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1 Introduction

A disjoint NP-pair is a pair (A,B) of nonempty, disjoint sets A and B such that both A and B
belong to the complexity class NP.1 We let DisjNP denote the collection of all disjoint NP-pairs.
A separator of a disjoint NP-pair (A,B) is a set S such that A ⊆ S and B ⊆ S (Figure 1). A
fundamental question is whether (A,B) has a separator belonging to P. In this case the pair is
P-separable; otherwise, it is P-inseparable.

To state this fundamental question differently, we want to know whether there is an efficient algo-
rithm whose set of yes-instances includes the set A and whose set of no-instances includes the set
B. The algorithm behaves arbitrarily on instances in the complement of A∪B. That is, a disjoint
NP-pair is a promise problem. To learn about promise problems we refer to Goldreich’s survey
paper [Gol05] in this volume. The second author first became interested in promise problems, and
specifically, in disjoint NP-pairs, in 1982 while working with Shimon Even and Yacov Yacobi. At
that time they formulated the problem of cracking a public-key cryptosystem as a promise problem
and observed that secure public-key cryptosystems do not exist unless P-inseparable pairs exist
[ESY84].

Disjoint NP-pairs also relate naturally to the theory of proof systems for propositional calculus
[Raz94, Pud01] and that is the connection we will explore here.
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Figure 1: An NP-pair (A,B) that is separated by S.

2 Preliminaries

The notations ≤p
m and ≤p

T
denote polynomial-time-bounded many-one and Turing reducibility,

respectively. Thus, we write A≤p
mB if there is a function f computable in polynomial time, such

that for all instances x, x ∈ A ⇔ f(x) ∈ B and we write A≤p

T
B if there is an oracle Turing machine

M such that A = L(M,B) is the language accepted by M using B as the oracle.

We let PF denote the class of all polynomial-time-computable functions. A function f is honest

if there is a polynomial q such that for every y ∈ range(f) there exists x ∈ dom(f) such that
f(x) = y and |x| ≤ q(|y|). If f ∈ PF is an honest function and A ∈ NP, then f(A) ∈ NP.

To review the definition of standard exponential-time complexity classes,

E =
⋃

{DTIME(kn) | k ≥ 1}

and
NE =

⋃

{NTIME(kn) | k ≥ 1}.

For any complexity class C, coC = {L | L ∈ C}.

A nondeterministic Turing machine that has at most one accepting computation for any input is
called by Valiant [Val76] an unambiguous Turing machine. Let UP denote the set of languages
accepted by unambiguous Turing machines in polynomial time. Obviously, P ⊆ UP ⊆ NP, and it
is not known whether either inclusion is proper. One reason UP is an interesting complexity class
is because there exists a one-to-one, honest function f ∈ PF whose inverse f−1 is not computable
in polynomial time if and only if P 6= UP [GS88].

A set A is sparse if there is a polynomial p such that for all n, A contains at most p(n) strings of
length n. We let SPARSE denote the collection of all sparse sets.

3 Propositional Proof Systems

Resolution calculus is one well-known example of a propositional proof system. A propositional
formula φ in disjunctive normal form is a tautology if and only if there exists a proof w in the
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resolution system showing that ¬φ is not satisfiable. (Recall that a formula φ is a tautology if and
only if its negation ¬φ is not satisfiable.) All propositional proof systems have three properties in
common:

1. Correctness: If there is a proof in the system, then the formula is indeed a tautology.

2. Completeness: Every tautology can be proved within the system.

3. Verifiability: The validity of a proof can be easily verified.

Cook and Reckhow [CR79] formalized the intuitive notion of a proof system as follows: A proposi-

tional proof system (proof system for short) is a total function f : Σ∗ → TAUT such that f is onto
and polynomial-time-computable. (TAUT denotes the set of tautologies.) For any tautology φ, if
f(w) = φ, then w is a proof in the system f (f -proof) showing that φ is a tautology.

That the validity of proofs is easy to verify is formalized by the requirement that f is polynomial-
time-computable. Furthermore, the definition requires that only tautologies have proofs (correct-
ness) and that every tautology has a proof (completeness).

