
Redundancy in Complete Sets

Christian Glaßer∗, A. Pavan†, Alan L. Selman‡, Liyu Zhang§

July 6, 2005

Abstract

We show that a set is m-autoreducible if and only if it is m-mitotic. This solves a long standing
open question in a surprising way. As a consequence of this unconditional result and recent work
by Glaßer et al. [11], complete sets for all of the following complexity classes are m-mitotic: NP,
coNP, ⊕P, PSPACE, and NEXP, as well as all levels of PH, MODPH, and the Boolean hierarchy
over NP. In the cases of NP, PSPACE, NEXP, and PH, this at once answers several well-studied
open questions. These results tell us that complete sets share a redundancy that was not known
before.

We disprove the equivalence between autoreducibility and mitoticity for all polynomial-
time-bounded reducibilities between 3-tt-reducibility and Turing-reducibility: There exists a
sparse set in EXP that is polynomial-time 3-tt-autoreducible, but not weakly polynomial-time
T-mitotic. In particular, polynomial-time T-autoreducibility does not imply polynomial-time
weak T-mitoticity, which solves an open question by Buhrman and Torenvliet.

We generalize autoreducibility to define poly-autoreducibility and give evidence that NP-
complete sets are poly-autoreducible.

1 Introduction

It is a well known observation that for many interesting complexity classes, all known complete
sets contain “redundant” information. For example, consider SAT. Given a boolean formula φ one
can produce two different formulas φ1 and φ2 such that the question of whether φ is satisfiable
or not is equivalent to the question of whether φ1 or φ2 are satisfiable. Thus φ1 and φ2 contain
information about φ. Another example is the Permanent. Given a matrix M , we can reduce the
computation of the permanent of M to computing the permanent of M +R, M +2R, . . . ,M +nR,
where R is a randomly chosen matrix. Thus information about the permanent of M is contained

∗Lehrstuhl für Informatik IV,Universität Würzburg. Email: glasser@informatik.uni-wuerzburg.de.
†Department of Computer Science, Iowa State University. Research supported in part by NSF grants CCR-0344817

and CCF-0430807. Email: pavan@cs.iastate.edu
‡Department of Computer Science and Engineering, University at Buffalo. Research supported in part by NSF

grant CCR-0307077. Email: selman@cse.buffalo.edu
§Department of Computer Science, University at Buffalo. Email:lzhang7@cse.buffalo.edu

1

in a few random looking matrices. We interpret this as “SAT and Permanent contain redundant
information”.

In this paper we study the question of how much redundancy is contained in complete sets of
complexity classes. There are several ways to measure “redundancy”. We focus on the two notions
autoreducibility and mitoticity.

Trakhtenbrot [16] defined a set A to be autoreducible if there is an oracle Turing machine M such
that A = L(MA) and M on input x never queries x. For complexity classes like NP and PSPACE
refined measures are needed. In this spirit, Ambos-Spies [2] defined the notion of polynomial-
time autoreducibility and the more restricted form m-autoreducibility. A set A is polynomial-time
autoreducible if it is autoreducible via a oracle Turing machine that runs in polynomial-time. A
is m-autoreducible if A is polynomial-time many-one reducible to A via a function f such that
f(x) "= x for every x. Both notions demand information contained in A(x) to be present among
strings different from x. In the case of m-autoreducibility, the redundancy in A is even more
apparent—if a set A is m-autoreducible, then x and f(x) have the same information about A.

A stronger form of redundancy is described by the notion of mitoticity which was introduced by
Ladner [13] for the recursive setting and by Ambos-Spies [2] for the polynomial-time setting. A set
A is m-mitotic if there is a set S ∈ P such that A, A∩S, and A∩S are polynomial-time many-one
equivalent. Thus if a set is m-mitotic, then A can be split into two parts such that both parts have
exactly the same information as the original set has.

Ambos-Spies [2] showed that if a set is m-mitotic, then it is m-autoreducible and he raised the
question of whether the converse holds. In this paper we resolve this question and show that
every m-autoreducible set is m-mitotic. This is our main result. Since its proof is very involved, we
present our main combinatorial idea with help of a simplified graph problem which will be described
in Section 3. This simplification drops many of the important details from our formal proof, but
still contains the combinatorial core of the problem. Our main result is all the more surprising,
because it is known [2] that polynomial-time T-autoreducibility does not imply polynomial-time T-
mitoticity. We improve this and disprove the equivalence between autoreducibility and mitoticity for
all polynomial-time-bounded reducibilities between 3-tt-reducibility and Turing-reducibility: There
exists a sparse set in EXP that is polynomial-time 3-tt-autoreducible, but not weakly polynomial-
time T-mitotic. In particular, polynomial-time T-autoreducible does not imply polynomial-time
weakly T-mitotic. This result settles another open question raised by Buhrman and Torenvliet [8].

Our main result relates local redundancy to global redundancy in the following sense. If a set A is
m-autoreducible, then x and f(x) contain the same information about A. This can be viewed as
local redundancy. Whereas if A is m-mitotic, then A can be split into two sets B and C such that
A, B, and C are polynomial-time many-one equivalent. Thus the sets B and C have exactly the
same information as the original set A. This can be viewed as global redundancy in A. Our main
result states that local redundancy is the same as global redundancy.

As a consequence of this result and recent work of Glaßer et al. [11], we can show that all complete
sets for many interesting classes such as NP, PSPACE, NEXP, and levels of PH are m-mitotic.
Thus they all contain redundant information in a strong sense. This resolves several long standing
open questions raised by Ambos-Spies [2], Buhrman, Hoene, and Torenvliet [7], and Buhrman and
Torenvliet [8].

2

Our result can also be viewed as a step towards understanding the isomorphism conjecture [5]. This
conjecture states that all NP-complete sets are isomorphic to each other. In spite of several years
of research, we do not have any concrete evidence either in support or against the isomorphism
conjecture1. It is easy to see that if the isomorphism conjecture holds for classes such as NP,
PSPACE, and EXP, then complete sets for these classes are m-autoreducible as well as m-mitotic.
Given our current inability to make progress about the isomorphism conjecture, the next best thing
we can hope for is to make progress on statements that the isomorphism conjecture implies. We
note that this is not an entirely new approach. For example, if the isomorphism conjecture is
true, then NP-complete sets cannot be sparse. This motivated researchers to consider the question
of whether complete sets for NP can be sparse. This line of research led to the beautiful results
of Mahaney [14] and Ogiwara and Watanabe [15] who showed that complete sets for NP cannot
be sparse unless P = NP. Our results show that another consequence of isomorphism, namely
“NP-complete sets are m-mitotic” holds. Note that this is an unconditional result.

Buhrman et al. [6] and Buhrman and Torenvliet [9, 10] argue that it is critical to study the notions
of autoreducibility and mitoticity. They showed that resolving questions regarding autoreducibility
of complete sets leads to unconditional separation results. For example, consider the question of
whether truth-table complete sets for PSPACE are non-adaptive autoreducible. An affirmative
answer separates NP from NL, while a negative answer separates the polynomial-time hierarchy
from PSPACE. They argue that this approach does not have the curse of relativization and is worth
pursuing. We refer the reader to the recent survey by Buhrman and Torenvliet [10] for more details.

In Section 5, we extend the notion of autoreducibility and define poly-autoreducibility. A motivation
for this is to understand the isomorphism conjecture and the notion of paddability. Recall that
the isomorphism conjecture is true if and only if all NP-complete sets are paddable. Paddability
implies the following: If L is paddable, then given x and a polynomial p, we can produce p(|x|)
distinct strings such that if x is in L, then all these strings are in L and if x is not in L, then none
of these strings are in L. Autoreducibility implies that given x we can produce a single string y
different from x such that L(x) = L(y). A natural question that arises is whether we can produce
more strings whose membership in L is the same as the membership of x in L. This leads us to
the notion of f(n)-autoreducibility: A set L is f(n)-autoreducible, if there is a polynomial-time
algorithm that on input x outputs f(|x|) distinct strings (different from x) whose membership in L
is the same as the membership of x in L. It is obvious that paddability implies poly-autoreducibility.
The question of whether “NP complete sets are poly-autoreducible” is weaker than the question of
whether “NP-complete sets are paddable.”

We provide evidence for poly-autoreducibility of NP-complete sets. We show that if one-way per-
mutations exist, then NP-complete sets are log-autoreducible. Moreover, if one-way permutations
and quick pseudo-random generators exist, then NP-complete sets are poly-autoreducible. We also
show that if NP-complete sets are poly-autoreducible, then they have infinite subsets that can be
decided in linear-exponential time.

1It is currently believed that if one-way functions exist, then the isomorphism conjecture is false. However, we do

not have a proof of this.

