
Semantic Optimization Techniques for

Preference Queries ?

Jan Chomicki

Dept. of Computer Science and Engineering, University at Buffalo,Buffalo, NY
14260-2000, chomicki@cse.buffalo.edu

Abstract

Preference queries are relational algebra or SQL queries that contain occurrences
of the winnow operator (find the most preferred tuples in a given relation). Such
queries are parameterized by specific preference relations. Semantic optimization
techniques make use of integrity constraints holding in the database. In the con-
text of semantic optimization of preference queries, we identify two fundamental
properties: containment of preference relations relative to integrity constraints and
satisfaction of order axioms relative to integrity constraints. We show numerous
applications of those notions to preference query evaluation and optimization. As
integrity constraints, we consider constraint-generating dependencies, a class gener-
alizing functional dependencies. We demonstrate that the problems of containment
and satisfaction of order axioms can be captured as specific instances of constraint-
generating dependency entailment. This makes it possible to formulate necessary
and sufficient conditions for the applicability of our techniques as constraint validity
problems. We characterize the computational complexity of such problems.

Key words: preference queries, query optimization, query evaluation, integrity
constraints

1 Introduction

The notion of preference is becoming more and more ubiquitous in present-day
information systems. Preferences are primarily used to filter and personalize
the information reaching the users of such systems. In database systems, pref-
erences are usually captured as preference relations that are used to build pref-
erence queries [8, 9, 19, 23]. From a formal point of view, preference relations

? Research supported by NSF Grant IIS-0307434. An earlier version of some of the
results in this paper was presented in [10].

Preprint submitted to Elsevier Science 14th October 2005

are simply binary relations defined on query answers. Such relations provide an
abstract, generic way to talk about a variety of concepts like priority, impor-
tance, relevance, timeliness, reliability etc. Preference relations can be defined
using logical formulas [8, 9] or special preference constructors [19] (preference
constructors can be expressed using logical formulas). The embedding of pref-
erence relations into relational query languages is typically provided through a
relational operator that selects from its argument relation the set of the most
preferred tuples, according to a given preference relation. This operator has
been variously called winnow (the term we use here) [8, 9], BMO [19], and
Best [33]. It is also implicit in skyline queries [5]. Being a relational operator,
winnow can clearly be combined with other relational operators, in order to
express complex preference queries.

Example 1 We introduce an example used throughout the paper. Consider
the relation Book(ISBN, V endor, Price) and the following preference relation
�C1 between Book tuples:

prefer one Book tuple to another if and only if their ISBNs are the same
and the Price of the first is lower.

Consider the instance r1 of Book in Figure 1. Then the winnow operator ωC1

returns the set of tuples in Figure 2.

ISBN Vendor Price

0679726691 BooksForLess $14.75

0679726691 LowestPrices $13.50

0679726691 QualityBooks $18.80

0062059041 BooksForLess $7.30

0374164770 LowestPrices $21.88

Figure 1. The Book relation

ISBN Vendor Price

0679726691 LowestPrices $13.50

0062059041 BooksForLess $7.30

0374164770 LowestPrices $21.88

Figure 2. The result of winnow

Example 2 The above example is a one-dimensional skyline query. To see an
example of a two-dimensional skyline, consider the schema of Book expanded
by another attribute Rating. Define the following preference relation �C2:

2

prefer one Book tuple to another if and only if their ISBNs are the same
and the Price of the first is lower and the Rating of the first is not lower, or
the Price of the first is not higher and the Rating of the first is higher.

Then ωC2 is equivalent to the following skyline (in the terminology of [5]):

SKYLINE ISBN DIFF, Price MIN, Rating MAX.

The above notation indicates that only books with the same ISBN should be
compared, that Price should be minimized, and Rating maximized. In fact, the
tuples in the skyline satisfy the property of Pareto-optimality, well known in
economics.

Preference queries can be reformulated in relational algebra or SQL, and thus
optimized and evaluated using standard relational techniques. However, it
has been recognized that specialized evaluation and optimization techniques
promise in this context performance improvements that are otherwise unavail-
able. A number of new algorithms for the evaluation of skyline queries (a spe-
cial class of preference queries) have been proposed [3, 5, 12, 15, 26, 31]. Some
of them can be used to evaluate more general preference queries [2, 9]. Also,
algebraic laws that characterize the interaction of winnow with the standard
operators of relational algebra have been formulated [9, 21, 22]. Such laws
provide a foundation for the rewriting of preference queries. For instance,
necessary and sufficient conditions for pushing a selection through winnow are
described in [9]. The algebraic laws cannot be applied unconditionally. In fact,
the preconditions of their applications refer to the validity of certain constraint
formulas.

In this paper, we pursue the line of research from [9] a bit further. We study
semantic optimization of preference queries. Semantic query optimization has
been extensively studied for relational and deductive databases [6]. As a result,
a body of techniques dealing with specific query transformations like join
elimination and introduction, predicate introduction etc. has been developed.
We view semantic query optimization very broadly and classify as semantic
any query optimization technique that makes use of integrity constraints. In
the context of semantic optimization of preference queries, we identify two
fundamental semantic properties: containment of preference relations relative
to integrity constraints and satisfaction of order axioms relative to integrity
constraints. We show that those notions make it possible to formulate semantic
query optimization techniques for preference queries in a uniform way.

We focus on the winnow operator. Despite the presence of specialized evalua-
tion techniques, winnow, being essentially an anti-join, is still quite an expen-
sive operation. We develop optimizing techniques that:

(1) remove redundant occurrences of winnow;

3

(2) coalesce consecutive applications of winnow;
(3) recognize when more efficient evaluation of winnow is possible.

More efficient evaluation of winnow can be achieved, for example, if the given
preference relation is a weak order (a negatively transitive strict partial order).
We show that even when the preference relation is not a weak order (as in
Example 1), it may become a weak order on the relations satisfying certain
integrity constraints. We show a very simple, single-pass algorithm for eval-
uating winnow under those conditions. We also pay attention to the issue of
satisfaction of integrity constraints in the result of applying winnow. In fact,
some integrity constraints may hold in the result of winnow, even though they
do not hold in the relation to which winnow is applied. Combined with known
results about the preservation of integrity constraints by relational algebra
operators [24, 25], our results provide a way for optimizing not only single
occurrences of winnow but also complex preference queries.

As integrity constraints, we consider constraint-generating dependencies [4], a
class generalizing functional dependencies. Constraint-generating dependen-
cies seem particularly well matched with preference queries, since both the
former and the latter are formulated using constraints. We demonstrate that
the problems of containment of preference relations and satisfaction of order
axioms, relative to integrity constraints, can be captured as specific instances
of dependency entailment. Our approach makes it possible to formulate nec-
essary and sufficient conditions for the applicability of the proposed semantic
query optimization techniques as constraint validity problems and precisely
characterize the computational complexity of such problems, partly adopting
some of the results of [4].

