
Tree of Latent Mixtures for Bayesian Modelling and Classification of

High Dimensional Data

Hagai T. Attias∗ Matthew J. Beal†

htattias@goldenmetallic.com mbeal@cse.buffalo.edu

Golden Metallic, Inc., P.O. Box 475608 Dept. of Computer Science and Engineering
San Francisco, CA 94147, USA State University of New York at Buffalo

Buffalo, NY 14260-2000, USA

March 2004 (updated January, 2005)

Technical Report No. 2005-06, Department of Computer Science and Engineering, University at Buffalo, SUNY

Abstract

Many domains of interest to machine learning, such as audio and video, computational biology, climate mod-
elling, and quantitative finance, involve very high dimensional data. Such data are often characterized by sta-
tistical structure that includes correlations on multiple scales. Attempts to model those high dimensional data
raise problems that are much less significant in low dimensions. This paper presents a novel approach to mod-
elling and classification in high dimensions. The approach is based on a graphical model with a tree structure,
which performs density estimation on multiple spatial scales. Exact inference in this model is computationally
intractable; two algorithms for approximate inference using variational techniques are derived and analyzed. We
discuss learning and classification using these algorithms, and demonstrate their performance on a handwritten
digit recognition task.

∗http://www.goldenmetallic.com
†http://www.cse.buffalo.edu/faculty/mbeal

Figure 1: Left: a mixture model. x denotes the data
vector and s the component label. Right: a mixture of
factor analyzers (MFA) model. x′ denotes the hidden
factors.

1 Introduction

Many domains of interest to machine learning, such as au-
dio and video, computational biology, climate modelling,
and quantitative finance, involve very high dimensional
data. Such data are often characterized by a rich sta-
tistical structure, including long range spatial and tem-
poral correlations. These correlation make the graphical
model builder’s job quite challenging. Consider, for in-
stance, fitting a Gaussian mixture model (Fig. 1 left) to
K-dimensional data. Using diagonal precision matrices
would require just K parameters per matrix, but could
lead to highly inaccurate results for strongly correlated
data. Using general precision matrices could in principle
lead to an accurate model, but at the price of escalat-
ing the number of parameters to K(K+1)/2 per matrix.
As K increases, the O(K2) parameters could sharply in-
crease the required computational resources, slow down
the learning algorithm, and complicate the likelihood sur-
face, increasing the number of local maxima and the al-
gorithm’s chance of getting stuck in one of them.

Many existing techniques attempt to tackle this prob-
lem [13, 11]. One group of techniques focus on controlling
the number of model parameters. This may be achieved
by constraining the precision matrices by e.g., tying pa-
rameters across components or applying symmetry con-
siderations. A more sophisticated technique uses a fac-
tor analysis model with an appropriately chosen number
of factors in each component (Fig. 1 right). Using L
factors reduces the number of parameters to K(L + 1)
per component. However, such techniques do not take
into account the actual correlation structure in the data,
which may lead to inaccurate modelling and unsatisfying
performance.

Another group of techniques focus on controlling the
number of data dimensions. This may be done by a va-
riety of methods for feature extraction, projection, and
dimensionality reduction. This pre-processing results in
lower dimensional data, on which modelling is performed.
However, the success of such methods strongly relies on
accurate prior knowledge about which features are rele-
vant for a given task. Applying them in the absence of
such knowledge may again lead to inaccurate modelling.

This paper presents a novel approach to modelling and

classification in high dimensions. The approach is based
on a graphical model which performs density estimation
on multiple scales. The model is termed tree of latent mix-
tures (TLM). All the nodes in the tree but the leafs are
hidden, and each node consists of a mixture distribution
(see Fig. 2). The TLM has a generative interpretation
that is simple and intuitive: the variable at a given node
draws its mean from the parent node, which is associ-
ated with a coarser scale; and the distribution about the
mean is described by a mixture model. That variable, in
turn, controls the mean of the children nodes, which are
associated with a finer scale. Hence, TLM models corre-
lations on multiple scales, where short range correlations
are modelled by nodes lower in the tree, and progressively
longer range correlations are modelled by higher nodes.