3

1.1 Previous Work

The question of whether complete sets for various classes are autoreducible has been studied exten-
sively [17, 4, 6]. Beigel and Feigenbaum [4] showed that Turing complete sets for the classes that
form the polynomial hierarchy, ΣP

i ,ΠP
i , and ∆P

i , are Turing autoreducible. Thus, all Turing com-
plete sets for NP are Turing autoreducible. Buhrman et al. [6] showed that Turing complete sets for
EXP and ∆EXP

i are autoreducible, whereas there exists a Turing complete set for EESPACE that
is not Turing auto-reducible. Regarding NP, Buhrman et al. [6] showed that truth-table complete
sets for NP are probabilistic truth-table autoreducible. Recently, Glaßer et al. [11] showed that
complete sets for classes such as NP, PSPACE, ΣP

i are m-autoreducible.

Buhrman, Hoene, and Torenvliet [7] showed that EXP complete sets are weakly many-one mitotic.
This result was recently improved independently by Kurtz [10] and Glaßer et al. [11]. Glaßer et al.
also showed that NEXP complete sets are weakly m-mitotic and PSPACE-complete sets are weak
Turing-mitotic.

2 Preliminaries

We use standard notation and assume familiarity with standard resource-bounded reductions. We
consider words in lexicographic order. All used reductions are polynomial-time computable.

Definition 2.1 ([2]) A set A is polynomially T-autoreducible (T-autoreducible, for short) if there
exists a polynomial-time-bounded oracle Turing machine M such that A = L(MA) and for all x, M
on input x never queries x. A set A is polynomially m-autoreducible (m-autoreducible, for short)
if A≤p

mA via a reduction function f such that for all x, f(x) "= x.

Definition 2.2 ([2]) A recursive set A is polynomial-time T-mitotic (T-mitotic, for short) if there
exists a set B ∈ P such that A ≡p

T A ∩ B ≡p
T A ∩ B. A is polynomial-time m-mitotic (m-mitotic,

for short) if there exists a set B ∈ P such that A ≡p
m A ∩ B ≡p

m A ∩ B.

Definition 2.3 ([2]) A recursive set A is polynomial-time weakly T-mitotic (weakly T-mitotic,
for short) if there exist disjoint sets A0 and A1 such that A0 ∪A1 = A, and A ≡p

T A0 ≡p
T A1. A is

polynomial-time weakly m-mitotic (weakly m-mitotic, for short) if there exist disjoint sets A0 and
A1 such that A0 ∪ A1 = A, and A ≡p

m A0 ≡p
m A1.

Definition 2.4 Let f be a function from N to N. A set L is f(n)-autoreducible, if there is a
polynomial-time algorithm A that on input x outputs y1, y2, · · · , ym such that f(|x|) = m, if x ∈ L,
then {y1, y2, · · · , ym} ⊆ L, and if x /∈ L, then {y1, y2, · · · , ym}∩L = ∅. A set is poly-autoreducible,
if it is nk-autoreducible for every k ≥ 1.

A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n)) almost everywhere;
that is, every Turing machine M that accepts L runs in time greater than T (|x|), for all but

4

finitely many words x. A language L is immune to a complexity class C, or C-immune, if L is
infinite and no infinite subset of L belongs to C. A language L is bi-immune to a complexity class
C, or C-bi-immune, if both L and L are C-immune. Balcázar and Schöning [3] proved that for
every time-constructible function T , L is DTIME(T (n))-complex if and only if L is bi-immune to
DTIME(T (n)).

3 m-Autoreducibility equals m-Mitoticity

It is easy to see that if a nontrivial language L is m-mitotic, then it is m-autoreducible. If L is
m-mitotic, then there is a set S ∈ P such that L ∩ S ≤p

m L ∩ S via some f and L ∩ S ≤p
m L ∩ S

via some g. On input x, the m-autoreduction for L works as follows: If x ∈ S and f(x) /∈ S, then
output f(x). If x /∈ S and g(x) ∈ S, then output g(x). Otherwise, output a fixed element from
L − {x}.

So m-mitoticity implies m-autoreducibility. The main result of this paper shows that surprisingly
the converse holds true as well, i.e., m-mitoticity and m-autoreducibility are equivalent notions.

Theorem 3.1 Let L be any set such that |L| ≥ 2. L is m-autoreducible if and only if L is m-
mitotic.

Before proceeding to the proof we first mention the main ideas and the intuition behind the proof
and describe the combinatorial core of the problem.

Assume that L is m-autoreducible via reduction function f . Given x, the repeated application of f
yields a sequence of words x, f(x), f(f(x)), . . ., which we call the trajectory of x. These trajectories
either are infinite or end in a cycle of length at least 2. Note that as f is an autoreduction, x "= f(x).

At first glance it seems that m-mitoticity can be easily established by the following idea: In every
trajectory, label the words at even positions with + and all other words with −. Define S to be the
set of strings whose label is +. With this ‘definition’ of S it seems that f reduces L ∩ S to L ∩ S
and L ∩ S to L ∩ S.

However, this labeling strategy has at least two problems. First, it is not clear that S ∈ P; because
given a string y, we have to compute the parity of the position of y in a trajectory. As trajectories
can be of exponential length, this might take exponential time. The second and more fundamental
problem is the following: The labeling generated above is inconsistent and not well defined. For
example, let f(x) = y. To label y which trajectory should we use? The trajectory of x or the
trajectory of y? If we use trajectory of x, y gets a label of +, whereas if we use the trajectory of y,
then it gets a label of −. Thus S is not well defined and so this idea does not work. It fails because
the labeling strategy is a global strategy. To label a string we have to consider all the trajectories
in which x occurs. Every single x gives rise to a labeling of possibly infinitely many words, and
these labelings may overlap in an inconsistent way.

We resolve this by using a local labeling strategy. More precisely, we compute a label for a given x
just by looking at the neighboring values x, f(x), and f(f(x)). It is immediately clear that such

5

a strategy is well-defined and therefore defines a consistent labeling. We also should guarantee
that this local strategy strictly alternates labels, i.e., x gets + if and only if f(x) gets −. Such an
alternation of labels would help us to establish the m-mitoticity of L.

Thus our goal will be to find a local labeling strategy that has a nice alternation behavior. However,
we settle for something less. Instead of requiring that the labels strictly alternate, we only require
that given x, at least one of f(x), f(f(x)), · · · , fm(x) gets a label that is different from the label of
x, where m is polynomially bounded in the length of x. This suffices to show m-mitoticity.

The most difficult part in our proof is to show that there exists a local labeling strategy that has
this weaker alternation property.

We now formulate the core underlying problem. To keep this proof sketch simpler, we make several
assumptions and ignore several technical but important details. If we assume (for simplicity) that
on strings x /∈ 1∗ the autoreduction is length preserving such that f(x) > x, then we arrive at the
following graph labeling problem.

Core Problem: Let Gn be a directed graph with 2n vertices such that every string of length n
is a vertex of Gn. Assume that 1n is a sink, that nodes u "= 1n have outdegree 1, and that u < v
for edges (u, v). For u "= 1n let s(u) denote u’s unique successor, i.e., s(u) = v if (u, v) is an edge.
Find a strategy that labels each node with either + or − such that:

(i) Given a node u, its label can be computed in polynomial time in n.

(ii) There exists a polynomial p such that for every node u, at least one of the nodes
s(u), s(s(u)), . . . , sp(n)(u) gets a label that is different from the label of u.

We exhibit a labeling strategy with these properties. To define this labeling, we use the following
distance function: d(x, y)

df
=⌊log |y−x|⌋ (our formal proof uses a variant of this function). The core

problem is solved by the following local strategy.

0 // Strategy for labeling node x

1 let y = s(x) and z = s(y).
2 if d(x, y) > d(y, z) then output −
3 if d(x, y) < d(y, z) then output +
4 r := d(x, y)
5 output + iff ⌊x/2r+1⌋ is even

Clearly, this labeling strategy satisfies condition (i). We give a sketch of the proof that it also
satisfies condition (ii). Define m = 5n and let u1, u2, . . . , um be a path in the graph. It suffices to
show that not all the nodes u1, u2, . . . , um obtain the same label. Assume that this does not hold,
say all these nodes get label +. So no output is made in line 2 and therefore, the distances d(ui, ui+1)
do not decrease. Note that the distance function maps to natural numbers. If we have more than n
increases, then the distance between um−1 and um is bigger than n. Therefore, um −um−1 > 2n+1,
which is impossible for words of length n. So along the path u1, u2, . . . , um there exist at least
m − n = 4n positions where the distance stays the same. By a pigeon hole argument there exist

6

four consecutive such positions, i.e., nodes v = ui, w = ui+1, x = ui+2, y = ui+3, z = ui+4 such
that d(v,w) = d(w, x) = d(x, y) = d(y, z). So for the inputs v, w, and x, we reach line 4 where the
algorithm will assign r = d(v,w). Observe that for all words w1 and w2, the value d(w1, w2) allows
an approximation of w2 − w1 up to a factor of 2. More precisely, w − v, x − w, and y − x belong
to the interval [2r, 2r+1). It is an easy observation that this implies that not all of the following
values can have the same parity: ⌊v/2r+1⌋, ⌊w/2r+1⌋, and ⌊x/2r+1⌋. According to line 5, not all
words v, w, and x obtain the same label. This is a contradiction which shows that not all the nodes
u1, u2, . . . , um obtain the same label. This proves (ii) and solves the core of the labeling problem.