The following function shows that the resolution calculus can be interpreted as a propositional
proof system in the formal sense.

f(w) =



















φ : if w = (φ, u) and u is a resolution refutation of ¬φ

φ : if w = (φ, u) and |u| ≥ 2|φ| and φ is a tautology

true : otherwise

Note that in this definition, both lines, the first and the second one, are necessary. The first line
makes sure that tautologies in disjunctive normal form have f -proofs not much longer than the
corresponding resolution proofs. The second line takes care of all the tautologies that are not in
disjunctive normal form. Note that in this line, the test for tautology can be done by exhaustive
search in polynomial time, since 2|φ| ≤ |w|.

A propositional proof system f is not necessarily honest; it is possible that a formula φ ∈ TAUT has
only exponentially long proofs w, i.e., f(w) = φ and |w| = 2Ω(|φ|). A proof system f is polynomially

bounded if the function f is honest. Cook and Reckhow demonstrated that NP = coNP if and only
if there exists a polynomially-bounded proof system, and they proposed attacking the question of
whether NP equals coNP by studying propositional proof systems.

Let f and f ′ be two proof systems. We say that f simulates f ′ if there is a polynomial p and a
function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗, f(h(w)) = f ′(w) and |h(w)| ≤ p(|w|). So for
every f ′-proof w, h(w) is an f -proof of the same tautology. If f simulates f ′, then f -proofs are not
much longer than f ′-proofs. If additionally h ∈ PF, then we say that f p-simulates f ′.

A proof system is optimal (resp., p-optimal) if it simulates (resp., p-simulates) every other proof
system. The notion of simulation between proof systems is analogous to the notion of reducibility
between problems. Using that analogy, optimal proof systems correspond to complete problems.
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It is not known whether there exist optimal propositional proof systems, but the question is inter-
esting, because if there is an optimal proof system f , then there is a polynomially-bounded proof
system if and only if f is polynomially-bounded. The question of whether optimal propositional
proof systems exist has been studied in detail. Kraj́ıček and Pudlák [Pud86, KP89] showed that
NE = coNE implies the existence of optimal proof systems. Ben-David and Gringauze [BDG98]
and Köbler, Meßner, and Torán [KMT03] obtained the same conclusion under weaker assumptions.
On the other hand, Meßner and Torán [MT98] and Köbler, Meßner, and Torán [KMT03] proved
that existence of optimal proof systems results in the existence of ≤p

m -complete sets for the promise
class NP ∩ SPARSE. In the same paper, they showed that there exist p-optimal proof systems
only if the complexity class UP has a many-one complete set. These results hold relative to all
oracles. Therefore, optimal proof systems exist relative to any oracle in which NE = coNE holds.
Kraj́ıček and Pudlák [KP89], Ben-David and Gringauze [BDG98], and Buhrman et al. [BFFvM00]
constructed oracles relative to which optimal proof systems do not exist. In addition, NP∩SPARSE
does not have complete sets relative to the latter oracle.

Razborov [Raz94] related the study of propositional proof systems to disjoint NP-pairs. For every
propositional proof system f , he associated a canonical disjoint NP-pair. Furthermore, he showed
that if f is an optimal proof system, then the canonical pair for f is a complete disjoint NP-pair.
We will explain these results in Section 5, but first, in order to define the notion of completeness
for disjoint NP-pairs, it is necessary to describe reducibilities between disjoint NP-pairs.

4 Reductions between disjoint NP-Pairs

Since disjoint pairs are simply an equivalent formulation of promise problems, disjoint pairs easily
inherit the natural notions of reducibilities that exist between promise problems [ESY84, Sel88,
GS88]. Hence, completeness and hardness notions follow naturally also. We review these here.

Definition 4.1 Let (A,B) and (C,D) be disjoint pairs.

1. (A,B) is many-one reducible in polynomial-time to (C,D), (A,B)≤pp
m (C,D), if for every

separator T of (C,D), there exists a separator S of (A,B) such that S≤p
mT .

2. (A,B) is Turing reducible in polynomial-time to (C,D), (A,B)≤pp
T (C,D), if for every sepa-

rator T of (C,D), there exists a separator S of (A,B) such that S≤p
TT .