The TLM model belongs to the class of hybrid graph-
ical models, which contain both discrete and continuous
variables. Like many models in that class [10], exact in-
ference in the TLM is computationally intractable. We
present two algorithms for approximate inference, using
variational techniques [6], and discuss learning and clas-
sification using these algorithms. Performance is demon-
strated on a handwritten digit recognition task.

2 Model

Here we define the TLM model and discuss its different
interpretations.

2.1 Mathematical Definition

The TLM model is defined as follows. Let M denote a
tree structure with M nodes. Let m = 1 : M index the
nodes, where the root node is labelled by M . For node
m, let πm denote its parent node, and let ζm denote the
set of its child nodes. The number of children of node m
is denoted by Cm =| ζm |.

Each node in the tree is now expanded into a mixture
model that contains two nodes, denoted by sm and xm for
model m. Node sm is termed the component label, and is
a discrete variable with Sm possible values, sm = 1 : Sm.
Node xm is termed the feature vector, and is a continuous
vector of dimension Km. (Note that we use the term
feature just to refer to the continuous nodes; no actual
feature extraction is involved.) We will refer to the nodes
of the original tree graph as models, and reserve nodes for
the label and feature variables.

Next we define the probabilistic dependencies of the
nodes, shown graphically in Fig. 2. The component label
sm of model m depends on the label sπm of the parent
model πm, via a probability table wmss′ ,

p(sm = s | sπm = s′) = wmss′ . (1)

Hence, the discrete nodes s1:M themselves form a tree,
whose structure is identical to the original tree structure
M. The continuous nodes x1:M , however, do not form a

1

Figure 2: The TLM model. For model m, sm is the
component label and xm is the feature vector. The mod-
els form a tree, which here is symmetric with Cm = 2
children for each model. During learning, the leaf nodes
x1, x2, x3, x4 are visible and all other nodes are hidden.

tree, as each of them has two parents, one discrete and one
continuous. The feature vector xm of model m depends
on the component label sm of that model, and on the
feature xπm of the parent model. The dependence draws
on the mixture of factor analyzers (MFA) model (Fig. 1
right), where xm is a linear function of xπm plus Gaussian
noise, with the linear coefficients Ams, ams and the noise
precisions Bms depend on sm,

p(xm = x | sm = s, xπm = x′)
= N (x | Amsx

′ + ams, Bms) . (2)

Like in MFA, the precision matrices Bms are diagonal.1

The full joint distribution of the TLM is given by a
product over models,

p(x1:M , s1:M | θ) =
M∏

m=1

p(xm | sm, xπm)p(sm | sπm) (3)

where for the root node we set sπM = 1 and xπM = 0,
and

θ = {Ams, ams, Bms, wmss′} (4)

denotes the model parameters. To help with overfitting
protection and model selection, we impose standard (con-
jugate, see [1]) independent priors over the parameters:
Gaussian over Ams, ams, Wishart over the precisionsBms,
and Dirichlet over the label parameters wmss′ ,

p(Ams) = N (Ams | 0, ε) , p(ams) = N (ams | 0, ε) ,
p(Bms) = W(Bms | ν,Φ) , p(wmss′) = D(wmss′ | α) .

1Notation: the Gaussian distribution over a vector x with mean
a and precision matrix B is N (x | a, B) =
| B/2π |1/2 exp[−(x − a)T B(x − a)/2].

Figure 3: The feature vectors of the TLM of Fig. 2. The
data are 16-dimensional and are organized in a spatial
4×4 array. The feature vectors at the leaves x1, x2, x3, x4

correspond to data variables. The features x5, x6, x7 are
hidden. In this example, all features have dimensionality
Km = 4.

Let V ⊆ {1 : M} denote the models at the leaves,
and let H = {1 : M} \ V denote the rest of the models.
Only the feature vectors of the leaf models, denoted by
xV = {xm,m ∈ V }, correspond to observed data vari-
ables, and are therefore visible during learning. The rest
of the feature vectors, denoted by xH = {xm,m ∈ H}, as
well as all the component labels s1:M , are hidden.