The labeling strategy allows the definition of a set S ∈ P such that whenever we follow the trajectory
of x for more than 5|x| steps, then we find at least one alternation between S and S. This establishes
m-mitoticity for L.

Now we give a formal proof of Theorem 3.1.

The dyadic representation of natural numbers provides a one-one correspondence between words
over Σ = {0, 1} and natural numbers. This correspondence translates operations and relations over
natural numbers to operation and relations over words. We denote the absolute value of an integer
by abs(x). This avoids a conflict between the notation of the length of a word w and the notation
of the absolute value of the integer represented by w. Moreover, log(x) denotes x’s logarithm to
base 2. We use the following proposition.

Proposition 3.2 Let L be any set such that |L| ≥ 2. L is m-mitotic if and only if there exist a
total g ∈ PF and a set S ∈ P such that for all x,

1. x ∈ L ⇔ g(x) ∈ L, and

2. x ∈ S ⇔ g(x) /∈ S.

Proof. Choose distinct words w1, w2 ∈ L. If L is m-mitotic, then there exists S ∈ P such that
L ∩ S≤p

mL ∩ S via some g1 ∈ PF and L ∩ S≤p
mL ∩ S via some g2 ∈ PF. We may assume that

w1 ∈ S and w2 ∈ S; otherwise the set S ∪ {w1}− {w2} can be used instead of S. Observe that the
following function g satisfies the statements 1 and 2 from the proposition.

g(x) df=

g1(x) : if x ∈ S and g1(x) ∈ S

w2 : if x ∈ S and g1(x) ∈ S

g2(x) : if x ∈ S and g2(x) ∈ S

w1 : if x ∈ S and g2(x) ∈ S

Now assume there exist a total g ∈ PF and an S ∈ P that satisfy the statements 1 and 2. It follows
that L ∩ S≤p

mL ∩ S and L ∩ S≤p
mL ∩ S, both via g. The following function reduces L to L ∩ S.

g′(x)
df
=

x : if x ∈ S

g(x) : if x ∈ S

7

The following function reduces L ∩ S to L.

g′′(x)
df
=

x : if x ∈ S

w1 : if x ∈ S

This shows L≡p
mL ∩ S≡p

mL ∩ S and hence L is m-mitotic. !

Proof. (Theorem 3.1) If L is m-mitotic, then there exist S ∈ P and f1, f2 ∈ PF such that
L∩S≤p

mL∩S via f1 and L∩S≤p
mL∩S via f2. By assumption, there exist different words v,w ∈ L.

The following function is an m-autoreduction for L.

f ′(x) df=

f1(x) : if x ∈ S and f1(x) /∈ S

f2(x) : if x /∈ S and f2(x) ∈ S

min({v,w} − {x}) : otherwise

For the other direction, let us assume that L is m-autoreducible and let f ∈ PF be an m-
autoreduction for L. Choose k ≥ 1 such that f is computable in time nk + k. Using Proposi-
tion 3.2, we show L’s m-mitoticity as follows: We construct a total g ∈ PF and an S ∈ P such that
(x ∈ L ⇔ g(x) ∈ L) and (x ∈ S ⇔ g(x) /∈ S).

Let t be a tower function defined by: t(0) = 0 and t(i + 1) = t(i)k + k for i ≥ 0. Define the inverse
tower function as t−1(n) = min{i

∣

∣ t(i) ≥ n}. Note that t−1 ∈ PF. We partition the set of all words
according to the parity of the inverse tower function of their lengths.

S0
df
= {x

∣

∣ t−1(|x|) ≡ 0(mod 2)}
S1

df= {x
∣

∣ t−1(|x|) ≡ 1(mod 2)}

Note that S0, S1 ∈ P.

The following distance function for natural numbers x and y plays a crucial role in our proof.

d(x, y) df= sgn(y − x) · ⌊log(abs(y − x))⌋.

This function is computable in polynomial time. We define a set S (which will be used as separator
for L) by the following algorithm which works on input x.

0 // Algorithm for set S

1 y := f(x), z := f(f(x))
2 if |y| > |x| then (accept iff x ∈ S0)

3 if |z| > |y| then (accept iff y ∈ S1)

4 if x = z then (accept iff x > f(x))
5 // here x, y, and z are pairwise different

6 if d(x, y) > d(y, z) then reject

7 if d(x, y) < d(y, z) then accept

8 r := d(x, y)

9 accept iff ⌊y/2abs(r)+1⌋ is even

8

Observe that S ∈ P. We will show L≡p
mL ∩ S≡p

mL ∩ S which implies that L is m-mitotic.

Claim 3.3 Let y be any word and let m = |y|. If ∀i ∈ [0, 6m + 3], |f i(y)| ≥ |f i+1(y)|, then there
exists j ∈ [0, 6m + 3] such that

f j(y) ∈ S ⇔ f j+1(y) /∈ S.

Proof. Assume the claim does not hold. Moreover, assume that for all j ∈ [0, 6m + 4], f j(y) ∈ S.
For the other case (i.e., for all j ∈ [0, 6m + 4], f j(y) /∈ S) one can argue analogously. Consider the
algorithm for S.

Fact 1: For j ∈ [0, 6m + 2], the algorithm on input f j(y) stops either in line 7 or in line 9.

Assume there exists j ∈ [0, 6m + 2] such that the algorithm on input f j(y) stops in lines 2 or 3. In
this case, |f j(y)| < |f j+1(y)| or |f j+1(y)| < |f j+2(y)| which contradicts our assumption.

Assume there exists j ∈ [0, 6m + 2] such that the algorithm on input f j(y) stops in lines 4. By
assumption of the claim, |f j(y)| ≥ |f j+1(y)| ≥ |f j+2(y)|. Moreover, f j(y) = f j+2(y), since we
stop in line 4. So |f j(y)| = |f j+1(y)|. Therefore, on both inputs, f j(y) and f j+1(y), the algorithm
stops in line 4. Note that f j(y) "= f j+1(y), since f is an m-autoreduction. Hence by line 4,
f j(y) ∈ S ⇔ f j+1(y) /∈ S, which contradicts our assumption.

Assume there exists j ∈ [0, 6m + 2] such that the algorithm on input f j(y) stops in lines 6. So
f j(y) /∈ S which contradicts the assumption. This proves Fact 1.

J df= {j ∈ [0, 6m + 2]
∣

∣ on input f j(y) the algorithms for S stops in line 7}
K

df
= {j ∈ [0, 6m + 2]

∣

∣ on input f j(y) the algorithms for S stops in line 9}

By Fact 1, J ∪ K = {0, . . . , 6m + 2}. From the algorithm we see the following.

∀j ∈ J, d(f j(y), f j+1(y)) < d(f j+1(y), f j+2(y)) (1)

∀j ∈ K, d(f j(y), f j+1(y)) = d(f j+1(y), f j+2(y)) (2)

Case 1: ‖J‖ > 2m. Together with (1) and (2) this shows

d(f6m+3(y), f6m+4(y)) − d(f0(y), f1(y)) > 2m. (3)

It follows that
d(f6m+3(y), f6m+4(y)) > m (4)

or
d(f0(y), f1(y)) < −m. (5)

Assume that (4) holds. By the assumption of the claim, f6m+3(y) and f6m+4(y) are words of length
≤ m. So the length of abs(f6m+4(y)−f6m+3(y)) is ≤ m. From the dyadic representation of numbers
it follows that log(abs(f6m+4(y) − f6m+3(y))) < m + 1 and therefore, d(f6m+3(y), f6m+4(y)) ≤ m.
This is a contradiction, since we assumed that (4) holds.

9

Assume now that (5) holds. Again, f0(y) and f1(y) are words of length ≤ m. So the length
of abs(f0(y) − f1(y)) is ≤ m. It follows that log(abs(f1(y) − f0(y))) < m + 1 and therefore,
d(f0(y), f1(y)) ≥ −m. This is a contradiction, since we assumed that (5) holds.