The definitions tell us that for every separator of (C,D), there is a separator of (A,B) that is no
more complex. In particular, if (C,D) is P-separable, then it follows immediately that (A,B) is
P-separable. On the other hand, these definitions are nonuniform. Looking at (A,B)≤pp

T (C,D), for
example, if S1 is a separator of (C,D), then there is an oracle Turing machine M1 such that the set
L(M1, S1) is a separator of (A,B). However, for a different separator S2 of (C,D), there might be a
different Turing machine M2 so that L(M2, S2) is a separator of (A,B). This nonuniformity makes
these definitions difficult to work with. Fortunately, they have the following equivalent formulations
[GS88, GSSZ04]. Observe that the formulation for many-one reducibility simplifies enormously.
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Theorem 4.2 (uniform reductions for pairs) Let (A,B) and (C,D) be disjoint pairs.

1. (A,B) is many-one reducible in polynomial-time to (C,D) if and only if there exists a

polynomial-time computable function f such that f(A) ⊆ C and f(B) ⊆ D.

2. (A,B) is Turing reducible in polynomial-time to (C,D) if and only if there exists a

polynomial-time oracle Turing machine M such that for every separator T of (C,D), there

exists a separator S of (A,B) such that S≤p
TT via M . That is, S = L(M,T ).

Now we clearly have uniformity. The same oracle Turing machine M is used for all separators T .

The abbreviation ‘pp’ in ≤pp

T
, for example, stands for polynomial-time-bounded promise reduction.

We retain the promise problem notation in order to distinguish reductions between disjoint NP-pairs
from reducibilities between sets.

If (A,B)≤pp
m (C,D) and (C,D)≤pp

m (A,B), then we write (A,B)≡pp
m (C,D); if (A,B)≤pp

T
(C,D) and

(C,D)≤pp

T
(A,B), then we write (A,B)≡pp

T
(C,D). Obviously, ≡pp

m and ≡pp

T
are equivalence relations.

Keeping with common terminology, a disjoint pair (A,B) is ≤pp
m -complete (≤pp

T -complete) for the
class DisjNP if (A,B) ∈ DisjNP and for every disjoint pair (C,D) ∈ DisjNP, (C,D)≤pp

m (A,B)
((C,D)≤pp

T
(A,B), respectively).

Razborov raised the question of whether DisjNP contains complete pairs (i.e., complete disjoint
NP-pairs). Although we are primarily interested in the question of whether there exist many-one
complete pairs, let’s pause for a moment to consider the question of whether there exist Turing-
complete pairs. Even, Selman, and Yacobi [ESY84] conjectured that DisjNP does not contain
a disjoint pair all of whose separators are NP-hard (i.e., ≤p

T
-hard for NP.) The conjecture has

strong consequences, for it implies that NP 6= coNP, NP 6= UP, and no public-key cryptosystem
is NP-hard to crack [ESY84, GS88]. For example, if NP = coNP, then for every NP-complete S,
the pair (S, S) is in DisjNP and all of its separators are NP-hard (since S is the only separator).
We conjecture that DisjNP does not contain Turing-complete pairs, but it would be difficult to
prove this, because the the latter conjecture implies the former conjecture (which in turn implies
NP 6= coNP).

Proposition 4.3 If there do not exist ≤pp
T -complete pairs for the class DisjNP, then DisjNP does

not contain a disjoint pair all of whose separators are NP-hard.

Proof. Suppose there is a disjoint pair (A,B) ∈ DisjNP such that all separators are NP-hard. We
claim that (A,B) is ≤pp

T -complete for DisjNP. Let (C,D) belong to DisjNP. Let S be an arbitrary
separator of (A,B). Note that S is NP-hard and C ∈ NP. So C≤p

TS. Since C is a separator of
(C,D), this demonstrates that (C,D)≤pp

T
(A,B). �

Glaßer et al. [GSSZ04] constructed an oracle relative to which Turing-complete pairs do not exist
for DisjNP.
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5 Canonical disjoint NP-Pairs

The canonical pair of a propositional proof system f [Raz94] is the disjoint NP-pair (SAT∗,REFf )
where

SAT∗ = {(x, 0n)
∣

∣ x ∈ SAT and n ∈ N} and

REFf = {(x, 0n)
∣

∣¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Informally, SAT∗ is the set of satisfiable formulas (i.e., formulas whose negations are not tautolo-
gies), and REFf is the set of easily refutable formulas (i.e., formulas whose negations have short
proofs). It is straightforward to see that SAT∗ and REFf are disjoint and that they belong to NP.

The following easy to prove proposition states a strong connection between proof systems and
disjoint NP-pairs.