To construct a TLM model for a given dataset, one di-
vides the data variables into subsets, and associates a fea-
ture vector xm ∈ V with each subset. The dimensionality
Km of the feature vectors is the number of variables in the
corresponding subset. The subsets may or may not over-
lap; overlap could help reduce edge effects. Fig. 3 shows
an example where 16-dimensional data, organized in a
spatial 4×4 array, are modelled by the tree in Fig. 2. The
data variables are divided into 4 non-overlapping subsets
V = {1, 2, 3, 4} with 4 variables each. Hence, the visible
feature vectors xm, m ∈ V have dimension Km = 4. The
hidden features xm, m ∈ H, where H = {5, 6, 7}, in this
example also have Km = 4. In principle, one may fit to
a given dataset a tree of an arbitrary structure M, not
necessarily symmetric, and arbitrary parameters Km and
Sm. Estimating them from data is discussed briefly in
Section 8.

2.2 Interpretation

Any probabilistic DAG models the process that generates
the observed data, and has therefore a generative inter-
pretation. To generate an observed data point from the
TLM, start at the root and select a value s ∈ {1 : SM}
for the label sM with probability p(sM = s). Then gen-
erate the feature via xM = uM , where uM is sampled
from the Gaussian p(xM | sM = s) which has mean ams

and precision BMs. Next, proceed to the children models
m ∈ ζM . For each child, select a value s for its label sm

with probabilities p(sm = s | sπm). Then generate its
feature via xm = Amsxπm + um, where um is sampled
from the Gaussian p(xm | sm, xπm) which has mean ams

and precision Bms. Repeat until reaching the leaves.

2

The TLM may also be viewed as performing density
estimation at multiple spatial scales, where the scale is
finest at the leaves and coarsest at the root. Each fea-
ture xm is described by a mixture distribution where the
mean of each component, apart from a constant, is pro-
portional to the parent xπM . Hence, in effect, at a given
spatial scale (or level in the tree), the mean is determined
by a node at a coarser scale (the parent node, one level
up), whereas the nodes at the given scale add the finer
statistical details.

There is another attractive interpretation of the TLM,
as a bottom-up process of successive clustering and di-
mensionality reduction. We will discuss it in Section 5
and exploit it for initialization.

3 Inference

Bayesian classification with TLM is performed by training
a separate TLM model on data from each class, using an
expectation maximization (EM) algorithm derived for the
model. A new unlabelled data point is then classified by
comparing its likelihood under the models for the different
classes, combined with the class prior, as instructed by
Bayes’ rule.

Both the performing the E-step of EM and computing
the data likelihood require inference, i.e., computing the
posterior distribution over the hidden nodes xH and s1:M ,
conditioned on the observed data xV ,

p(xH , s1:M | xV) =
p(x1:M , s1:M)

p(xV)
. (5)

However, this posterior is computationally intractable,
since computing the normalization constant p(xV) re-
quires summing over all possible state configurations
(s1, ..., sM) of the labels, whose number

∏M
m=1 Sm = eαM

is exponential in the number of models M (α = 〈logSm〉
is the average log-number of states).

3.1 Variational Inference

In the following, we present two techniques for approxi-
mate inference in the TLM model. Both techniques are
based on variational methods [6], which we now review
briefly. In variational inference, one approximates the
exact posterior p(xH , s1:M | xV) by another distribution
q(xH , s1:M | xV), termed the variational posterior. Un-
like the exact posterior, q is chosen to be tractable. This is
usually achieved by giving it a factorized structure, i.e.,
grouping hidden variables into separate sets which are
mutually independent given the data; in the exact poste-
rior, those sets are correlated. q(·) is typically given in a
parametric form, which either has to be specified in ad-
vance, or (as is the case here) emerges once the structure
has been specified. Its parameters are then optimized to
minimize its Kullback-Leibler (KL) distance KL[q || p]
to the exact posterior p. Interestingly, the optimization

requires knowledge of the exact posterior only within nor-
malization. The optimization is performed by an itera-
tive loop nested at the E-step of each EM iteration, and
is guaranteed to converge since the KL distance is lower-
bounded by zero.

Learning (M-step) in TLM needs the following pos-
terior moments (a.k.a. sufficient statistics). These are
the feature conditional means ρms and child-parent cor-
relations Λms,m′s′ , m′ = πm, as well as the label prob-
ability γms and joint child-parent probabilities ηms,m′s′ .
They are defined via marginals of the variational posterior
q(xH , s1:M | xV) by

ρms =
∫
dxm q(xm | sm = s) xm ,

Λms,m′s′ =
∫
dxmdxm′

q(xm, xm′ | sm = s, sm′ = s′) xmx
T
m′ ,

γms = q(sm = s | xV) ,
ηms,m′s′ = q(sm = s, sm′ = s′ | xV) . (6)

Those posterior moments are computed below by each
inference technique separately.