Case 2: ‖J‖ ≤ 2m. Note that [0, 6m + 2] contains 6m + 3 elements while J contains at most 2m
elements. So there exists j ∈ [0, 6m] such that j, j + 1, j + 2 ∈ K. A look at the algorithm tells us
the following.

d(f j(y), f j+1(y)) = d(f j+1(y), f j+2(y)) = d(f j+2(y), f j+3(y)) = d(f j+3(y), f j+4(y)) (6)

Define r as the number shown in (6), and let z1
df
= f j(y), z2

df
= f j+1(y), z3

df
= f j+2(y), and z4

df
= f j+3(y).

Recall that z1, z2, z3 ∈ S and that on input of these words, the algorithm stops in line 9. Therefore,
the following must hold.

a1
df
= ⌊z2/2

abs(r)+1⌋ is even (7)

a2
df= ⌊z3/2

abs(r)+1⌋ is even (8)

a3
df= ⌊z4/2

abs(r)+1⌋ is even (9)

Case 2a: r = 0. Here z2 "= z4, since otherwise on input z2 the algorithm stops in line 4 which
contradicts Fact 1. Also, z2 "= z3 and z3 "= z4, since f is an m-autoreduction. From (6) and from the
definition of the distance function d we obtain, either z2 = z3 − 1 = z4 − 2, or z4 = z3 − 1 = z2 − 2.
So z4−z2 equals 2 or −2, and hence a3−a1 equals 1 or −1. The latter contradicts the observations
(7) and (9).

Case 2b: r > 0. Here we have z1 < z2 < z3 < z4 and therefore, a1 ≤ a2 ≤ a3.

Assume a1 = a3. Since d(z2, z3) = r, it holds that log(abs(z3 − z2)) ≥ r and hence, z3 − z2 ≥ 2r.
The same argument shows z4 − z3 ≥ 2r. So z4 ≥ z2 + 2r+1 = z2 + 2abs(r)+1 and hence, a3 ≥ a1 + 1.
The latter contradicts the assumption a1 = a3.

So assume a1 < a3 which implies a3 − a1 ≥ 2, since both values are even. Since a2 is even as well,
we obtain a2 − a1 ≥ 2 or a3 − a2 ≥ 2. If a2 − a1 ≥ 2, then z3 − z2 > 2r+1 and so d(z2, z3) > r. If
a3 − a2 ≥ 2, then z4 − z3 > 2r+1 and so d(z3, z4) > r. Both conclusions contradict (6).

Case 2c: r < 0. Here we have z1 > z2 > z3 > z4 and therefore, a1 ≥ a2 ≥ a3.

Assume a1 = a3. Since d(z2, z3) = r, it holds that log(abs(z3 − z2)) ≥ abs(r) and hence, z2 − z3 ≥
2abs(r). The same argument shows z3 − z4 ≥ 2abs(r). So z2 ≥ z4 + 2abs(r)+1 and hence, a1 ≥ a3 + 1.
The latter contradicts the assumption a1 = a3.

So assume a1 > a3 which implies a1 − a3 ≥ 2, since both values are even. Since a2 is even as
well, we obtain a1 − a2 ≥ 2 or a2 − a3 ≥ 2. If a1 − a2 ≥ 2, then z2 − z3 > 2abs(r)+1 and so
d(z2, z3) < −abs(r) = r. If a2 − a3 ≥ 2, then z3 − z4 > 2abs(r)+1 and so d(z3, z4) < −abs(r) = r.
Both conclusions contradict (6).

This proves Claim 3.3. !

10

Claim 3.4 There exists a total r ∈ PF such that L≤p
mL via r and for every x,

1. |f(r(x))| ≤ |r(x)| or

2. x ∈ S ⇔ r(x) /∈ S.

Proof. For every x, let
r(x)

df
= f i(x)

where i is the smallest number such that |f i+1(x)| ≤ |f i(x)| or (x ∈ S ⇔ f i(x) /∈ S). We will prove
that such i exists. Consider the following algorithm which works on input x.

0 // Algorithm for function r

1 z := x

2 while (|f(z)| > |z| and (x ∈ S ⇔ z ∈ S))
3 // here |z| < |x|k + k

4 z := f(z)
5 end

6 output z

Observe that this algorithm computes the function r.

We prove the invariant in line 3, which will guarantee that the loop in the algorithm halts within
polynomial steps in |x|. Assume that at some point this invariant does not hold. We consider the
first time when this happens. In this case, we must have reached line 3 before, since otherwise
|x| ≥ |x|k + k which is not possible. Let z′ denote the value of variable z when line 3 was reached
last time. So z = f(z′). Note that the following inequalities hold, since otherwise the algorithm
stops earlier.

|x| < |f(x)| (10)

|z′| < |f(z′)| (11)

|z| < |f(z)| (12)

|x| < |z′| (13)

Moreover,
|z′| < |x|k + k, (14)

since otherwise already z′ violates the invariant, which contradicts the fact that with z we chose
the earliest violation of the invariant. From (13) and (14) we obtain

t−1(|x|) ≤ t−1(|z′|) ≤ t−1(|x|k + k) = t−1(|x|) + 1. (15)

From (10) it follows that on input x, the algorithm for S stops in line 2. We see the same for z′

and z using (11) and (12). This implies the following.

x ∈ S ⇔ x ∈ S0 (16)

z′ ∈ S ⇔ z′ ∈ S0 (17)

z ∈ S ⇔ z ∈ S0 (18)

11

Note that
x ∈ S ⇔ z′ ∈ S ⇔ z ∈ S, (19)

since otherwise the algorithm for r stops earlier. Together with (16), (17), and (18) this shows

x ∈ S0 ⇔ z′ ∈ S0 ⇔ z ∈ S0 (20)

and therefore,
t−1(|x|) ≡ t−1(|z′|) ≡ t−1(|z|) (mod 2). (21)

Now (15) implies t−1(|x|) = t−1(|z′|) and we obtain

t−1(|z′|) = t−1(|x|) < t−1(|x|k + k) ≤ t−1(|z|). (22)

From (21) and (22) it follows that t−1(|z|) − t−1(|z′|) ≥ 2. Therefore, |f(z′)| > |z′|k + k. This
contradicts f ’s computation time and proves the invariant in line 3.

From the invariant we immediately obtain that every single step of the algorithm can be carried
out in time polynomial in |x|. Each execution of line 4 increases the length of z. By our invariant,
the algorithm must terminate within |x|k + k iterations of the loop. This shows that r is total and
polynomial-time computable. Since r is defined by repeated applications of f , and since f is an
autoreduction of L, we obtain L≤p

mL via r. The statements 1 and 2 of the claim follow immediately
from line 2 of the algorithm. This proves Claim 3.4. !

Choose a function r according to Claim 3.4. Define a function g by the following algorithm which
works on input x. Below we will show that g satisfies the conditions in Proposition 3.2.

0 // Algorithm for function g

1 y := r(x), m := |y|
2 if |y| < |f(y)| then return y

3 // here |y| ≥ |f(y)|
4 z := y

5 for i := 0 to 6m + 3

6 // here z = fi(y), |z| ≤ m, and for all 0 ≤ j ≤ i, |fj(y)| ≥ |fj+1(y)|
7 if |f(z)| < |f(f(z))| then

8 if (f(z) ∈ S ⇔ x ∈ S) then return z else return f(z)
9 endif

10 z := f(z)
11 next i

12 // here for all 0 ≤ j ≤ 6m + 3, |fj(y)| ≥ |fj+1(y)|
13 z := y

14 for i := 0 to 6m + 3

15 // here z = fi(y) and |z| ≤ m

16 if z ∈ S ⇔ f(z) /∈ S then

17 if (z ∈ S ⇔ x ∈ S) then return f(z) else return z

18 endif

19 z := f(z)
20 next i

21 // this line is never reached

12

Claim 3.5 The statements claimed in the comments of the algorithm for g hold true.

Proof. Clearly, the condition in line 3 holds. Observe that whenever we reach line 6, then z = f i(y)
and |z| ≥ |f(z)|. Therefore, the condition in line 6 holds. It follows that if we reach line 12, then
we must have passed line 6 for i = 6m+3. This shows the condition in line 12. Whenever we reach
line 15 it holds that z = f i(y). From the condition in line 12 it follows that |z| ≤ m in line 15.

Finally we argue that we do not reach line 21. Assume that we reach line 12. By the condition in
line 12, we satisfy the assumption of Claim 3.3. Therefore, there exists j ∈ [0, 6m + 3] such that
f j(y) ∈ S ⇔ f j+1(y) /∈ S. So for i = j, the condition in line 16 is true and therefore, the algorithm
stops before reaching line 21. !

Claim 3.6 g is a total function in PF and L≤p
mL via g.

Proof. We immediately see that g is total, since line 21 is never reached.

We argue that g ∈ PF. Recall that f and r are total functions in PF, and recall that S ∈ P. So
steps 1–4 are computable in polynomial time in |x|. Note that m is polynomially bounded in |x|.
By the remark in line 6, the loop 5–11 needs only polynomial time in |x|. The remark in line 15
implies the same for the loop 14–20. This shows g ∈ PF.