Proposition 5.1 Let f and g be propositional proof systems. If g simulates f , then

(SAT∗,REFf )≤pp
m (SAT∗,REFg).

Proof. By assumption there exists a total function h : Σ∗ → Σ∗ and a polynomial p such that
for all y, g(h(y)) = f(y) and |h(y)| ≤ p(|y|). We claim that (SAT∗,REFf )≤pp

m (SAT∗,REFg) via
reduction r where r(x, 0n) df=(x, 0p(n)). Clearly, if (x, 0n) ∈ SAT∗, then (x, 0p(n)) ∈ SAT∗ as well.
Let (x, 0n) ∈ REFf , i.e., ¬x is a tautology and there exists y such that |y| ≤ n and f(y) = ¬x. So
for y′

df
= h(y) it holds that |y′| ≤ p(n) and g(y′) = ¬x which shows (x, 0p(n)) ∈ REFg. �

Razborov’s result (Corollary 5.5 below) states that if f is an optimal proof system, then
(SAT∗,REFf ) is a ≤pp

m -complete NP-pair. This result is an immediate consequence of Proposi-
tion 5.1 and the following new result [GSZ04]. The latter states that every disjoint NP-pair is
many-one equivalent to the canonical NP-pair of some propositional proof system.

Theorem 5.2 For every disjoint NP-pair (A,B) there exists a proof system f such that

(SAT∗,REFf )≡pp
m (A,B).

Proof. Let 〈·, ·〉 be a polynomial-time computable, polynomial-time invertible pairing function
such that |〈v,w〉| = 2|vw|. Choose g that is polynomial-time computable and polynomial-time

invertible such that A≤p
mSAT via g (such a g exists, since SAT is a paddable NP-complete set).

Let M be an NP-machine that accepts B in time p. Define the following function f .

f(z) df=



















¬g(x) : if z = 〈x,w〉, |w| = p(|x|), M(x) accepts along path w

x : if z = 〈x,w〉, |w| 6= p(|x|), |z| ≥ 2|x|, x ∈ TAUT

true : otherwise
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The function is polynomial-time computable, since in the second case, |z| is large enough so that
x ∈ TAUT can be decided in deterministic time O(|z|2). In the first case of f ’s definition, x ∈ B
and so g(x) /∈ SAT. It follows that f : Σ∗ → TAUT. The mapping is onto, since for every tautology
x,

f(〈x, 02|x|〉) = x.

Therefore, f is a propositional proof system.

Claim 5.3 (SAT∗,REFf )≤pp
m (A,B).

Choose arbitrary elements a ∈ A and b ∈ B. The reduction function h is as follows.

1 input (x, 0n)

2 if n ≥ 2|x| then

3 if x ∈ SAT then output a else output b

4 endif

5 if g−1(x) exists then output g−1(x)
6 output a

The exhaustive search in Line 3 is possible in quadratic time in 2|x| ≤ n. So h ∈ PF.

Assume (x, 0n) ∈ SAT∗. If we reach Line 3, then we output a ∈ A. Otherwise we reach Line 5. If
g−1(x) exists, then it belongs to A. Therefore, in either case (output in Line 5 or in Line 6) we
output an element from A.

Assume (x, 0n) ∈ REFf (in particular ¬x ∈ TAUT). So there exists y such that |y| ≤ n and
f(y) = ¬x. If we reach Line 3, then we output b. Otherwise we reach Line 5 and so it holds that
|y| ≤ n < 2|x| and ¬x differs from the expression true (since the expression true does not start
with the symbol ¬). Therefore, f(y) = ¬x must be due to the first case in the definition of f . It
follows that g−1(x) exists. So we output g−1(x) which belongs to B (again by the first case of f’s
definition). This shows Claim 5.3.

Claim 5.4 (A,B)≤pp
m (SAT∗,REFf ).