The plan of the paper is as follows. In Section 2, we provide background mate-
rial on preference queries and constraint-generating dependencies. In Section 3,
we introduce two basic semantic properties: relative containment and relative
satisfaction of order axioms. In Section 4, we address the issue of eliminat-
ing redundant occurrences of winnow. In Section 5, we study weak orders. In
Section 6, we characterize dependencies holding in the result of winnow. In
Section 7, we consider the computational complexity of the semantic proper-
ties studied in the present paper. We discuss related work in Section 8, and
conclude in Section 9.

2 Basic notions

We are working in the context of the relational model of data. For concreteness,
we consider two infinite domains: D (uninterpreted constants) and Q (rational
numbers). Other domains could be considered as well without influencing most

4

of the results of the paper. We assume that database instances are finite.
Additionally, we have the standard built-in predicates. We refer to relation
attributes using their names or positions.

We define constraints to be quantifier-free formulas over some signature of
built-in operators, interpreted over a fixed domain - in our case D or Q. We
will allow both atomic- and tuple-valued variables in constraints. The notation
t[X] denotes the fragment of a tuple t consisting of the values of the attributes
in the set X.

2.1 Preference relations

Definition 1 Given a relation schema R(A1 · · ·Ak) such that Ui, 1 ≤ i ≤ k,
is the domain (either D or Q) of the attribute Ai, a relation � is a preference
relation over R if it is a subset of (U1 × · · · × Uk)× (U1 × · · · × Uk).

Intuitively,� will be a binary relation between tuples from the same (database)
relation. We say that a tuple t1 dominates a tuple t2 in � if t1 � t2.

Typical properties of the relation � include:

• irreflexivity: ∀x. x 6� x,
• asymmetry: ∀x, y. x � y ⇒ y 6� x,
• transitivity: ∀x, y, z. (x � y ∧ y � z) ⇒ x � z,
• negative transitivity: ∀x, y, z. (x 6� y ∧ y 6� z) ⇒ x 6� z,
• connectivity: ∀x, y. x � y ∨ y � x ∨ x = y.

The relation � is:

• a strict partial order if it is irreflexive and transitive (thus also asymmetric);
• a weak order if it is a negatively transitive strict partial order;
• a total order if it is a connected strict partial order.

At this point, we do not assume any properties of �, although in most appli-
cations it will satisfy at least the properties of strict partial order.

Definition 2 A preference formula (pf) C(t1, t2) is a first-order formula defin-
ing a preference relation �C in the standard sense, namely

t1 �C t2 iff C(t1, t2).

An intrinsic preference formula (ipf) is a preference formula that uses only
built-in predicates.

We will limit our attention to preference relations defined using intrinsic pref-

5

erence formulas. Most preference relations of this form. Moreover, for intrinsic
preference relations testing a pair of tuples for dominance can be entirely done
on the basis of the contents of those tuples; no database queries need to be
evaluated.

Because we consider two specific domains, D and Q, we will have two kinds
of variables, D-variables and Q-variables, and two kinds of atomic formulas:

• equality constraints: x = y, x 6= y, x = c, or x 6= c, where x and y are
D-variables, and c is an uninterpreted constant;

• rational-order constraints: xθy or xθc, where θ ∈ {=, 6=, <,>,≤,≥}, x and
y are Q-variables, and c is a rational number.

Without loss of generality, we will assume that ipfs are in DNF (Disjunctive
Normal Form) and quantifier-free (the theories involving the above domains
admit quantifier elimination). We also assume that atomic formulas are closed
under negation (also satisfied by the above theories). An ipf whose all atomic
formulas are equality (resp. rational-order) constraints will be called an equal-
ity (resp. rational-order) ipf. If both equality and rational-order constraints
are allowed in a formula, the formula will be called equality/rational-order.
Clearly, ipfs are a special case of general constraints [28], and define fixed, al-
though possibly infinite, relations. By using the notation �C for a preference
relation, we assume that there is an underlying preference formula C.

Every preference relation �C generates an indifference relation ∼C : two tuples
t1 and t2 are indifferent (t1 ∼C t2) if neither is preferred to the other one, i.e.,
t1 6�C t2 and t2 6�C t1.

Proposition 1 For every preference relation �C, every relation r and every
tuple t1, t2 ∈ ωC(r), we have t1 = t2 or t1 ∼C t2.

Complex preference relations can be easily defined using Boolean connectives.
Here we define a special operator: prioritized composition. The prioritized
composition �C1 � �C2 has the following intuitive reading: prefer according
to �C2 unless �C1 is applicable.

Definition 3 Consider two preference relations �C1 and �C2 defined over the
same schema R. The prioritized composition �C1,2 = �C1 � �C2 of �C1 and
�C2 is a preference relation over R defined as:

t1 �C1,2 t2 ≡ t1 �C1 t2 ∨ (t1 ∼C1 t2 ∧ t1 �C2 t2).

6

2.2 Winnow

We define now an algebraic operator that picks from a given relation the set
of the most preferred tuples, according to a given preference formula.

Definition 4 If R is a relation schema and C a preference formula defining a
preference relation �C over R, then the winnow operator is written as ωC(R),
and for every instance r of R:

ωC(r) = {t ∈ r | ¬∃t′ ∈ r. t′ �C t}.

A preference query is a relational algebra query containing at least one occur-
rence of the winnow operator.

Example 3 Consider the relation Book(ISBN, V endor, Price) (Example 1).
The preference relation �C1 from this example can be defined using the rational-
order ipf C1:

(i, v, p) �C1 (i′, v′, p′) ≡ i = i′ ∧ p < p′.

The answer to the preference query ωC1(Book) provides for every book the
information about the vendors offering the lowest price for that book. Note
that the preference relation �C1 is a strict partial order.

Example 4 To see another kind of preferences, consider the following pref-
erence relation �C3:

I prefer Warsaw to any other city and prefer any city to Moscow.

This preference relation can be formulated as an equality ipf C3:

x �C3 y ≡ x = ′Warsaw′ ∧ y 6= ′Warsaw′ ∨ x 6= ′Moscow′ ∧ y = ′Moscow′.

2.3 Constraint-generating dependencies

We assume that we are working in the context of a single relation schema R
and all the integrity constraints are over that schema. The set of all instances
of R satisfying a set of integrity constraints F is denoted as Sat(F). We say
that F entails an integrity constraint f , written F ` f , if every instance
satisfying F also satisfies f .

Remember that constraints are arbitrary quantifier-free formulas over some
constraint theory - here D or Q.

7

Definition 5 [4] A constraint-generating dependency (CGD) can be expressed
a formula of the following form:

∀t1. . . .∀tk. R(t1) ∧ · · · ∧R(tk) ∧ γ(t1, . . . tk) ⇒ γ′(t1, . . . tk)

where γ(t1, . . . tk) and γ′(t1, . . . tk) are constraints. Such a dependency is called
a k-dependency.