We show L≤p
mL via g. Observe that in any case the algorithm returns f j(y) for a suitable

j ≥ 0. By Claim 3.4, x ∈ L ⇔ y = r(x) ∈ L. Since f is an autoreduction of L, we obtain
x ∈ L ⇔ g(x) = f j(y) ∈ L. !

Claim 3.7 For every x, x ∈ S ⇔ g(x) /∈ S.

Proof. Consider the computation of the algorithm for g on input x.

Case 1: The output is made in line 2. So we have |f(r(x))| > |r(x)|. From Claim 3.4 it follows
x ∈ S ⇔ g(x) = r(x) /∈ S.

Case 2: The output is made in line 8. By lines 6 and 7,

|f i(y)| ≥ |f i+1(y)| and |f i+1(y)| < |f i+2(y)|.

Therefore, if we look at the algorithm for S, then we see that on input f i(y) the algorithm stops
in step 3, while on input f i+1(y) the algorithm stops in step 2. It follows that

f i(y) ∈ S ⇔ f i+1(y) ∈ S1 and

f i+1(y) ∈ S ⇔ f i+1(y) ∈ S0.

So z = f i(y) ∈ S ⇔ f(z) /∈ S and therefore, by line 8 of the algorithm for g,

x ∈ S ⇔ g(x) /∈ S.

13

Case 3: The output is made in line 17. From line 16 it follows that x ∈ S ⇔ g(x) /∈ S. !

The Claims 3.6 and 3.7 allow the application of Proposition 3.2. Hence L is m-mitotic. !

Call a set L nontrivial if ‖L‖ ≥ 2 and ‖L‖ ≥ 2.

Corollary 3.8 Every nontrivial set that is many-one complete for one of the following complexity
classes is m-mitotic.

• NP, coNP, ⊕P, PSPACE, EXP, NEXP

• any level of PH, MODPH, or the Boolean hierarchy over NP

Proof. Glaßer et al. [11] showed that all many-one complete sets of the above classes are m-
autoreducible. By Theorem 3.1, these sets are m-mitotic. !

Corollary 3.9 A nontrivial set L is NP-complete if and only if L is the union of two disjoint
P-separable NP-complete sets.

So unions of disjoint P-separable NP-complete sets form exactly the class of NP-complete sets.
What class is obtained when we drop P-separability? Does this class contain a set that is not
NP-complete? In other words, is the union of disjoint NP-complete sets always NP-complete? We
leave this as an open question.

Ambos-Spies [2] defined a set A to be ω-m-mitotic if for every n there exists a partition (Q1, . . . , Qn)
of Σ∗ such that the following sets are polynomial-time many-one equivalent: A,A∩Q1, . . . , A∩Qn.

Corollary 3.10 Every nontrivial infinite set that is many-one complete for a class mentioned in
Corollary 3.8 is ω-m-mitotic.

4 3-tt-Autoreducibility does not imply Weak T-Mitoticity

In this section we prove a theorem that shows in a strong way that T-autoreducible does not imply
weakly T-mitotic. Hence, our main theorem cannot be generalized.

Lemma 4.1 Let l,m ≥ 0 and let k ≥ (l + 2)2
m
. If Q1, . . . , Qk are sets of cardinality ≤ l and if

n1, . . . , nk are pairwise different numbers, then there exist pairwise different indices i1, . . . , im such
that for all s, t ∈ [1,m],

s "= t ⇒ nis /∈ Qit .

14

Proof. The proof is by induction on n = l + m such that the induction base covers all cases where
l = 0 or m = 0. For these cases the lemma holds trivially. In particular, this covers the case n = 1.

Assume there exists n ≥ 1 such that the lemma holds for all l and m such that l = 0 or m = 0 or
l + m ≤ n. Now we prove it for l and m such that l ≥ 1, m ≥ 1, and l + m = n + 1.

Case 1: There exist at least k−
√

k− l−1 indices j > 1 such that n1 ∈ Qj. Let k′ = ⌈k−
√

k− l−1⌉
and choose pairwise different indices j1, . . . , jk′ such that for all i, ji "= 1 and n1 ∈ Qji

. Let l′ = l−1
and let Ri = Qji

− {n1} and ri = nji
for 1 ≤ i ≤ k′. Observe l′ ≥ 0 and m ≥ 1. We estimate k′ as

follows.

k′ ≥ k −
√

k − l − 1

≥ (l + 2)2
m −

√

(l + 2)2m − l − 1 (since (a ≥ b ⇒ a −√
a ≥ b −

√
b) for a, b ≥ 1)

≥ (l′ + 2)2
m

(follows from (24) in the estimation below) (23)

For (23) the following estimation is needed.

l + 1 ≥ l + 1

(l + 2)2
m−1−1 · (l + 2 − 1) ≥ (l + 1)2

m−1−1 · (l + 1)

(l + 2)2
m−1 − 1 ≥ (l + 1)2

m−1
(since (l + 2)2

m−1−1 ≥ 1)

(l + 2)2
m−1 ·

[

(l + 2)2
m−1 − 1

]

≥ (l + 2)2
m−1 ·

[

(l + 1)2
m−1]

(l + 2)2
m − (l + 2)2

m−1 ≥ (l + 1 + 1) · (l + 1)2
m−1−1 ·

[

(l + 1)2
m−1]

(l + 2)2
m −

√

(l + 2)2m ≥ (l + 1)2
m

+ (l + 1)2
m−1

(l + 2)2
m −

√

(l + 2)2m − l − 1 ≥ (l′ + 2)2
m

(since (l + 1)2
m−1 ≥ l + 1) (24)

Note that l′ + m = n. Also, R1, . . . , Rk′ are sets of cardinality ≤ l′ and r1, . . . , rk′ are pairwise
different numbers. By induction hypothesis there exist pairwise different indices i1, . . . , im such
that for all s, t ∈ [1,m], (s "= t ⇒ ris /∈ Rit). For all s ∈ [1,m], ris "= n1. Therefore, for all
s, t ∈ [1,m],

(s "= t ⇒ ris /∈ Rit ∪ {n1})
and hence

(s "= t ⇒ njis
/∈ Qjit

).

So the lemma is satisfied by the indices ji1 , ji2 , . . . , jim .

Case 2: There exist less than k −
√

k − l − 1 indices j > 1 such that n1 ∈ Qj. So there exist more
than

√
k + l indices j > 1 such that n1 /∈ Qj . Since ‖Q1‖ ≤ l, there exist more than

√
k indices

j > 1 such that n1 /∈ Qj and nj /∈ Q1. Hence there exist at least k′ df
=⌈

√
k⌉ such indices. So we can

choose pairwise different indices j1, . . . , jk′ such that for all i,

ji "= 1 ∧ n1 /∈ Qji
∧ nji

/∈ Q1. (25)

Let m′ = m− 1 and let Ri = Qji
and ri = nji

for 1 ≤ i ≤ k′. Note that l ≥ 1 and m′ ≥ 0. Observe
that

k′ ≥
√

k ≥
√

(l + 2)2m = (l + 2)2
m′

15

and l + m′ = n. Also, R1, . . . , Rk′ are sets of cardinality ≤ l and r1, . . . , rk′ are pairwise different
numbers. So by induction hypothesis there exist pairwise different indices i1, . . . , im′ such that for
all s, t ∈ [1,m′],

s "= t ⇒ ris /∈ Rit

and hence
s "= t ⇒ njis

/∈ Qjit
.

From (25) it follows that the lemma is satisfied by the indices 1, ji1 , ji2 , . . . , jim′ . !

Theorem 4.2 There exists L ∈ SPARSE ∩ EXP such that

• L is 3-tt-autoreducible, but

• L is not weakly T-mitotic.

Proof. Define a tower function by t(0) = 4 and

t(n + 1) = 2222
2t(n)

.

For any word s, let W (s) = {s00, s01, s10, s11}. We will define L such that it satisfies the following:

(i) If w ∈ L, then there exists n such that |w| = t(n).

(ii) For all n and all s ∈ Σt(n)−2, the set W (s)∩L either is empty or contains exactly two elements.

It is easy to see that such an L is 3-tt-autoreducible: On input w, determine n such that |w| = t(n).
If such n does not exist, then reject. Otherwise, let s be w’s prefix of length |w| − 2. Accept if and
only if the set L∩ (W (s)−{w}) contains an odd number of elements. This is a 3-tt-autoreduction.

We turn to the construction of L. Let M1,M2, . . . be an enumeration of deterministic, polynomial-
time-bounded Turing machines such that the running time of Mi is ni + i. Let 〈·, ·〉 be a pairing
function such that 〈x, y〉 > x + y. We construct L stagewise such that in stage n we determine
which of the words of length t(n) belong to L. In other words, at stage n we define a set Wn ⊆ Σt(n),
and finally we define L to be the union of all Wn.