At the M-step of each EM iteration, one considers the
averaged complete data likelihood Eq log p(x1:M , s1:M |
θ), where Eq averages w.r.t. the variational posterior
computed at the E-step. The learning rule is derived,
as is standard, by maximizing this quantities w.r.t. the
mode parameters θ. Once a model has been learned, the
likelihood L = log p(xV) of a new data point xV is ap-
proximated by the variational likelihood F ,

F = Eq [log p(x1:M , s1:M)− log q(xH , s1:M | xV)] . (7)

In fact, it can be shown that F = L − KL[q || p] ≤ L
(the argument p refers to the exact posterior), hence the
variational E-step that minimizes the KL distance also
maximizes the variational likelihood.

3.2 Technique I: Tree of Factorized Fea-
tures

Generally, the posterior may be written as the posterior
over labels and over features conditioned on those labels,

q(xH , s1:M | xV) = q(xH | sH , xV)q(s1:M | xV) . (8)

We now require the features to be conditionally indepen-
dent of each other,

q(xH | sH , xV) =
∏

m∈H

qm(xm | sm) . (9)

This is the only restriction we impose on the structure of
the posterior. Notice that this structure maintains three
important properties of the exact posterior: (1) the labels
are correlated, (2) the features depend on the labels, and
(3) the features themselves are correlated since q(xH |

3

xV) =
∑

SH
q(xH | sH , xV)q(sH | xV) 6=

∏
m∈H q(xm |

xV). However, the details of the different dependen-
cies differ from the exact posterior. Similar ideas have
been used in [2, 9] in the context of processing multiple
speech/sound signals.

The functional form of the variational posterior falls
out of free-form optimization of F under the structural re-
striction (9); no further assumptions are required. First,
the label posterior has a tree structure, just like the prior
(1), given by a product over potentials

q(s1:M | xV) =
1
Z

M∏
m=1

exp [φm(sm | sπm)] (10)

where Z is a normalization constant. Since the label pos-
terior is a tree, any required statistics, including Z and
the posterior moments γms and ηms,m′s′ in (6), can be
computed efficiently using any of the standard message
passing algorithms [8]. We exploit this useful property
for computing the feature posterior below.

The potentials φm are given by the expression

φm(sm = s | sπm = s′) = logwmss′ (11)
+ log p(xm = ρms | sm = s, xπm = ρπm,s′)

−1
2
Tr

(
Γ−1

ms +AmsΓ−1
πm,s′A

T
ms

)
+

1
2

log | Γms | ,

which basically shows how inferring feature xm modifies
the prior wmss′ to yield the posterior. Here, ρms and
Γms denote the mean and precision, respectively, of the
feature posterior q(xm | sm = s, xV) in (9), to be com-
puted below. For the leaf nodes m ∈ V we substitute
ρms = xm, Γ−1

ms = log | Γms |= 0, and for the root node
m = M , ρπm,s = Γ−1

πm,s = 0. In addition, p(xm = ...)
in the second line refers to p in (2) with the appropriate
substitutions.

Next, the feature posteriors turn out to be Gaussian,

q(xm | sm = s) = N (xm | ρms,Γms) (12)

whose the precision matrix is given by

Γms = Bms +
∑

m′∈ζm

Em′s′|msA
T
m′s′Bm′s′Am′s′ . (13)

Em′s′|ms denotes posterior averaging over sm′ conditioned
on sm = s, e.g.,

Em′s′|msAm′s′ =
∑
s′

q(sm′ = s′ | sm = s, xV)Am′s′ ,

where q(sm′ = s′ | sm = s, xV) = ηm′s′,ms/γms.
The means of (12) are given by a linear equation that

expresses ρms in terms of the parent and children of node
m,

Γmsρms = Bms

(
AmsEπm,s′|msρπm,s′ + ams

)
(14)

+
∑

m′∈ζm

Em′s′|msA
T
m′s′Bm′s′ (ρm′s′ − am′s′) .