CGDs are equivalent to denial constraints. Functional dependencies (FDs) are
2-CGDs, because a functional dependency (FD) f ≡ X → Y , where X and Y
are sets of attributes of R, can be written down as the following logic formula:

∀t1.∀t2. R(t1) ∧R(t2) ∧ t1[X] = t2[X] ⇒ t1[Y] = t2[Y].

Note that the set of attributes X in X → Y may be empty, meaning that
each attribute in Y can assume only a single value.

Example 5 We give here further examples of CGDs. Consider the relation
Emp with attributes Name, Salary, and Manager, with Name being the primary
key. The constraint that no employee can have a salary greater that that of her
manager is a CGD:

∀n, s,m, s′,m′. Emp(n, s,m) ∧ Emp(m, s′,m′) ⇒ s ≤ s′.

Similarly, single-tuple constraints (CHECK constraints in SQL2) are a special
case of CGDs. For example, the constraint that no employee can have a salary
over $200000 is expressed as:

∀n, s,m. Emp(n, s,m) ⇒ s ≤ 200000.

The paper [4] contains an effective reduction using symmetrization from the
entailment of CGDs to the validity of ∀-formulas (or, equivalently, to the
unsatisfiability of quantifier-free formulas) in the underlying constraint theory.
This reduction is descibed in Section 7. A similar construction using symbol
mappings is presented in [34].

3 Properties relative to integrity constraints

We define here two properties fundamental to semantic query optimization
of preference queries: containment of preference relations and satisfaction of
order axioms.

Definition 6 A preference relation �C1 over a schema R is contained in a
preference relation �C2 over the same schema relative to a set of integrity

8

constraints F , written as �C1 ⊆F �C2 if

∀r ∈ Sat(F). ∀t1, t2 ∈ r. t1 �C1 t2 ⇒ t1 �C2 t2.

Clearly, �C1 ⊆F �C2 iff F ` dC1,C2
0 , where

dC1,C2
0 : ∀t1, t2. R(t1) ∧R(t2) ∧ t1 �C1 t2 ⇒ t1 �C2 t2.

Satisfaction of order axioms relative to integrity constraints is defined similarly
– by relativizing the universal quantifiers in the axioms. Since in this paper
we are interested in strict partial and weak orders, we define the following.

Definition 7 A preference �C over a schema R is a strict partial order rel-
ative to a set of integrity constraints F if:

∀r ∈ Sat(F). ∀t ∈ r. t 6�C t

∀r ∈ Sat(F). ∀t1, t2, t3 ∈ r. t1 �C t2 ∧ t2 �C t3 ⇒ t1 �C t3.

Definition 8 A preference �C over a schema R is a weak order relative to
a set of integrity constraints F if it is a strict partial order relative to F and

∀r ∈ Sat(F). ∀t1, t2, t3 ∈ r. t1 6�C t2 ∧ t2 6�C t3 ⇒ t1 6�C t3.

Again, it is clear that the above properties can be expressed in terms of the
entailment of CGDs.

4 Eliminating redundant occurrences of winnow

We consider here two situations in which an occurrence of winnow in a prefer-
ence query may be eliminated. The first case is that when a single application
of winnow does not remove any tuples, and is thus redundant. The second
case is more subtle: the interaction between two consecutive applications of
winnow is such that one can be eliminated.

Given an instance r of R, the operator ωC is redundant if ωC(r) = r. If we
consider the class of all instances of R, then such an operator is redundant for
every instance iff �C is an empty relation. The latter holds iff C is unsatisfi-
able. However, we are interested only in the instances satisfying a given set of
integrity constraints.

9

Definition 9 Given a set of integrity constraints F , the operator ωC is re-
dundant relative to a set of integrity constraints F if ∀r ∈ Sat(F), ωC(r) = r.

Theorem 1 ωC is redundant relative to a set of FDs F iff �C ⊆F �False

where

t1 �False t2 ≡ False.

Proof. Assume t1, t2 ∈ r for some r ∈ Sat(F) and t1 �C t2. Then t2 6∈ ωC(r).
In the other direction, assume that for some r ∈ Sat(F), ωC(r) ⊂ r. Thus,
there must be t1, t2 ∈ r such that t1 �C t2.

Clearly, ωC is redundant relative to F iff F entails the following CGD:

dC
1 : ∀t1, t2. R(t1) ∧R(t2) ⇒ t1 6�C t2.

The CGD dC
1 always holds in the result of winnow ωC(R) and simply says that

all the tuples in this result are mutually indifferent.

Example 6 Consider Example 3 in which the FD ISBN → Price holds. ωC1

is redundant relative to ISBN → Price because this dependency entails (is,
in fact, equivalent to) the dependency

∀i1, v1, p1, i2, v2, p2. Book(i1, v1, p1) ∧Book(i2, v2, p2) ⇒ i1 6= i2 ∨ p1 ≥ p2.

The second case where an occurrence of winnow can be eliminated is as follows.

Theorem 2 Assume F is a set of integrity constraints over a schema R. If
�C1 and �C2 are preference relations over R such that �C1 and �C2 are strict
partial orders relative to F and �C1 ⊆F �C2, then for all instances r ∈ Sat(F):

ωC1(ωC2(r)) = ωC2(ωC1(r)) = ωC2(r).

Proof. Theorem 6.1 in [9] is a similar result which does not, however, relativize
the properties of the given preference relations to the set of instances satisfying
the given integrity constraints. The proof of that result can be easily adapted
here.

Note that in the case of strict partial orders, Theorem 2 implies one direction
of Theorem 1.

10

5 Weak orders

We have defined weak orders as negatively transitive strict partial orders.
Equivalently, they can be defined as strict partial orders for which the indif-
ference relation is transitive. Intuitively, a weak order consists of a number
(perhaps infinite) of linearly ordered layers. In each layer, all the elements are
mutually indifferent and they are all above all the elements in lower layers.

Example 7 In the preference relation �C1 in Example 3, the first, second
and third tuples are indifferent with the fourth and fifth tuples. However, the
first tuple is preferred to the second, violating the transitivity of indifference.
Therefore, the preference relation �C1 is not a weak order.

Example 8 A preference relation �Cf
, defined as

x �Cf
y ≡ f(x) > f(y)

for some real-valued function f , is a weak order but not necessarily a total
order.

5.1 Computing winnow

Various algorithms for evaluating winnow have been proposed in the literature.
We discuss here those that have a good blocking behavior and thus are capable
of efficiently processing very large data sets.

We first review BNL (Figure 3), a basic algorithm for evaluating winnow, and
then show that for preference relations that are weak orders a much simpler
and more efficient algorithm is possible. BNL was proposed in [5] in the context
of skyline queries. However, [5] also noted that the algorithm requires only the
properties of strict partial orders. BNL uses a fixed amount of main memory (a
window). It also needs a temporary table for the tuples whose status cannot be
determined in the current pass, because the available amount of main memory
is limited.