The reduction function is h′(x)
df
=(g(x), 02(|x|+p(|x|))). If x ∈ A, then g(x) ∈ SAT and therefore,

h′(x) ∈ SAT∗. Otherwise, let x ∈ B. Let w be an accepting path of M(x) and define z
df
=〈x,w〉. So

|w| = p(|x|) and |z| = 2(|x| + p(|x|)). By the first case of f’s definition, f(z) = ¬g(x). Therefore,
h′(x) ∈ REFf . This proves Claim 5.4 and finishes the proof of Theorem 5.2. �

Corollary 5.5 (Razborov) If there exists an optimal propositional proof system f , then

(SAT∗,REFf ) is a ≤pp
m -complete NP-pair.
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Proof. Suppose that f is an optimal proof system. Let (A,B) be an arbitrary disjoint NP-
pair. By Theorem 5.2, let g be a proof system such that (A,B)≡pp

m (SAT∗,REFg). We only use
(A,B)≤pp

m (SAT∗,REFg) and the fact that (SAT∗,REFg) ∈ DisjNP. Since f is optimal, f simulates
g. Thus, by Proposition 5.1, (SAT∗,REFg)≤

pp
m (SAT∗,REFf ). Then, (A,B)≤pp

m (SAT∗,REFf ),
from which it follows that (SAT∗,REFf ) is ≤pp

m -complete for DisjNP. �

Also, we state the following corollary. It is convenient for us to define the Turing-degree of a pair
(A,B) ∈ DisjNP as follows:

d(A,B) = {(C,D) ∈ DisjNP | (A,B) ≡pp
T (C,D)}.

So the Turing-degree of (A,B) is the class of pairs that are equivalent to (A,B) with respect to
Turing reductions. In a canonical way, Turing reductions extend from pairs to Turing-degrees:
d(A,B)≤pp

T d(C,D) if (A,B)≤pp

T (C,D). The degree structure of disjoint NP-pairs is the structure
of the partial ordering ({d(A,B)

∣

∣ (A,B) ∈ DisjNP},≤pp

T
).

Corollary 5.6 Disjoint NP-pairs and canonical pairs for proof systems have identical degree struc-

ture.

Every disjoint NP-pair we believe to be P-inseparable is many-one equivalent to some canonical pair
that is also P-inseparable. We cannot prove that P-inseparable pairs exist, but there is evidence
for their existence, for example, if P 6= UP or if P 6= NP∩coNP. On the other hand, the hypothesis
that P 6= NP does not seem to be sufficient to obtain P-inseparable disjoint NP-pairs. Homer
and Selman [HS92] constructed an oracle relative to which P 6= NP and all disjoint NP-pairs are
P-separable.

Glaßer et al. [GSSZ04] constructed an oracle O1 relative to which optimal proof systems exist, and
therefore, relative to which many-one complete disjoint NP-pairs exist. Also, they constructed an
oracle O2 relative to which many-one complete disjoint NP-pairs exist, but optimal proof systems
do not exist. So relative to this oracle, the converse of Corollary 5.5 does not hold. Relative
to O2, there is a propositional proof system f whose canonical pair is complete, but f is not
optimal. Hence, there is a propositional proof system g such that the canonical pair of g many-
one reduces to the canonical pair of f , but f does not simulate g. The results of this section
(Proposition 5.1, Theorem 5.2, and Corollary 5.6) present tight connections between disjoint NP-
pairs and propositional proof systems. Nevertheless, relative to this oracle, the relationship is not
as tight as one might hope for.

In light of Corollary 5.6, we should try to understand the degree structure of DisjNP. Glaßer,
Selman, and Zhang [GSZ04] prove that between any two comparable and inequivalent disjoint NP-
pairs (A,B) and (C,D) there exist P-inseparable, incomparable NP-pairs (E,F ) and (G,H) whose
degrees lie strictly between (A,B) and (C,D). Their result is an analogue of Ladner’s result for
NP [Lad75]. The proof is based on Schöning’s formulation [Sch82] and uses techniques of Regan
[Reg83, Reg88]. Thus, assuming that P-inseparable disjoint NP-pairs exist, the class DisjNP has a
rich, dense, degree structure—and each of these degrees contains a canonical pair.

Observe that the premise of the following theorem is true as long as there exist P-inseparable
disjoint NP-pairs.
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Theorem 5.7 Suppose there exist disjoint NP-pairs (A,B) and (C,D) such that A, B, C, and

D are infinite, (A,B)≤pp

T
(C,D), and (C,D) 6≤pp

T
(A,B). Then there exist incomparable, strictly

intermediate disjoint NP-pairs (E,F ) and (G,H) between (A,B) and (C,D) such that E, F , G,

and H are infinite. Precisely, the following properties hold:

• (A,B)≤pp
m (E,F )≤pp

T
(C,D) and (C,D) 6≤pp

T
(E,F ) 6≤pp

T
(A,B);

• (A,B)≤pp
m (G,H)≤pp

T
(C,D) and (C,D) 6≤pp

T
(G,H) 6≤pp

T
(A,B);

• (E,F ) 6≤pp

T (G,H) and (G,H) 6≤pp

T (E,F ).