Direct solution of this linear system may be inefficient,
since its dimension

∑
mKmSm may be quite large. How-

ever, most of the coefficients are zero since node m is
coupled only to its parent and children, hence sparse ma-
trix techniques can solve it efficiently. Instead, we imple-
mented an iterative solution which, starting with the ini-
tialization described in Section 5, makes repeated passes
through the tree and updates the means using (14). For
the experiments described below, convergence was almost
always achieved in O(10) passes.

The conditional feature correlations Λms,m′s′ in (6)
can now be computed via

Λms,m′s′ = ρmsρ
T
m′s′ + δmm′Γ−1

ms (15)

Finally, as usual with variational techniques, the equa-
tions for q(s1: | xV) and q(xH | sH , xV) are mutually
dependent and must be solved iteratively.

3.3 Technique II: Factorized Trees

Here, we require the features to be independent of the
labels,

q(xH , s1:M | xV) = q(xH | xV)q(s1:M | xV) . (16)

This is a stronger restriction than the one proposed in
the previous section (9), and has the disadvantage that
the posterior over the features is unimodal (above it was
a mixture distribution, q(xH) =

∑
sH
q(xH | sH)q(sH)).

In fact, it can be shown to be a single Gaussian, which
is a fairly simplistic approximation to the exact poste-
rior. However, it has the advantage of preserving direct
correlations among the features, and it is also simpler to
compute.

Just like above, the functional form of the variational
posterior falls out of a free-form optimization of F under
the restriction (9); no further assumptions are required.
First, the label posterior again has a tree structure, given
by a product over potentials

q(s1:M | xV) =
1
Z

M∏
m=1

exp [ψm(sm | sπm)] (17)

where Z is a normalization constant. Any required statis-
tics, including Z and the posterior moments γms and
ηms,m′s′ in (6), can be computed efficiently via message
passing [8].

The potentials ψm are obtained via

ψ(sm = s | sπm = s′) = logwmss′ (18)
+ log p(xm = ρm | sm = s, xπm = ρπm)

−1
2
Tr

(
Λm,m +AmsΛπm,πmA

T
ms − 2Λm,πmA

T
ms

)
,

where ρm and Λmm′ (6) are discussed below. For the leaf
nodes m ∈ V we substitute ρm = xm, Λmm′ = 0, and for
the root node m = M , ρπm = Γπm,m′ = 0. In addition,

4

p(xm = ...) in the second line refers to p in (2) with the
appropriate substitutions.

Next, the feature posterior is shown to be a Gaussian
tree, given by a product over potentials

q(xH | xV) =
1
Z ′

∏
m∈H

exp [Ψm(xm | xπm)] , (19)

where Z ′ is a normalization constant. The potentials Ψm

are given by the quadratic expressions

Ψm(xm = x | xπm = x′) = xT (EmsBms)x (20)
+x′T (EmsA

T
msBmsAms)x′ − 2x′T (EmsA

T
msBms)x

−2(Emsa
T
msBms)x+ 2(Emsa

T
msBmsAms)x′ ,

where Ems denotes posterior averaging over sm, e.g.,
EmsAms =

∑
s γmsAms.

Finally, the conditional feature means and correlations
in (6) in this case are not conditioned on the label, due
to the variational factorization (16). Hence

ρms = ρm =
∫
dxm q(xm) xm , (21)

Λms,m′s′ = Λmm′ =
∫
dxmdxm′q(xm, xm′) xmxm′ ,

and both ρm,Λmm′ are computed via message passing,
due to the tree structure of the feature posterior.

4 Learning

Given the posterior moments (6), the update rules (M-
step) for the TLM model parameters θ (4) are straight-
forward to derive. We define, as is standard, the extended
feature vector x̄T

m = (xT
m, 1) by appending 1, and the ex-

tended matrix Āms = (Ams, ams) by appending the col-
umn ams to the right. We extend Λms,m′s′ of (6) such
that Λ̄ms,m′s′ is the correlation of x̄m, x̄m′ , and Λ̄′

ms,m′s′

is the correlation of xm, x̄m′ . We also define the matrices

Fms = Eπm,s′|msΛ̄πm,s′,πm,s′ ,

F ′
ms = Eπm,s′|msΛ̄′

ms,πm,s′ , (22)

where the average Em′s′|ms is defined in (14).
The learning algorithm presented here runs in batch

mode on an N -point dataset. Averaging over the data is
denoted by 〈·〉.