BNL keeps in the window the best tuples discovered so far (some of such
tuples may also be in the temporary table). All the tuples in the window are
mutually indifferent and they all need to be kept, since each may turn out
to dominate some input tuple arriving later. For weak orders, however, if a
tuple t1 dominates t2, then any tuple indifferent to t1 will also dominate t2.
In this case, indifference is an equivalence relation, and thus it is enough to
keep in main memory only a single tuple top from the top equivalence class. In
addition, one has to keep track of all members of that class (called the current

11

(1) clear the window W and the temporary table F ;

(2) make r the input;

(3) repeat the following until the input is empty:

(a) for every tuple t in the input:
• t is dominated by a tuple in W ⇒ ignore t,
• t dominates some tuples in W ⇒ eliminate the dom-

inated tuples and insert t into W ,
• if t and all tuples in W are mutually indifferent ⇒

insert t into W (if there is room), otherwise add t
to F ;

(b) output the tuples from W that were added there when F
was empty,

(c) make F the input, clear the temporary table.

Figure 3. BNL: Blocked Nested Loops

bucket B), since they may have to be returned as the result of the winnow.
Those ideas are behind a new algorithm WWO (Winnow for Weak Orders),
shown in Figure 4.

(1) top := the first input tuple

(2) B := {top}

(3) for every subsequent tuple t in the input:

• t is dominated by top ⇒ ignore t,
• t dominates top ⇒ top := t; B := {t}
• t and top are indifferent ⇒ B := B ∪ {t}

(4) output B

Figure 4. WWO: Winnow for Weak Orders

It is clear that WWO requires only a single pass over the input. It uses addi-
tional memory (whose size is at most equal to the size of the input) to keep
track of the current bucket. However, this memory is only written and read
once, the latter at the end of the execution of the algorithm. Clearly, for weak
orders WWO is considerably more efficient than BNL. Note that for weak
orders BNL does not simply reduce to WWO: BNL keeps the mutually in-
different tuples from the currently top layer in the main memory window (or
in the temporary table) and compares all of them with the input tuple. The
latter is clearly superfluous for preference relations that are weak orders. Note
also that if additional memory is not available, WWO can execute in a small,
fixed amount of memory by using two passes over the input: in the first, a
top tuple is identified, and in the second, all the tuples indifferent to it are

12

selected.

In [12] we proposed SFS, a more efficient variant of BNL for skyline queries,
in which a presorting step is used. Because sorting may require more than one
pass over the input, that approach will also be less efficient than WWO for
weak orders (unless the input is already sorted).

Even if a preference relation �C is not a weak order in general, it may be a
weak order relative to a class of integrity constraints F . In those cases, WWO
is still applicable. Note that in such a case the original definition of �C can
still be used for tuple comparison.

Example 9 Consider Example 3, this time with the 0-ary FD ∅ ⇒ ISBN .
(Such a dependency might hold, for example, in a relation resulting from the
selection σISBN=c for some constant c.) We already know that the preference
relation �C1 is a strict partial order. Being a weak order relative to this FD
is captured by the following CGD:

∀i1, v1, p1, i2, v2, p2, i3, v3, p3.

Book(i1, v1, p1) ∧Book(i2, v2, p2) ∧Book(i3, v3, p3) ∧ φ1 ⇒ φ2

where
φ1 : (i1 6= i2 ∨ p1 ≥ p2) ∧ (i2 6= i3 ∨ p2 ≥ p3)

and
φ2 : (i1 6= i3 ∨ p1 ≥ p3).

We show now that this CGD is entailed by the FD ∅ ⇒ ISBN . Assume this
is not the case. Then there is an instance of the relation Book consisting of
tuples (i1, v1, p1), (i2, v2, p2), and (i3, v3, p3) such φ1 is satisfied but φ2 is not.
This instance also satisfies the FD, thus i1 = i2 = i3. We consider the formula
φ1 ∧ ¬φ2 which can be simplified to

p1 ≥ p2 ∧ p2 ≥ p3 ∧ p1 < p3.

The last formula is unsatisfiable.

5.2 Collapsing winnow

We show here that for weak orders consecutive applications of winnow can
be collapsed to a single one, using prioritized composition. In contrast with
Theorem 2, here we do not impose any conditions on the relationship between
the preference relations involved. Recall that

dC
1 : ∀t1, t2. R(t1) ∧R(t2) ⇒ t1 6�C t2.

13

Theorem 3 Assume F is a set of integrity constraints over a schema R. If
�C1 and �C2 are preference relations over R such that �C1 is a weak order
relative to F , then for all instances r ∈ Sat(F):

ωC1�C2(r) = ωC2(ωC1(r)).

Additionally, if �C2 is a weak order relative to F ∪ dC1
1 , then also �C1�C2 is a

weak order relative to F .

Proof. Let r ∈ Sat(F). Assume t ∈ ωC2(ωC1(r)) and t 6∈ ωC1�C2(r). Then
there exists s ∈ r such that s �C1��C2

t. If s �C1 t, then t 6∈ ωC1(r) and
t 6∈ ωC2(ωC1(r)). Otherwise, s ∼C1 t and s �C2 t. If s ∈ ωC1(r), then t 6∈
ωC2(ωC1(r)). If s 6∈ ωC1(r), then for some s′ ∈ r, s′ �C1 s. But then s′ �C1 t
because �C1 is a weak order, and consequently t 6∈ ωC1(r).

In the other direction, assume t ∈ ωC1�C2(r) and t 6∈ ωC2(ωC1(r)). If t 6∈ ωC1(r),
then for some s ∈ r, s �C1 t. Thus, s �C1�C2 t and t 6∈ ωC1�C2(r). If t ∈ ωC1(r),
then for some s ∈ ωC1(r), s ∼C1 t and s �C2 t. Thus again, s �C1�C2 t.

The second part of the theorem can be proved in the same way as Proposition
4.6 in [9]. We can require that �C2 be a weak order relative to F ∪ dC1

1 , not
just to F , because the dependency dC1

1 is guaranteed to hold in ωC1(r).

We show now how Theorem 3 can be used in query optimization. Consider the
choice between WWO and BNL in the context of Theorem 3. If both �C1 and
�C2 are weak orders (relative to F), then it is better to evaluate ωC1�C2(r)
than ωC2(ωC1(r)) because the former does not require creating intermediate
results. In both cases WWO can be used. If �C2 is a strict partial order but not
necessarily a weak order (relative to F), then in both cases we will have to use
BNL (C1 �C2 is a strict partial order [11]), so again ωC1�C2(r) wins. However,
if ωC1(r) is small, it would be better to use WWO to compute r1 = ωC1(r)
and then compute ωC2(r1) using BNL.

Consider now the presence of views. If ωC1(R) is a non-materialized view, then
the query ωC2(ωC1(R)) can be first rewritten as ωC1�C2(R) and then evaluated
without the need for the nested evaluation of ωC1(R). On the other hand, if
ωC1(R) is a materialized view V , then it can be used to answer the query
ωC1�C2(R) by computing ωC2(V).