We start by defining W0 = ∅. Suppose we are at stage n > 0. Let m = t(n) and determine i and j
such that n = 〈i, j〉. If such i and j do not exist, then let Wn = ∅ and go to stage n+1. Otherwise,
i and j exist. In particular, i + j < log log m. Let O

df
=W0 ∪ · · · ∪ Wn−1 be the part of L that has

been constructed so far. Let O1, O2, . . . , Ol be the list of all subsets of O (lexicographically ordered
according to their characteristic sequences). Since O ⊆ Σ≤t(n−1) we obtain ‖O‖ ≤ 2t(n−1)+1.
Therefore,

l ≤ 22t(n−1)+1 ≤ 222t(n−1)

= log log t(n) = log log m. (26)

16

We give some intuition for the claim below. If L is weakly T-mitotic, then in particular, there exists
a partition L = L1 ∪L2 such that L2≤p

T
L1 via some machine Mi. Hence O ∩L1 must appear (say

as Ok) in our list of subsets of O. The following claim makes sure that we can find a list of words
s1, . . . , sl of length m − 2 such that for all k ∈ [1, l] it holds that if the partition of L is such that
O ∩ L1 = Ok, then Mi on input of a string from {sk00, sk01, sk10, sk11} does not query the oracle
for words from W (sr) if r "= k. Hence, if Mi queries a word of length m that does not belong to
{sk00, sk01, sk10, sk11}, then it always gets a no answer. So the following is the only information
about the partition of L that can be exploited by Mi:

• the partition of O = Σ<t(n) ∩ L

• the partition of W (sk) ∩ L

In particular, Mi cannot exploit information about the partition of W (sr) ∩ L for r "= k. This
independence of Mi makes our diagonalization possible.

Claim 4.3 There exist pairwise different words s1, . . . , sl ∈ Σm−2 such that for all k, r ∈ [1, l],
k "= r, and all y ∈ W (sk), neither MO−Ok

i (y) nor MOk

j (y) query the oracle for words in W (sr).

Proof. For s ∈ Σm−2, let

Qs
df={s′ ∈ Σm−2

∣

∣ ∃k ∈ [1, l], ∃y ∈ W (s), ∃q ∈ W (s′) such that q
is queried by MO−Ok

i (y) or MOk

j (y)}.

Observe that for every s ∈ Σm−2,

‖Qs‖ ≤ 4l[(mi + i) + (mj + j)]

≤ 4(log log m)[mlog log m + log log m]

≤ 8(log log m)mlog log m

≤ m2 log log m

≤ 2log2 m − 2. (27)

We identify numbers in [1, 2m−2] with strings in Σm−2. Considered in this way, each Qs is a subset

of [1, 2m−2]. By (27), Q1, Q2, . . . , Q2m−2 are sets of cardinality ≤ 2log2 m − 2. Clearly, 1, 2, . . . , 2m−2

are pairwise different numbers. By (26),

2m−2 ≥ (2log2 m)log m ≥ (2log2 m)2
l

.

Therefore, we can apply Lemma 4.1. We obtain indices s1, . . . , sl such that for all k, r ∈ [1, l],

r "= k ⇒ sr /∈ Qsk
. (28)

Assume there exist k, r ∈ [1, l], k "= r, and y ∈ W (sk) such that some q ∈ W (sr) is queried by
MO−Ok

i (y) or MOk

j (y). Hence sr ∈ Qsk
. This contradicts (28) and finishes the proof of Claim 4.3.

17

!

Let s1, . . . , sl ∈ Σm−2 be the words assured by Claim 4.3. We define Wn such that for every k ∈ [1, l]
we define a set Vk ⊆ W (sk), and finally we define Wn to be the union of all Vk. The cardinality of
each Vk is either 0 or 2.

Fix some k ∈ [1, l] and let Qk
df= O − Ok.

Case 1: MQk

i (sk00) accepts or MOk

j (sk00) accepts. Define Vk
df
= ∅.

Case 2: MQk

i (sk00) and MOk

j (sk00) reject.

Case 2a: For all y ∈ {sk01, sk10, sk11}, M
Qk∪{sk00}
i (y) rejects. Define Vk as a subset of W (sk) such

that |Vk| = 2, sk00 ∈ Vk, and

sk01 ∈ Vk ⇔ M
Ok∪{sk00}
j (sk01) rejects.

Case 2b: For all y ∈ {sk01, sk10, sk11}, M
Ok∪{sk00}
j (y) rejects. Define Vk as a subset of W (sk) such

that |Vk| = 2, sk00 ∈ Vk, and

sk01 ∈ Vk ⇔ M
Qk∪{sk00}
i (sk01) rejects.

Case 2c: ∃y ∈ {sk01, sk10, sk11} and ∃z ∈ {sk01, sk10, sk11} such that M
Qk∪{sk00}
i (y) accepts and

M
Ok∪{sk00}
j (z) accepts. Choose v ∈ W (sk) − {sk00, y, z} and define Vk

df
={sk00, v}.

This finishes the construction of Vk. We define Wn
df=

⋃

k∈[1,l] Vk. Finally, L is defined as the union
of all Wn.

Note that by the construction, Wn ⊆ Σt(n) which shows (i). Observe that the construction also
ensures (ii). We argue for L ∈ EXP: Since l ≤ log log m, there are not more than 2m log log m

possibilities to choose the strings s1, . . . , sl. For each such possibility we have to simulate O(l2)
computations Mi(y) and Mj(y). This can be done in exponential time in m. For the definition
of each Vk we have to simulate a constant number of computations Mi(y) and Mj(y). This shows
that L is printable in exponential time. Hence L ∈ EXP. From the construction it follows that
L ∩ Σm ≤ 2l ≤ 2 log log m. In particular, L ∈ SPARSE. It remains to show that L is not weakly
T-mitotic.

Assume L is weakly T-mitotic. So L can be partitioned into L = L1 ∪ L2 (a disjoint union) such
that

(iii) L1≤p

TL2 via machine Mi and

(iv) L2≤p

T
L1 via machine Mj.

18

Let n = 〈i, j〉, m = t(n), and O = W0 ∪ · · · ∪ Wn−1, i.e., O = L ∩ Σ<t(n). Let O1, O2, . . . , Ol

be the list of all subsets of O (again lexicographically ordered according to their characteristic
sequences). Let s1, . . . , sl and V1, . . . , Vl be as in the definition of Wn. Choose k ∈ [1, l] such that
L1 ∩ Σ<t(n) = Ok. Let Qk = O − Ok. So L2 ∩ Σ<t(n) = Qk. Clearly, Vk must be defined according
to one of the cases above.

Assume Vk was defined according to Case 1: So Vk = ∅ and in particular, sk00 /∈ L1. Without loss of
generality assume that MQk

i (sk00) accepts. ML2
i (sk00) has running time mi+i < mm+m < t(n+1).

Hence ML2
i (sk00) behaves like ML2∩Σ≤t(n)

i (sk00). Since sk was chosen according to Claim 4.3,

for all r ∈ [1, l] − {k}, MQk

i (sk00) does not query the oracle for words in W (sr). Note that

W (sk) ∩ L = Vk = ∅. Therefore, ML2
i (sk00) behaves like ML2∩Σ<t(n)

i (sk00) which is the same as

MQk

i (sk00). The latter accepts, but sk00 /∈ L1. This contradicts (iii).

Assume Vk was defined according to Case 2: So Vk = {sk00, u} where u ∈ {sk01, sk10, sk11}.
Assume Vk ⊆ L1. Then as above, Mi(sk00) with oracle L2 behaves the same way as Mi(sk00)
with oracle Qk. The latter rejects, because we are in Case 2. So sk00 /∈ L1 which contradicts our
assumption. Analogously the assumption Vk ⊆ L2 implies a contradiction. Therefore,

either (sk00 ∈ L1 ∧ u ∈ L2) or (u ∈ L1 ∧ sk00 ∈ L2). (29)

Assume Vk was defined according to Case 2a: So for all y ∈ {sk01, sk10, sk11}, M
Qk∪{sk00}
i (y)

rejects. In particular, M
Qk∪{sk00}
i (u) rejects. Assume u ∈ L1 and sk00 ∈ L2. So ML2

i (u) rejects,

since it behaves the same way as M
Qk∪{sk00}
i (u). By (iii) this contradicts u ∈ L1. Therefore, by

(29) we must have sk00 ∈ L1 and u ∈ L2. In Case 2a, Vk is defined such that

sk01 ∈ Vk ⇔ M
Ok∪{sk00}
j (sk01) rejects.