For Āms we obtain

Āms = 〈F ′
ms〉 (〈Fms〉+ ε/N)−1

. (23)

For Bms we obtain

B−1
ms = (1 + ν/N)−1

(
Λms,ms + Āms〈Fms〉ĀT

ms

− 2〈F ′
ms〉AT

ms + Φ/N
)
. (24)

For wmss′ we obtain

wmss′ =
〈ηms,πm,s′〉+ λ/N

〈γπm,s′〉+ λSm/N
. (25)

Note how the parameters of the priors ε, ν,Φ, and λ reg-
ularize the update rules by preventing ill-conditioning.

5 Initialization

As EM is not guaranteed to converge to the global max-
imum of the likelihood, using an effective initialization
procedure is important. Here we discuss a heuristic
that emerges from an interesting, though not rigorous,
interpretation of what the TLM actually does. Taking
a bottom-up view, the leaf models m ∈ V perform clus-
tering on their data xm. The parent feature xπm then
performs linear dimensionality reduction of the clustering
errors from all its children, i.e., of the difference between
each data point and the center of its assigned cluster.
At the next level up, the models πm cluster the features
xπm, and their parent features reduce dimensionality of
the errors of that clustering. The process continues until
the root is reached.

Based in this view, we define the following procedure.
Consider each leaf m ∈ V in isolation, setting Asm = 0,
and run EM-GM (EM for a Gaussian mixture) to deter-
mining the cluster means and precision ams, Bms. Set
the weight wmss′ to the responsibility (posterior proba-
bility) of cluster s for data xm. Vector quantization (VQ)
may be used to initialize EM-GM. Next, for each model
m ∈ V and data point xm, define the clustering error
um = xm − amŝ(m), where ŝ(m) = arg mins | xm − ams |.
Now, consider each parent m′ of a leaf, and run EM-FA
(EM for factor analysis) using xm′ as factors and the er-
ror from all its children um, πm = m′ as data. This will
determine the Ams (notice that ŝ(m) must be used to la-
bel the um). Principal component analysis (PCA) may
be used to initialize EM-FA.

Next, set the features xm′ to their MAP values ob-
tained by EM-FA. Regard those values as observed data,
and perform the above procedure of EM-GM followed by
EM-FA. Repeat until the root is reached.

This completes the initialization of all model param-
eters θ. However, for variational EM one must also ini-
tialize either the moments of the label posterior or the
moments of the feature posterior (6). We did the latter,
by setting γms to the component responsibility in each
model m, computed from EM-GM for that model, and
approximating ηms,m′s′ = γmsγm′s′ .

We point out that several variants of our initializa-
tion procedure exist. In one variant the tree is built and
initialized section by section. One stops the procedure
after only part of the tree has been initialized, and runs
variational EM only on that part. After convergence, one
proceeds upward with initialization, and possibly stops
again to run variational EM before reaching the root.

6 Bayesian Classification

Here we consider the TLM in the context of supervised
classification. In that task, a training set consisting of N
pairs (xV , c) of data and class label is given. These data
are used to train a different TLM model for each class.
Let θc denote the parameters learned for class c, and let

5

Figure 4: Handwritten digits from the Buffalo dataset.

p(x1:M , s1:M | θc) denote the TLM joint distribution (3)
for that class. Let p(c) denote the prior over classes. The
exact Bayes classifier for a new data point xV is given by
ĉ(xV) = arg maxc p(xV | θc)p(c).

However, the marginal p(xV | θc) is computationally
intractable, and in the variational framework it is approx-
imated via the variational likelihood (7). Let Fc denote
the variational likelihood for the TLM of class c. Then
Fc(xV) ≤ log p(xV | θc), and the approximate Bayes clas-
sifier is given by

ĉ(xV) = arg max
c

[Fc(xV) + log p(c)] . (26)

Computing Fc can be shown to be remarkably simple
in either of the variational techniques discussed above.
Recall that the label posterior in either case was a tree,
given as a product over potential normalized by Z (10,17),
which in turn is computed by message passing. Denoting
it by Zc(xV) for the TLM of class c, we have

Fc(xV) = logZc(xV) (27)

within a constant independent of xV .