5.3 Further properties

The list of preference query properties that hold relative to a set of integrity
constraints does not end with those formulated above. There are other al-
gebraic properties that hold conditionally [9]. Such properties can often be

14

formulated in a more general form using CGDs.

For example, consider the commutativity of winnow and selection. [9] shows
the following result:

Proposition 2 Given a relation schema R, a selection condition C1 over R
and a preference formula C2 over R, if the formula

∀t1, t2[(C1(t2) ∧ C2(t1, t2)) ⇒ C1(t1)]

is valid, then for all instances r of R:

σC1(ωC2(r)) = ωC2(σC1(r)).

This result can be generalized to hold relative to a set of integrity constraints.

Theorem 4 Given a relation schema R, a selection condition C1 over R, a
preference formula C2 over R, and a set of integrity constraints F over R, if
F ` dC1,C2

2 where

dC1,C2
2 : ∀t1, t2. R(t1) ∧R(t2) ∧ C1(t2) ∧ C2(t1, t2) ⇒ C1(t1),

then for all instances r ∈ Sat(F):

σC1(ωC2(r)) = ωC2(σC1(r)).

6 Propagation of integrity constraints

How do we know whether a specific CGD holds in a relation? If this is a
database relation, then the CGD may be enforced by the DBMS or the ap-
plication. If the relation is computed, then we need to determine if the CGD
is preserved in the expression defining the relation. [24, 25] characterize cases
where functional and join dependencies hold in the results of relational algebra
expressions.

We already know that the CGD dC
1 holds in the result of the winnow ωC .

Winnow returns a subset of a given relation, thus it preserves all the CGDs
holding in the relation. The following theorem characterizes all the dependen-
cies holding in the result of winnow.

Theorem 5 Assume F is a set of CGDs, f a CGD over a schema R, and
�C an irreflexive preference relation over R. Then F ∪ dC

1 ` f iff for every
r ∈ Sat(F), ωC(r) ∈ Sat(f).

15

Proof. Assume it is not the case that F ∪ dC
1 ` f . Thus for some instance

r0, r0 ∈ Sat(F ∪ dC
1) but r0 6∈ Sat(f). Then for all t1, t2 ∈ r0, ti ∼C tj, and

thus r0 = ωC(r0). Therefore, ωC(r0) 6∈ Sat(f). In the other direction, assume
for some r0 ∈ Sat(F), ωC(r0) 6∈ Sat(f). Thus r1 = ωC(r0) is the instance
satisfying F ∪ dC

1 and violating f , which provides a counterexample to the
entailment of f by F ∪ dC

1 .

Example 10 Consider Example 3. Thus, the FD ISBN → Price holds in
the result of ωC1, because it is entailed by the CGD dC1

1

dC1
1 : ∀i1, v1, p1, i2, v2, p2, i3, v3, p3.

Book(i1, v1, p1) ∧Book(i2, v2, p2) ⇒ (i1 6= i2 ∨ p1 ≥ p2)

even though it might not hold in the input relation Book.

7 Computational complexity

Here we address the computational issues involved in checking the semantic
properties essential for the semantic optimization of preference queries. We
have shown that such properties can be formulated in terms of the entailment
of CGDs. We assume that we are dealing with k-dependencies for some fixed
k ≥ 1. For example, for FDs k = 2. Notice also that all the interesting prop-
erties studied in this paper, e.g., containment or weak order, can be expressed
as k-dependencies for k ≤ 3.

We assume here that the CGDs under consideration are clausal: the constraint
in the body is a conjunction of atomic constraints and the head consists of
a disjunction of atomic constraints. All the dependencies that we have found
useful in the context of semantic optimization of preference queries are clausal.

7.1 Upper bounds

[4] shows a reduction from the entailment of CGDs to the validity of universal
formulas in the constraint theory. The basic idea is simple: the entailment of
k-dependencies needs to be considered over relation instances of cardinality at
most k, and each such instance can be represented by k tuple variables. Each
dependency f is mapped to a constraint formula cfk(f). Then the entailment
of a CGD f0 by a set of CGDs F is expressed as the validity of the formula:

∀∗.(
∧

f∈F

cfk(f)) ⇒ cfk(f0),

16

or equivalently, as the unsatisfiability of a quantifier-free CNF formula ob-
tained from its negation.

The following example illustrates the construction of cfk(f).

Example 11 Consider the dependency:

dC1,C2
0 : ∀t1, t2. R(t1) ∧R(t2) ∧ t1 �C1 t2 ⇒ t1 �C2 t2.

We have that cf2(d
C1,C2
0) is equal to

[C1(t1, t1) ⇒ C2(t1, t1)] ∧ [C1(t2, t2) ⇒ C2(t2, t2)]

∧[C1(t1, t2) ⇒ C2(t1, t2)] ∧ [C1(t2, t1) ⇒ C2(t2, t1)]

which for irreflexive �C1 is equivalent to

[C1(t1, t2) ⇒ C2(t1, t2)] ∧ [C1(t2, t1) ⇒ C2(t2, t1)].

For a fixed k, the size of cfk(f) is linear in the size of f . Thus we can easily
characterize the complexity of dependency entailment.

Theorem 6 Assume F is a set of k-CGDs for a fixed k ≥ 1 over a con-
straint theory of equality/rational-order constraints, and preference relations
are defined by ipfs over the same constraint theory. Checking containment,
dependency propagation, and weak or strict partial order property, relative to
F , are all in co-NP.

Proof. Satisfiability of conjunctions of atomic constraints in this constraint
theory can be checked in polynomial time [17]. Thus satisfiability of quantifier-
free formulas in this constraint theory is in NP.

What remains now to be shown is that (1) the intractability is, in general,
unavoidable; and (2) special tractable cases exist.

7.2 Lower bounds

[4] show a number of co-NP-completeness results for the entailment problem
restricted to special classes of CGDs. To adopt those results to the context
of the semantic properties of preference queries studied in the present paper,
we need to show that the hardest (co-NP-hard) cases of the entailment can
be equivalently expressed in terms of such properties. Such an approach is
adopted in the proofs of Theorems 7 and 8 to characterize the complexity of
testing redundancy of winnow and propagation of integrity constraints. On

17

the other hand, in Theorem 9, a new reduction is introduced for the problem
of testing the (relative) weak order property.

Theorem 7 Checking whether ωC is redundant relative to F , where F is a
set of 2-CGDs and C is a rational-order ipf defining a strict partial order, is
co-NP-hard.