Note that M
Ok∪{sk00}
j (sk01) and ML1

j (sk01) behave the same way. Hence,

sk01 ∈ Vk ⇔ ML1
j (sk01) rejects.

If sk01 ∈ Vk, then u = sk01 and hence ML1
j (u) rejects. This contradicts (iv). Otherwise, if

sk01 /∈ Vk, then ML1
j (sk01) accepts and hence u = sk01 /∈ Vk. This contradicts the assumption

u ∈ Vk.

Assume Vk was defined according to Case 2b: Here we obtain contradictions analogously to Case 2a.

Assume Vk was defined according to Case 2c: Choose y and z such that M
Qk∪{sk00}
i (y) accepts and

M
Ok∪{sk00}
j (z) accepts. So u ∈ {sk01, sk10, sk11} − {y, z}. Assume sk00 ∈ L2. Hence ML2

i (y) and

M
Qk∪{sk00}
i (y) behave the same way showing that ML2

i (y) accepts. So y ∈ L1 which contradicts

the definition of Vk. Assume sk00 ∈ L1. Hence ML1
j (z) and M

Ok∪{sk00}
j (z) behave the same way

showing that ML1
j (z) accepts. So z ∈ L2 which contradicts the definition of Vk.

This finishes Case 2. From the fact that all possible cases led to contradictions, we obtain that the
initial assumption was false. Hence, L is not weakly T-mitotic. !

19

5 Poly-Autoreducibility

In this section we consider the question of whether NP-complete sets are f(n)-autoreducible, for
some growing function f . We first start with the following lemma.

Lemma 5.1 Let L be an NP-complete language. For every polynomial q(.) there is a polynomial-
time algorithm A such that A on input x, |x| = n,

• either decides the membership of x in L

• or outputs strings y1, · · · , ym such that

– x ∈ L ⇒ {y1, y2, · · · , ym} ⊆ L,

– x /∈ L ⇒ {y1, y2, · · · , ym} ∩ L = ∅,
– m = q(n), and x "= y1, "= y2 "= · · · "= ym.

Proof.

Let R(., .) be a polynomial-time search predicates associated with L. Given x, let wx be the
lexicographically maximum witness of x. Without loss of generality, assume that for every x ∈ L,
every witness of x is of length p(|x|), for some polynomial p. Consider the following set in NP.

L′ = {〈x, y〉 | x ∈ L, |y| = p(|x|), y ≤ wx}.

Since L is NP complete, there is a polynomial-time reduction f from L′ to L. We now describe the
algorithm A.

Input x, |x| = n. Let m = p(n).
if 1m is a witness of x, Accept.
ℓ = 0m

If f(〈x, ℓ〉) = f(〈x, 1m〉), Reject.
Q = {f(〈x, ℓ〉)}.
While |Q| ≤ q(n) + 1 do

By doing a binary search find a string a such that ℓ ≤ a ≤ 1m

and, f(〈x, a〉) ∈ Q and f(〈x, a + 1〉) /∈ Q. Set ℓ = a + 1.
if a is a witness of x, then Accept.
if f(〈x, ℓ〉) = f(〈x, 1m〉), Reject.
Q = Q ∪ {f(〈x, ℓ〉)}.

Output the first q(n) elements of Q − {x}.

Claim 5.2 When the algorithm halts, for every string y ∈ Q, x ∈ L ⇔ y ∈ L.

20

Proof. If x /∈ L, then none of 〈x, c〉, 0m ≤ c ≤ 1m, belong to L′. Observe that the algorithm places
a string y in Q only if y = f(〈x, a〉) where 0m ≤ a ≤ 1m. Since f is a many-one reduction from L′ to
L no string from Q belongs to L. So from now we assume x ∈ L. We prove the claim by induction.
Initially, Q = {f(〈x, 0m〉}. Clearly, x ∈ L ⇔ 〈x, 0m〉 ∈ L′. Since f is a many-one reduction L′ to L,
the claim holds initially. Assume that the claim holds before an iteration of while loop. The while
loop finds a node a such that f(〈x, a〉) ∈ Q, but f(〈x, a + 1〉) /∈ Q. Since f(〈x, a〉) ∈ Q, x ∈ L, by
the induction hypothesis f(〈x, a〉) ∈ L. Thus 〈x, a〉 ∈ L′ which implies a ≤ wx. At this point the
algorithm checks if a is a witness of x. If a is a witness of x, then it accepts and halts. If a is not a
witness, then we have a+1 ≤ wx. Thus 〈x, a+1〉 ∈ L′. Thus f(〈x, a+1〉) ∈ L. Since the algorithm
places f(〈x, a + 1〉) in Q at this step, after the iteration of the while loop the claim holds. !

Claim 5.3 If the algorithm Accepts or Rejects x, then the algorithm is correct.

Proof. The algorithm accepts x only when it finds a witness of x. Thus if the algorithm accepts
x, then x ∈ L. The algorithm rejects when f(〈x, ℓ〉) = f(〈x, 1m). Note that f(〈x, ℓ〉) ∈ Q, thus by
previous claim x ∈ L if and only if f(〈x, ℓ〉) ∈ L. Observe that since 1m is not a witness of x, and 1m

is the largest string at length m, 〈x, 1m〉 /∈ L′. Thus f(〈x, 1m〉) /∈ L. Since f(〈x, ℓ〉) = f(〈x, 1m〉),
the claim follows. !

Observe that algorithm places a string f(〈x, ℓ〉) in Q only if f(〈x, ℓ〉) "= f(〈x, 1m). Thus f(〈x, 1m〉)
is not placed in Q during any iteration. So the binary search step always finds a with desired
properties. Every iteration of the while loop adds a new string to Q or decides the membership
of x in L. Thus the algorithm halts in polynomial time and when it halts all elements in Q are
distinct. This finishes the proof of the lemma. !

The above lemma comes close to showing that NP-complete sets are poly-autoreducible, except for
a small caveat. Let L be any NP-complete language. If the algorithm from Lemma 5.1 neither
accepts x or rejects x, then it produces polynomially many equivalent strings. However, to show
L is poly-autoreducible, we must produce polynomially-many equivalent strings even when the
algorithm accepts or rejects.

This boils down to the following problem: Let L be an NP-complete language. Given 0n as input, in
polynomial time output polynomially many distinct strings such that all of them are in L. Similarly,
output polynomially many distinct strings such that none of them are in L.

Below, we show that if one-way permutations exist, then we can achieve this task. We start with
a result by Agrawal [1].

Definition 5.4 Let f be a many-one reduction from A to B. We say f is g(n)-sparse, if for every
n, no more than g(n) strings of length n are mapped to a single string via f .

Lemma 5.5 ([1]) If one-way permutations exist, then NP-complete sets are complete with respect
reductions that are 2n/2nγ

sparse. Here γ is a fixed constant less than 1.

21

Lemma 5.6 Let L be NP-complete. If one-way permutations exist, then there exists a polynomial-
time algorithm that on input 0n outputs log n distinct strings in L and log n strings out of L.

Proof. By Lemma 5.5, there is a 2n/2nγ
sparse reduction f from Σ∗ to L. Thus

|f(Σlog n)| ≥ 2(log n)γ ≥ 2log log n = log n.

Thus by applying f to every string in Σlog n, we obtain at least log n distinct strings. Since f is a
reduction from Σ∗ to L, these strings are in L. It is obvious that this can be done in polynomial-
time. To generate strings out of L, consider a 2n/2nγ

-sparse reduction from ∅ to L. !

If we consider probabilistic algorithms, then we obtain a stronger consequence.

Lemma 5.7 Let L be NP-complete. Assume one-way permutations exist. For every polynomial
q, there exists a polynomial-time probabilistic algorithm B that on input 0n outputs q(n) distinct
strings from L and q(n) distinct strings from L.

Proof. Let L be any NP-complete language. Consider a 2n/2nγ
-sparse reduction from Σ∗ to L.

Consider the following probabilistic procedure.

1. Input 0n, S = ∅
2. Repeat Steps 3 and 4 q(n) times
3. Randomly pick a string y ∈ Σn.
4. If f(y) /∈ f(S), S = S ∪ {y}.
5. Output S.

We claim that the above procedure outputs a set S of size q(n), with high probability. Consider
Steps 3 and 4 during an iteration, let |S| = k at this time. Since at most 2n/2nγ

strings from Σn are
mapped to same string, there exist at most k2n/2nγ

strings y from Σn such that f(y) ∈ f(S). Thus
the probability that we do not add a new string S during Steps 3 and 4 is at most k/2nγ

. Thus the
probability that we fail to add a string during one of the q(n) iterations is at most q(n)k/2nγ

< 1/4.
Thus the above algorithm outputs a set of size q(n) with high probability. By the construction of S
no two strings from S are mapped to same string via f , thus |f(S)| = q(n). Since f is a reduction
from Σ∗ to L, f(S) ⊆ L. To generate strings from L, we consider a reduction from ∅ to L. !