Messner [Mes00, Mes02] unconditionally proved the existence of propositional proof systems f and
g such that f does not simulate g and g does not simulate f . Further he shows that the simulation
order of propositional proof systems is dense. However, from this we cannot conclude a dense degree
structure for disjoint NP-pairs. There exist infinite, strictly increasing chains of propositional proof
systems (using simulation as the order relation ≤) such that all canonical pairs of these proofs
systems belong to the same many-one degree of disjoint NP-pairs.

6 Uniform Enumerability

In this section we describe some recent results of Glaßer, Selman, and Sengupta [GSS04] on reduc-
tions between disjoint NP-pairs. The main result is a list of equivalent statements to the assertion
that there exists a many-one complete disjoint NP-pair, which, taken together, strongly suggests
that the assertion does not hold.

We begin our exposition with the following definition of strongly many-one reductions, as defined
by Köbler, Meßner, and Torán [KMT03].

Definition 6.1 ([KMT03]) (C,D) strongly many-one reduces to (A,B) in polynomial time,
(C,D)≤pp

sm (A,B), if there is a polynomial-time computable function f such that f(C) ⊆ A,

f(D) ⊆ B, and f(C ∪ D) ⊆ A ∪ B.

Clearly, the added condition f(C ∪ D) ⊆ A ∪ B states that instances violating the promise of (C,D)
are mapped into instances that violate the promise of (A,B) (Figure 2). Equivalently, f−1(A) ⊆ C
and f−1(B) ⊆ D. Therefore, if (C,D)≤pp

sm (A,B) via f , then C≤p
mA via f , and D≤p

mB via f .

Whereas Razborov proved that existence of an optimal proof system implies existence of a many-one
complete disjoint NP-pair, Köbler, Meßner, and Torán proved with the same hypothesis existence of
a complete disjoint NP-pair with respect to strongly many-one reductions. In particular, the result
of Glaßer, Selman, and Sengupta shows that these results of Razborov and Köbler, Meßner, and
Torán are equivalent. That is, there exists a many-one complete disjoint NP-pair if and only if there
exists a complete disjoint NP-pair with respect to strongly many-one reductions. Nevertheless, it
is apparently true that the “stronger reduction” really is stronger. This is easy to see if we permit
disjoint NP-pairs whose components are finite sets. However, for pairs whose components are
infinite and coinfinite, strongly many-one reductions are identical to many-one reductions if and
only if P = NP. We show this result now:
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Figure 2: A strong many-one reduction f from (A,B) to (C,D).

Theorem 6.2 The following are equivalent:

1. P 6= NP.

2. There are disjoint NP-pairs (A,B) and (C,D) such that A, B, C, D, A ∪ B, and C ∪ D are

infinite, and (A,B)≤pp
m (C,D) but (A,B) 6≤pp

sm(C,D).

Proof. If P = NP, then given disjoint NP-pairs (A,B) and (C,D), A,B,C, and D are all in P.
Given any string x, it can be determined whether x ∈ A, x ∈ B, or x ∈ A ∪ B, and x can be
mapped appropriately to some fixed string in C, D, or C ∪ D. Therefore, (A,B)≤pp

sm(C,D).

For the other direction, consider the clique-coloring pair (C1, C2) such that

C1 = {〈G, k〉
∣

∣ G has a clique of size k}, (1)

and
C2 = {〈G, k〉

∣

∣ G has a coloring with k − 1 colors}. (2)

This is a disjoint NP-pair, and is known to be P-separable [Lov79, Pud01]. Let S be the separator
that is in P. Note that (C1, C2)≤

pp
m (S, S) via the identity function. (Note that this reduction is also

invertible.) Let

C = {〈G, 3〉
∣

∣ G is a cycle of odd length with at least 5 vertices}.