Proof. We adapt the proof of Theorem 4.3 in [4]. The reduction there is from
SET SPLITTING but the same reduction applies to MONOTONE 3-SAT.
Assume we are given a propositional formula φ with n variables p1, . . . , pn,
consisting of l positive clauses of the form ch ≡ pi ∨ pj ∨ pm, h = 1, . . . , l,
and k negative clauses ch ≡ ¬pi ∨ ¬pj ∨ ¬pm, h = 1, . . . , k. We consider a
relation R with n+ k + 1 attributes. The truth of a propositional variable pi

is represented by equality on the attribute i. We build the set F of 2-CGDs
in stages. A positive clause pi ∨ pj ∨ pm is mapped to a CGD

∀t1, t2. R(t1) ∧R(t2) ∧ t1[i] 6= t2[i] ∧ t1[j] 6= t2[j] ⇒ t1[m] = t2[m].

The construction for a negative clause ch ≡ ¬pi ∨ ¬pj ∨ ¬pm is more compli-
cated. We construct the following FDs:

∀t1, t2. R(t1) ∧R(t2) ∧ t1[i] = t2[i] ∧ t1[n+ h] = t2[n+ h]

⇒ t1[n+ k + 1] = t2[n+ k + 1],

∀t1, t2. R(t1) ∧R(t2) ∧ t1[j] = t2[j] ∧ t1[m] = t2[m] ⇒ t1[n+ h] = t2[n+ h].

Finally, we define the preference relation �C :

t1 �C t2 ≡ t1[n+ k + 1] > t2[n+ k + 1].

Thus the CGD dC
1 is

∀t1, t2. R(t1) ∧R(t2) ⇒ t1[n+ k + 1] ≤ t2[n+ k + 1].

Along the same lines as in the proof in [4], we can show that φ is unsatisfiable
iff F ` dC

1 .

Theorem 8 Checking whether F ∪ dC
1 ` f , where F is a set of 2-CGDs and

C is a rational-order ipf defining a strict partial order, is co-NP-hard.

Proof. We modify the proof of Theorem 7. We pick one positive clause pi ∨
pj ∨ pm. It is still mapped to a CGD equivalent to the previous one:

∀t1, t2. R(t1) ∧R(t2) ⇒ t1[i] = t2[i] ∨ t1[j] = t2[j] ∨ t1[m] = t2[m]

but this CGD is now obtained as the special dependency dC
1 for �C defined

18

as follows

t1 �C t2 ≡ t1[i] 6= t2[i] ∧ t1[j] 6= t2[j] ∧ t1[m] > t2[m].

The CGD f is:

f : ∀t1, t2. R(t1) ∧R(t2) ⇒ t1[n+ k + 1] = t2[n+ k + 1].

The construction for the remaining positive clauses, as well as all the negative
clauses, remains the same.

Theorem 9 Checking whether �C is a weak order relative to F , where F is
a set of 3-CGDs and C is an equality ipf defining a strict partial order, is
co-NP-hard.

Proof. Reduction from 3-colorability. Assume we are given a graph G = (V,E)
where V = {v1, . . . , vn}. We construct the set F consisting of the following
CGDs:

∀t. R(t) ⇒ t[i] = 0 ∨ t[i] = 1,

∀t. R(t) ⇒ t[n+ 1] = 1 ∨ t[n+ 1] = 2 ∨ t[n+ 1] = 3,

∀t1, t2, t3. R(t1) ∧R(t2) ∧R(t3) ∧ t1[n+ 1] 6= t2[n+ 1]

∧t1[n+ 1] 6= t3[n+ 1] ∧ t2[n+ 1] 6= t3[n+ 1] ⇒ γ(t1[i], t2[i], t3[i]),

where i = 1, . . . n and γ(x, y, z) is a formula saying that exactly one of x,
y and z is equal to 1. The last dependency is not clausal but can easily be
represented as a set of clausal CGDs. Also, for every edge (vi, vj) ∈ E, we
include the following CGD:

∀t1, t2, t3. R(t1) ∧R(t2) ∧R(t3) ∧ t1[n+ 1] 6= t2[n+ 1] ∧ t1[n+ 1] 6= t3[n+ 1]

∧t2[n+ 1] 6= t3[n+ 1] ⇒ t1[i] 6= t1[j] ∨ t2[i] 6= t2[j] ∨ t3[i] 6= t3[j].

Finally, we define the strict partial order �C as follows:

t �C t′ ≡ t[n+ 1] = 1 ∧ t′[n+ 1] = 2.

Assume now that G is 3-colorable. We construct an instance r = {t1, t2, t3}
as follows. We will use tk, k = 1, . . . , 3, to represent the vertices colored with
the color k. We make tk[i] = 1 if vi is colored with k; tk[i] = 0 otherwise. We
make t1[n+1] = 1, t2[n+1] = 2 and t3[n+1] = 3. By construction, r satisfies
F but �C on r is not a weak order. Therefore, �C is not a weak order relative
to F .

19

In the other direction, take an instance r = {t1, t2, t3} satisfying F but such
that �C on r is not a weak order. Then {t1[n+1], t2[n+1], t3[n+1]} = {1, 2, 3}.
Then r encodes a 3-coloring for G.

7.3 Tractable cases

We obtain our first tractability results by identifying a new case of PTIME en-
tailment. The case involves the entailment of a CGD over equality constraints
by a set of FDs. This case was not studied in [4]. Note that it is more gen-
eral than the standard FD entailment because the CGD may contain general
equality constraints.

Theorem 10 Let F = {f1, . . . , fn} be a set of FDs and f0 a clausal k-CGD
over equality constraints. Then checking whether F |= f0 is in PTIME.

Proof. The dependency f0 is of the form

∀t1. . . .∀tk. [R(t1) ∧ · · · ∧R(tk) ∧ γ(t1, . . . tk)] ⇒ γ′(t1, . . . tk).

As explained earlier in this section, the entailment F |= f reduces to the
validity of the formula

∀t1, . . . , tk.(
∧

f∈F

cfk(f)) ⇒ cfk(f0),

which is the same as the unsatisfiability of the formula

(
∧

f∈F

cfk(f)) ∧ ¬cfk(f0).

We note that for any fd f ≡ X → Y , cfk(f) is a conjunction E of implications∧
i,j=1,...,k

ti[X] = tj[X] ⇒ ti[Y] = tj[Y].

On the other hand, ¬cfk(f0) is a disjunction of conjunctions S1, . . . , Sm of
atomic equality constraints. Each S1, i = 1, . . . ,m, is of the form φ(ti1 , . . . , tik)∧
ψ(ti1 , . . . , tik) where i1, . . . , ik ∈ {1, . . . , k}, φ(ti1 , . . . , tik) is a conjunction of
equalities, and ψ(ti1 , . . . , tik) is a conjunction of inequalities. Both of those
conjunctions can be viewed as sets of atomic constraints.