If we assume quick pseudo-random generators exist, then we can derandomize the above procedure.

Lemma 5.8 Let L be any NP-complete language. If one-way permutations and quick pseudo-
random generators exist, then for every polynomial q(n), there is a polynomial-time algorithm that
on input 0n outputs q(n) many distinct strings from L and q(n) many distinct strings out of L.

22

Combining Lemmas 5.1 and 5.6, we obtain the following result.

Theorem 5.9 If one-way permutations exist, then every NP-complete language is log n-
autoreducible.

Combining Lemmas 5.1 and 5.8, we obtain the following result.

Theorem 5.10 If one-way permutations and quick pseudo-random generators exist, NP-complete
sets are poly-autoreducible.

Finally, we consider another hypothesis from which poly-autoreducibility of NP-complete sets fol-
lows.

Theorem 5.11 If there exists a UP machine M that accepts 0∗ such that no P-machine can
compute infinitely many accepting computations of M(0n), then NP-complete sets are poly-
autoreducible.

Proof.

Let L be any NP-complete language. We show that if the hypothesis is true, then there is a
polynomial-time algorithm that on input 0n outputs polynomially many strings from L and poly-
nomially string from L. This combined with Lemma 5.1 shows that NP-complete sets are poly-
autoreducible.

We first show how to produce polynomially many strings from L. The hypothesis implies that there
is a polynomial-time decidable predicate R(., .) and a polynomial p such that for every n, there
exists a unique string wn and R(0n, wn) holds. Moreover, no polynomial-time algorithm, on input
0n, can output wn for infinitely many n. Consider the following language

L′ = {〈0n, y〉 | |y| = p(n), y ≤ wn}.

Since L′ is in UP, there is a many-one reduction f from L′ to L. Now consider the behavior
algorithm A, described in Lemma 5.1, on input 0n. Since 0n belongs to 0∗, the algorithm never
rejects. The algorithm accepts only when it finds a witness wn for 0n. However, our hypothesis
says that no polynomial-time algorithm can output infinitely witnesses wn. Thus this algorithm
must output a set Q of cardinality q(n).

Using similar arguments as in Lemma 5.1, we can show that for every y ∈ Q, 0n ∈ 0∗ ⇔ y ∈ L.
Thus the algorithm outputs q(n) strings from L.

To output strings from L, consider the many-one reduction g from L′ to L and proceed as before.
Since L′ is in UP ∩ CoUP such a reduction exists.

Thus there exists a polynomial-time algorithm that outputs polynomially many strings from L and
polynomially many strings from L. !

23

Next we consider the possibility of an unconditional proof that NP-complete sets are poly-
autoreducible. We relate this with the notion of immunity. We show that if NP-complete sets
are poly-autoreducible, then they are not E-immune. It is known that NP-complete sets are not
generic [11]. This proof is based on the fact that NP-complete sets are autoreducible. Genericity
is stronger notion than immunity, i.e., if a language L is not immune, then it can not be generic.
Our result says that improving the autoreducibility result for NP-complete sets gives a stronger
consequence—namely they are not immune.

Theorem 5.12 If every NP-complete set is poly-autoreducible, then no NP-complete set is E-
immune.

Proof. Suppose every NP-complete set is poly-autoreducible. Let L be an NP-complete set. We
need to show that L is not E-immune. Let T = {0t(i)|i ≥ 0}, where t(i) is defined as t(0) = 2 and
t(i) = 22t(i−1) for i ≥ 1. Clearly T ∈ P ∩ SPARSE. If L ⊆ T , then L is an NP-complete sparse
set, from which it follows NP = P [14]. Therefore, L ∈ P and so L is trivially not E-immune.
Hence, we assume that L − T "= ∅. Then L − T is NP-complete by Theorem 3.1 of a paper by
Glaßer et al. [12]. Hence, L ∪ T is NP-complete since L − T ≤p

m L ∪ T . By assumption, L ∪ T is
poly-autoreducible. So there exists a polynomial-time computable function f such that for every
input x,

1. f(x) is a set of |x| words different from x, and

2. for all y ∈ f(x) it holds that x ∈ L ∪ T ⇐⇒ y ∈ L ∪ T .

Suppose f is computable in time nl for some l ≥ 1. For each i ≥ 1, define

Si = {x | x ∈ f(0t(i)) ∪ f(0t(i−1)) − {0t(i−1)}, where t(i − 1) ≤ |x| < t(i)}

and let S = ∪i≥1Si.

Then the theorem follows from the following claims:

Claim 5.13 S ∈ DTIME(22(l+1)n)

Proof. For any input x, to decide whether x ∈ Si for some i ≥ 1, we just need to first determine
i such that t(i − 1) ≤ |x| < t(i) and then check whether x ∈ f(0t(i)) ∪ f(0t(i−1)) − {0t(i−1)}. The
major cost is for computing f(0t(i)), which takes 22(l+1)n time, since |0t(i)| = t(i) = 22t(i−1) ≤ 22|x|.

!

Claim 5.14 S ⊆ L

24

Proof. First observe, for each i ≥ 1, that f(0t(i)) ⊆ L ∪ T because f is an autoreduction of L ∪ T
and 0t(i) ∈ T ⊆ L ∪ T . So S ⊆ L ∪ T . Now for each i ≥ 1, we have Si ∩ T = ∅, because for every
x ∈ Si, t(i − 1) ≤ |x| < t(i) and x "∈ {0t(i−1)}. So S ∩ T = ∅ and hence, S ⊆ L. !

Claim 5.15 ‖S‖ = ∞.

Proof. We first observe that all Si’s (i ≥ 1) are pairwise disjoint. So it suffices to show for each
sufficiently large i that Si ∪ Si+1 "= ∅. Now suppose for some i, where t(i)l < 22t(i), that Si = ∅.
Then for every x ∈ f(0t(i)), |x| ≥ t(i) or |x| < t(i−1) or x = 0t(i−1). Note that there are fewer than
2t(i−1) strings of length less than t(i − 1) and ‖f(0t(i))‖ = t(i) = 22t(i−1) > 2t(i−1) + 1. So there
must exist x ∈ f(0t(i)) with |x| ≥ t(i). For this x, it holds that x "= 0t(i) since f is an autoreduction.
Also, |x| ≤ t(i)l < 22t(i) = t(i + 1). So x ∈ Si+1. Therefore, Si+1 "= ∅. !

This finishes the proof of Theorem 5.12. !

References

[1] M. Agrawal. Pseudo-random generators and structure of complete degrees. In 17th Annual
IEEE Conference on Computational Complexity, pages 139–145, 2002.

[2] K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding, editors, Logic
and Machines, Lecture Notes in Computer Science 177, pages 1–23. Springer-Verlag, 1984.

[3] J. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Mathematical Systems
Theory, 18(1):1–10, June 1985.

[4] R. Beigel and J. Feigenbaum. On being incoherent without being very hard. Computational
Complexity, 2:1–17, 1992.

[5] L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete sets.
SIAM Journal on Computing, 6:305–322, 1977.

[6] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Using autoreducibility to
separate complexity classes. SIAM Journal on Computing, 29(5):1497–1520, 2000.

[7] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and structure of complete
sets. SIAM Journal on Computing, 27:637–653, 1998.

[8] H. Buhrman and L. Torenvliet. On the structure of complete sets. In Proceedings 9th Structure
in Complexity Theory, pages 118–133, 1994.

[9] H. Buhrman and L. Torenvliet. Separating complexity classes using structural properties. In
Proceedings of the 19th IEEE Conference on Computational Complexity, pages 130–138, 2004.

25

[10] H. Buhrman and L. Torenvliet. A post’s program for complexity theory. BEATCS Complexity
Column, pages 41–51, 2005.

[11] C. Glaßer, M. Ogihara, A. Pavan, A. Selman, and L. Zhang. Autoreducibility, mitoticity, and
immunity. Technical Report TR05-11, ECCC, 2005.

[12] C. Glaßer, A. Pavan, A. Selman, and S. Sengupta. Properties of NP-complete sets. In Pro-
ceedings of the 19th IEEE Conference on Computational Complexity, pages 184–197, 2004.

[13] R. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic, 38(2):199–211,
1973.

[14] S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis.
Journal of Computer and Systems Sciences, 25(2):130–143, 1982.

[15] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility of NP
sets to sparse sets. SIAM Journal of Computing, 20(3):471–483, 1991.

[16] B. Trakhtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192, 1970. Translation in
Soviet Math. Dokl. 11: 814– 817, 1970.

[17] A. Yao. Coherent functions and program checkers. In Proceedings of the 22n Annual Symposium
on Theory of Computing, pages 89–94, 1990.

26

