, when it comes to predicting the next AP
to be accessed for example, they often employ common
statistical approaches whereby access to different APs
is assumed to be independent. It is worth mentioning
that much earlier work exists on understanding cellular
users’ mobility patterns, with primary objectives being
triggering location updates based on user movement and
improving paging services for example [3]. However,
they dealt with a set of cells that have a much larger
area than hubs, and whose physical boundary may not
have special social implications as hubs do.

Note that our sociological orbit aware mobility pro-
files can also be helpful in improving realistic mo-
bility modeling, QoS routing, and resource allocation.
In fact, better understanding of users’ mobility profiles
will result in a greater benefit to many applications
than the existing approaches. Example applications may
be those that need to “push” a large amount of data
(such as critical software updates, on-line movie rental,
etc.) directly to a mobile user’s laptop and/or PDA,
or those requiring a small amount of data (e.g., event
alerts) to be sent, or real-time audio/video or images
from surveillance cameras to be streamed to concerned
individuals (e.g., security personnel). Knowing a user’s
current mobility profile will enable such an application
to afford simulcasting the data to a small set of hubs for
reduced delivery time and better security. Conceptually,
this generalizes the simple techniques used to download
files and stream multimedia to vehicles on a highway
equipped with roadside base stations that are spaced a
few miles apart from each other, whose mobility patterns
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may easily be modeled following the work in [11] for
example.

In addition to the above work on campus-wide wire-
less access networks, there has also been similar effort
in studying how mobility (controlled or not) affects
routing protocols and performance (e.g., network ca-
pacity) in ad hoc networks, including sensor networks
with mobile sinks (or base stations), and delay tolerant
networks (DTNs) or intermittently connected mobile ad
hoc networks [7], [15], [30], [38]. However, they did
not deal with specific user mobility patterns. In [18],
[19], [23], [31], the main focus was on the so-called
“contact probability” of two nodes, which is oblivious
to the specific locations (or “hubs”) they visit.

Our sociological orbit-aware mobility profiles can also
be applied to ad hoc networks. For instance, knowing
that two users will visit a common hub may help infer
the contact probability. Moreover, it may allow one user
to store a message within the common hub (e.g., using
a stationary device) so as to be picked up later by
another user without having any actual “contact” with
each other. Example applications of the users’ mobility
profiles may be to monitor air (or, water) quality in
an infrastructure-less environment and its impact on the
health of the people who live or work there, or to
detect and control the spread of a flu virus [37]. In
these applications, people can wear tiny sensors with
limited transmission range. During any given day, only
a few people (say “carriers”) may travel to a site as a
part of their “social routine”, where an access point is
present, for uploading the sensor data and downloading
control messages. A majority of others will only be
able to send data to a person sharing the same “hub”
as a part of its orbital pattern, and that person in turn
will forward the data to another person until one of
these “carriers” is reached. After the collected data is
processed at a remote center, it is possible that certain
symptoms are detected but definitive diagnosis is still
not possible. In such cases, additionally, more intensive
data collection may be needed only at selected locations
and/or by selected persons. Knowing the orbital patterns
of the persons will certainly help target the right subset
of people and thereby reducing unnecessarily flooding
of the request for data collection, and also cutting
down the energy/bandwidth in collecting uninterested
data, whereas knowing the contact probability alone may
not be sufficient. Even in network security, authors in
[16] had profiled mobility sequences based on location
coordinates for reducing false alarms in anomaly-based
intrusion detection.

There also exists a few studies on the social aspects
related to wireless networks. For example, the work in

[2] analyzed the NTT DoCoMo’s i-mode users’ email
partners to infer their social relationships. Similarly, the
authors of [25] studied the social influence on wireless
networks as we did. However, they proposed mobility
models based on Social Network Theory. In particular,
they introduced a “sociability factor” to define the social
relationships between users, and used that to characterize
user groups that may have correlated mobility. Our work
is different in that we profile users’ mobility in terms
of the locations they visit, instead of modeling their
physical movement in between, or within those locations
in terms of velocity and direction of the movement as in
[25], [35].

VII. CONCLUSION

Knowing users’ mobility patterns is crucial to the
efficient design and operation of many wireless networks
and applications that need to be scalable and QoS-
capable.

In this paper, we have analyzed the year-long mobility
trace data of 13,620 WLAN users collected on the
campus of ETH Zurich with 391 Access Points (APs).
We not only validate the so-called sociological orbits
exhibited by mobile wireless users, but also profile the
user movements to help in location prediction. Unlike
previous work on analyzing similar mobility trace data
which focus on AP-centric parameters, our focus has
been on hub-centric parameters (where a hub is a place
of social interest and thus can be served by several APs)
such as hub staying time, and in particular, user centric-
parameters such as the number of hubs visited by a user
in a day (or hub list size) and mobility profiles (i.e., a
probabilistic list of hub visitations) of a user.

We note that it should not be surprising that so-
ciological orbits do exist in users’ mobility patterns.
Nevertheless, one of the contributions of this work is
that for the first time, it has been found from analyzing
the traces that a user does exhibit sociological orbits
at multiple levels on different time scales: a hub-level
orbit consisting of a number of hubs during a day, and
a mobility profile-level orbit consisting of a few profiles
during a week or longer period. In addition, the results
of our analysis will enable researchers to model users’
mobility in more realistic way using the appropriate
values and distributions of user-centric parameters we
have identified via analysis.

Another, perhaps a more important contribution is
that, although intuitively, it is beneficial to exploit the
knowledge of the sociological orbits in users’ movement,
this work is the first that proposed an efficient method
to determine the main mobility profiles of a user using
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a mixture of Bernoulli’s as the clustering algorithm, and
then make either unconditional or conditional predictions
on which hubs a user might visit. More specifically, our
results use only a short history (e.g., the past 7 days)
of mobility trace data, but is shown to predict around
10% to 30% more accurately than a general statistical
approach that relies on daily collection and computation
of the trace data. This illustrates the strength of our
sociological orbit aware approach, and in particular, the
usefulness of the mobility profiles of a user.

Note that although this work is based only on the mo-
bility trace data from ETH Zurich, it is expected that the
data analysis, mobility profiling and location prediction
techniques we have developed, as well as the conclusions
we have drawn in this paper that validate the existence
and usefulness of the sociological orbits are in general
applicable to other university and corporate campuses, as
well as other public/private environments (there certainly
isn’t a sufficient amount of mobility trace data available
except from a couple of places). In addition, we expect
that this work will inspire additional innovative work
on social influence aware and user-centric designs and
operations of not only wireless access networks, but also
mobile ad hoc and peer-to-peer networks, as well as
intermittently connected or, delay tolerant networks.
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