Let S1 = S − C and S2 = S − C. Both S1 and S2 are in P. Since any odd cycle with at least 5
vertices is not 2-colorable, and does not contain any clique of size 3, C ∩ C1 = ∅, and C ∩ C2 = ∅.
Therefore, (C1, C2)≤

pp
m (S1, S2) via the identity function. Assume that (C1, C2)≤

pp
sm(S1, S2). Then

C1≤
p
mS1, and C2≤

p
mS2. Hence C1 and C2 are in P. This is impossible, since NP 6= P, and C1 and

C2 are NP-complete. Thus, (C1, C2) 6≤
pp
sm(S1, S2). �

Next we mention smart reductions. Grollmann and Selman [GS88] defined smart reductions in
order to analyze the conjecture of Even, Selman, and Yacobi [ESY84] that we discussed earlier.
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Definition 6.3 ([GS88]) A smart reduction from (C,D) to (A,B) is a Turing reduction from

(C,D) to (A,B) such that if the input belongs to C ∪ D, then all queries belong to A ∪ B.

A disjoint pair (A,B) ∈ DisjNP is smart ≤pp
T -complete for DisjNP if for every (C,D) in DisjNP

there is a smart reduction from (C,D) to (A,B). Note that if (A,B) is ≤pp
m -complete for DisjNP,

then (A,B) is smart ≤pp

T -complete for DisjNP as well.

Let {Ni}i be an effective enumeration of nondeterministic, polynomial-time bounded Turing ma-
chines. Now we define the central concept of this section.

Definition 6.4 DisjNP is uniformly enumerable if there is a total computable function f : Σ∗ →
Σ∗ × Σ∗ such that

1. ∀(i, j) ∈ range(f)[(L(Ni), L(Nj)) ∈ DisjNP].

2. ∀(C,D) ∈ DisjNP ∃(i, j)[(i, j) ∈ range(f) ∧ C = L(Ni) ∧ D = L(Nj)].

The following theorem is a slight simplification of the main result of Glaßer, Selman, and Sengupta
[GSS04].

Theorem 6.5 The following are equivalent.

1. There is a ≤pp
m -complete disjoint NP-pair.

2. There is a ≤pp
sm-complete disjoint NP-pair.

3. There is a smart ≤pp
T -complete disjoint NP-pair.

4. DisjNP is uniformly enumerable.

There is a long history of equating having complete sets with uniform enumerations. Hartmanis and
Hemachandra [HH88], for example, proved this for the class UP, and it holds as well for NP∩co-NP
and BPP. More recently, Sadowski [Sad02] proved that there exists an optimal propositional proof
system if and only if the class of all easy subsets of TAUT is uniformly enumerable.2 It seems
inconceivable that there would exist a total computable function that lists exactly the disjoint NP-
pairs, and that is why we don’t believe that many-one complete disjoint NP-pairs exist, and hence,
don’t believe that optimal proof systems exist.

The most interesting direction of the proof is to show that if there exists a many-one complete
disjoint NP-pair, then DisjNP is uniformly enumerable. We sketch this direction now:

Let (A,B) be a ≤pp
m -complete disjoint pair. Let NA and NB be NP-machines that accept A and B,

respectively. Let {fi}i be an effective enumeration of polynomial-time computable functions. Input
to the enumerator is a number encoding a triple 〈i, j, k〉. Output is a pair 〈a, b〉 to be described.

2By Corollary 5.5, if DisjNP is not uniformly enumerable, then the class of all easy subsets of TAUT is also not

uniformly enumerable.
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Given 〈i, j, k〉, we define nondeterministic Turing machines N ′
1 and N ′

2 as follows. On input x, N ′
1

computes fi(x) = q and then simulates both NA(q) and NB(q). At most one of these accepts.
N ′

1 accepts x if x ∈ L(Nj) and q ∈ L(NA). N ′
2 is defined similarly, except that N ′

2 accepts x if
x ∈ L(Nk) and q ∈ L(NB).

Let a and b be the indices of N ′
1 and N ′

2, respectively, and define f(〈i, j, k〉) = 〈a, b〉. It is easy
to see that L(Na) and L(Nb) are disjoint. So for all i, j, and k, (L(Na), L(Nb)) ∈ DisjNP, where
f(〈i, j, k〉) = 〈a, b〉.

Now let (C,D) be a disjoint NP-pair. For some indices j and k, C = L(Nj) and D = L(Nk). Then
(C,D)≤pp

m (A,B) by fi, for some i. Consider, 〈a, b〉 = f(〈i, j, k〉). The remainder of the proof, which
is easy, shows that C = L(Na) and D = L(Nb).
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