To determine the satisfiability of the formula E ∧ (S1 ∨ · · · ∨ Sm), we need to
check whether E ∧ Si is satisfiable for any i = 1, . . . ,m. This can be done by
essentially propositional Horn reasoning. We encode each equality and inequal-
ity by a different propositional variable and add Horn clauses representing the

20

transitivity, symmetry and reflexivity of equality. Using those clauses together
with the implications in cfk(f) for f ∈ F , we then derive all the equalities
implied by those in Si and check whether any of them violates reflexivity or
conflicts with an inequality in Si. The satisfiability of E ∧ Si can thus be
determined in polynomial time.

Corollary 1 Given a set of FDs F and equality ipfs C1 (in DNF) and C2 (in
CNF), the following properties can be checked in PTIME:

(1) the containment of �C1 in �C2 relative to F , and
(2) �C1 being a weak or strict partial order relative to F .

The requirement that the formulas C1 and C2 be in an appropriate normal
form guarantees that the dependencies dC1,C2

0 and dC1
1 are representable using

polynomially many clausal CGDs.

We obtain here further tractable cases of the semantic properties studied in
the present paper by adapting the results of [4]. That paper identifies several
classes of CGDs for which the entailment problem is tractable.

The restrictions we impose on CGDs and preference formulas may be of the
following kinds:

• the atomic constraints should be typed;
• the number of atomic constraints should be bounded;
• the width and the span of preference formulas, defined below, should be

restricted.

Definition 10 A constraint formula C(t1, . . . , tn) over tuple variables t1, . . . , tn
is typed if all its atomic subformulas are of the form ti[A]θtj[A] or ti[A]θc,
where A is an attribute, c a constant, and θ ∈ {=, 6=, <,>,≤,≥}. A CGD is
typed if all its constraints are typed.

The size of a preference formula C (over a relation R) in DNF is characterized
by two parameters: width(C) – the number of disjuncts in C, and span(C)
– the maximum number of conjuncts in a disjunct of C. Namely, if C =
D1∨· · ·∨Dm, and each Di = Ci,1∧· · ·Ci,ki

, then width(C) = m and span(C) =
max{k1, . . . , km}.

Consider first the containment problem. To check whether �C1 ⊆F �C2 , we
need to determine whether F ` dC1,C2

0 where

dC1,C2
0 : ∀t1, t2. R(t1) ∧R(t2) ∧ t1 �C1 t2 ⇒ t1 �C2 t2.

To obtain tractability we need to impose simultaneous restrictions on F , �C1 ,
and �C2 .

21

Theorem 11 Let F be a set of typed clausal 2-CGDs with two atomic con-
straints over a schema R, and C1 and C2 typed preference formulas over the
same schema and the same constraint theory (either equality or rational or-
der). Moreover, none of F , C1, and C2 contains constants. Then

• checking whether �C1 ⊆F �C2 can be done in PTIME if span(C1) ≤ 1 and
width(C2) ≤ 1, and

• checking whether �C1 ⊆F �False can be done in PTIME if span(C1) ≤ 2.

Note that, for example, unary FDs are typed 2-CGDs with two atomic equality
constraints.

Consider now the problem of propagating integrity constraints.

Theorem 12 Let F be a set of clausal k-CGDs, f a clausal k-CGD and C a
preference formula over the same schema, and none of F , f , and C contains
constants. Then checking whether F ∪ dC

1 ` f can be done in PTIME if:

• F , f , and ¬C have at most one atomic constraint each, or
• k = 2, and F , f and ¬C are typed and contain each at most two atomic

constraints over the same constraint theory (either equality or rational or-
der).

The results of [4] cannot be applied to identify tractable cases of the weak order
or the strict partial order property, because those properties are formulated
using 3-CGDs with three or more atomic constraints. Such CGDs do not fall
into any of the tractable classes of [4].

8 Related work

The basic reference for semantic query optimization is [6]. The most com-
mon techniques are: join elimination/introduction, predicate elimination and
introduction, and detecting an empty answer set. [7] discusses the implemen-
tation of predicate introduction and join elimination in an industrial query
optimizer. Semantic query optimization techniques for relational queries are
studied in [34] in the context of denial and referential constraints, and in [30]
in the context of constraint tuple-generating dependencies (a generalization
of CGDs and classical relational dependencies). FDs are used for reasoning
about sort orders in [32].

Two different approaches to preference queries have been pursued in the liter-
ature: qualitative and quantitative. In the qualitative approach, represented by
[29, 20, 27, 5, 16, 8, 9, 19, 21, 23], the preferences between tuples in the answer
to a query are specified directly, typically using binary preference relations. In

22

the quantitative approach, as represented by [1, 18], preferences are specified
indirectly using scoring functions that associate a numeric score with every
tuple of the query answer. Then a tuple t1 is preferred to a tuple t2 iff the score
of t1 is higher than the score of t2. The qualitative approach is strictly more
general than the quantitative one, since one can define preference relations in
terms of scoring functions However, not every intuitively plausible preference
relation can be captured by scoring functions.

Example 12 There is no scoring function that captures the preference rela-
tion described in Example 1. Since there is no preference defined between any
of the first three tuples and the fourth one, the score of the fourth tuple should
be equal to all of the scores of the first three tuples. But this implies that the
scores of the first three tuples are the same, which is not possible since the
second tuple is preferred to the first one which in turn is preferred to the third
one.

Example 13 Another common example of a preference relation that is not
representable using a utility function is the threshold of detectable difference
relation �t:

x �t y ≡ x ≥ y + c

where c is the threshold value (c > 0).

This lack of expressiveness of the quantitative approach is well known in utility
theory [14, 13]. The importance of weak orders in this context comes from
the fact that only weak orders can be represented using real-valued scoring
functions (and for countable domains this is also a sufficient condition for the
existence of such a representation [13]). However, even if a utility function is
known to exist, its definition may be non-explicit [13] and thus unusable in
the context of database queries. In the present paper we do not assume that
preference relations are weak orders. We only characterize a condition under
which preference relations become weak orders relative to a set of integrity
constraints. In such cases, we can exploit the benefits of a preference relation
being a (relative) weak order, for example the possibility of using WWO for
computing winnow, without a need to construct a specific utility function
representing the preference relation.

Algebraic optimization of preference queries is discussed in the papers [9, 21,
22].

9 Conclusions and further work

We have presented several novel techniques for semantic optimization of pref-
erence queries, focusing on the winnow operator. We characterized the neces-

23

sary and sufficient conditions for the applications of those techniques in terms
of the entailment of constraint-generating dependencies. (This idea was sug-
gested but not fully developed in [10].) As a consequence, we were able to
leverage some of the computational complexity results from [4]. Moreover, we
proved here several new complexity results: Theorems 9 and 10. Theorem 3
is also completely new. Other results are reformulations of those presented in
[10].

The simplicity of our results attests to the power of logical formulation of
preference relations. However, our results are applicable not only to the orig-
inal logical framework of [8, 9], but also to preference queries defined using
preference constructors [19, 23] and skyline queries [5, 12, 26, 31] because such
queries can be expressed using preference formulas.

The ideas presented in this paper in the context of winnow can be adapted
to other preference-related operators. For example, ranking [9] associates with
each tuple in a relation its rank. The best tuples (computed by winnow) have
rank 1, the second-best tuples have rank 2, etc. The algorithm WWO can be
extended to compute ranking instead of winnow, and thus the computation
of ranking will also benefit if the given preference relation is a weak order
relative to the given integrity constraints.

Further work can address, for example, the following issues:

• identifying other semantic optimization techniques for preference queries,
• expanding the class of integrity constraints by considering, e.g., tuple-generating

dependencies and referential integrity constraints,
• deriving further tractable cases of (relative) containment and satisfaction of

order axioms,
• studying the preservation of general constraint-generating dependencies by

relation algebra operators and expressions ([25] consider this problem for
functional and join dependencies);

• identifying weaker but easier to check sufficient conditions for the applica-
tion of our techniques.

References

[1] R. Agrawal and E. L. Wimmers. A Framework for Expressing and Com-
bining Preferences. In ACM SIGMOD International Conference on Man-
agement of Data, pages 297–306, 2000.

[2] W-T. Balke and U. Güntzer. Multi-objective Query Processing for
Database Systems. In International Conference on Very Large Data Bases
(VLDB), pages 936–947, 2004.

[3] W-T. Balke, U. Güntzer, and J. X. Zhang. Efficient Distributed Skylining

24

for Web Information Systems. In International Conference on Extending
Database Technology (EDBT), pages 256–273, 2004.

[4] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-Generating De-
pendencies. Journal of Computer and System Sciences, 59:94–115, 1999.
Preliminary version in ICDT’95.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In
IEEE International Conference on Data Engineering (ICDE), pages 421–
430, 2001.

[6] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-Based Approach to
Semantic Query Optimization. ACM Transactions on Database Systems,
15(2):162–207, 1990.

[7] Q. Cheng, J. Gryz, F. Koo, C. Leung, L. Liu, X. Qian, and B. Schiefer.
Implementation of Two Semantic Query Optimization Techniques in DB2
Universal Database. In International Conference on Very Large Data
Bases (VLDB), 1999.

[8] J. Chomicki. Querying with Intrinsic Preferences. In International
Conference on Extending Database Technology (EDBT), pages 34–51.
Springer-Verlag, LNCS 2287, 2002.

[9] J. Chomicki. Preference Formulas in Relational Queries. ACM Transac-
tions on Database Systems, 28(4):427–466, December 2003.

[10] J. Chomicki. Semantic Optimization of Preference Queries. In Interna-
tional Symposium on Constraint Databases, pages 133–148, Paris, France,
June 2004. Springer-Verlag, LNCS 3074.

[11] J. Chomicki. Iterative Modification and Incremental Evaluation of Prefer-
ence Queries. In International Symposium on Foundations of Information
and Knowledge Systems (FOIKS). Springer, 2006. To appear.

[12] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Presorting.
In IEEE International Conference on Data Engineering (ICDE), 2003.
Poster.

[13] P. C. Fishburn. Utility Theory for Decision Making. Wiley & Sons, 1970.
[14] P. C. Fishburn. Preference Structures and their Numerical Representa-

tions. Theoretical Computer Science, 217:359–383, 1999.
[15] P. Godfrey, R. Shipley, and J. Gryz. Maximal Vector Computation in

Large Data Sets. In International Conference on Very Large Data Bases
(VLDB), pages 229–240, 2005.

[16] K. Govindarajan, B. Jayaraman, and S. Mantha. Preference Queries in
Deductive Databases. New Generation Computing, 19(1):57–86, 2000.

[17] S. Guo, W. Sun, and M.A. Weiss. Solving Satisfiability and Implication
Problems in Database Systems. ACM Transactions on Database Systems,
21(2):270–293, 1996.

[18] V. Hristidis and Y. Papakonstantinou. Algorithms and Applications
for Answering Ranked Queries using Ranked Views. VLDB Journal,
13(1):49–70, 2004.

[19] W. Kießling. Foundations of Preferences in Database Systems. In Inter-
national Conference on Very Large Data Bases (VLDB), pages 311–322,

25

2002.
[20] W. Kießling and U. Güntzer. Database Reasoning – A Deductive Frame-

work for Solving Large and Complex Problems by means of Subsumption.
In 3rd. Workshop On Information Systems and Artificial Intelligence,
pages 118–138. Springer-Verlag, LNCS 777, 1994.

[21] W. Kießling and B. Hafenrichter. Optimizing Preference Queries for Per-
sonalized Web Services. In IASTED International Conference on Com-
munications, Internet and Information Technology, November 2002. Also
Tech. Rep. 2002-12, July 2002, Institute of Computer Science, University
of Augsburg, Germany.

[22] W. Kießling and B. Hafenrichter. Algebraic Optimization of Relational
Preference Queries. Technical Report 2003-1, Institut für Informatik,
Universität Augsburg, 2003.

[23] W. Kießling and G. Köstler. Preference SQL - Design, Implementa-
tion, Experience. In International Conference on Very Large Data Bases
(VLDB), pages 990–1001, 2002.

[24] A. Klug. Calculating Constraints on Relational Tableaux. ACM Trans-
actions on Database Systems, 5:260–290, 1980.

[25] A. Klug and R. Price. Determining View Dependencies Using Tableaux.
ACM Transactions on Database Systems, 7, 1982.

[26] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. In International Conference on
Very Large Data Bases (VLDB), pages 275–286, 2002.

[27] G. Köstler, W. Kießling, H. Thöne, and U. Güntzer. Fixpoint Iteration
with Subsumption in Deductive Databases. Journal of Intelligent Infor-
mation Systems, 4:123–148, 1995.

[28] G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases.
Springer-Verlag, 2000.

[29] M. Lacroix and P. Lavency. Preferences: Putting More Knowledge Into
Queries. In International Conference on Very Large Data Bases (VLDB),
pages 217–225, 1987.

[30] M. Maher and J. Wang. Optimizing Queries in Extended Relational
Databases. In International Conference on Database and Expert Systems
Applications (DEXA), pages 386–396, 2000.

[31] D. Papadias, Y. Tao, G. Fu, and B. Seeger:. An Optimal and Progressive
Algorithm for Skyline Queries. In ACM SIGMOD International Confer-
ence on Management of Data, pages 467–478, 2003.

[32] D. E. Simmen, E. J. Shekita, and T. Malkemus. Fundamental Techniques
for Order Optimization. In ACM SIGMOD International Conference on
Management of Data, pages 57–67, 1996.

[33] R. Torlone and P. Ciaccia. Which Are My Preferred Items? In Workshop
on Recommendation and Personalization in E-Commerce, May 2002.

[34] X. Zhang and Z. M. Ozsoyoglu. Implication and Referential Constraints:
A New Formal Reasoning. IEEE Transactions on Knowledge and Data
Engineering, 9(6):894–910, 1997.

26