7 Experiments

We tested the TLM on the Buffalo post office dataset,
which contains 1100 examples for each digits 0-9. Each
digit is a gray-level 8×8 pixel array (see examples in Fig.
4). We used 5 random 800-digit batches for training, and
a separate 200-digit batch for testing.

We considered 3 different TLM structures. The struc-
tures differed by the number of models M , the parameter
values Km, Sm, Cm, and the degree of overlap between
the pixels associated with the data variables xm, m ∈ V .
In all cases we tied the parameters of Ams across com-
ponents, such that Ams = Am, since the available num-
ber of training examples may be too small to estimate
all Ams reliably (the NIST digits dataset should alleviate

Table 1: Misclassification rate for three different TLM
structures using two variational inference techniques.
MOG denotes a Gaussian mixture benchmark.

Structure Technique I Technique II

(1) 1.8% 2.2%
(2) 1.6% 1.9%
(3) 2.2% 2.7%
MOG 2.5% 2.5%

this problem, see below). Structure (1) included 2 levels
with M = 5 models. Each of the 4 leaf nodes covered a
4×4 pixel array with no overlap. The leaf models created
a 2×2 model array, and all had the root as parent, hence
Cm = 4. We used Km = 16 and Sm = 6 for all mod-
els. Structure (2) included 3 levels with M = 14 models.
Each of the 9 leaf nodes again covered a 4×4 pixel array,
but it overlapped its horizontal neighbors by a 4× 2 and
its vertical neighbors by 2×4 pixel array. The leaf models
created a 3 × 3 model array. Next, the middle level had
4 models, each parenting a 2 × 2 model array of the leaf
level, with an overlap as before. The middle level mod-
els created a 2 × 2 model array, and all had the root as
parent. Hence, this structure also had Cm = 4. We used
Km = 16 for all models, and set Sm = 2 to keep the total
number of parameters approximately equal to structure
(1). Structure (3) included 3 levels with M = 21 models.
Each of the 16 leaf models covered a 2 × 2 pixel array
with no overlap. The leaf models created a 4 × 4 model
array, and the tree was constructed upward with Cm = 4
similarly to structure (1). We used Km = 4 for all mod-
els with Sm = 4, leading to about half the number of
parameters of structures (1),(2).

For each structure we ran variational EM with both
inference techniques. The results are shown in Table
1. As benchmark, denoted MOG, we used standard
Gaussian mixture model with 30 components. All TLM
structures, except (3) with inference technique II, out-
performed the benchmark. Structure (2) with technique
I outperformed the rest.

While our experiments are not yet exhaustive, they
seem to indicate that (1) overlap at the leaf level may
enhance performance, possibly by reducing edge effects;
and (2) technique I may be superior, possibly due to the
multimodality of the feature posterior. We are currently
performing experiments with additional TLM structures,
and will report the results in the final version of this pa-
per. We are also working on a second set of experiments
using the NIST digits dataset, which contains 60, 000
training examples on a 20× 20 pixel array.

8 Extensions

The work presented here may be extended in sev-
eral interesting directions. We are currently pursuing
new techniques for approximate inference in TLM. A

6

Rao-Blackwellized Monte Carlo approach [4, 7], which
combines sampling the labels with exact inference on
the features given the label samples, has given promising
preliminary results. Suitable versions of other methods,
including loopy belief propagation [14], expectation prop-
agation [12], and the algorithm of [3] (originally designed
for time series), may also prove effective.

An important direction we plan to pursue is learn-
ing the structure M of TLM, including the parameters
Cm,Km, Sm, from data. In classification, for instance,
different classes may require models with different struc-
tures. Structure search, accelerated using our initializa-
tion method, and combined with scoring using a varia-
tional Bayesian technique [1, 5], could produce a powerful
extension to the current TLM algorithms.

Another direction involves extending TLM into a dy-
namic graphical model, by constructing a Markov chain
of TLMs. This graph would model complex time series
on multiple spatiotemporal scales, and could produce a
novel and effective forecasting tool.

References

[1] H. Attias. A variational Bayesian framework for
graphical models. In Advances in Neural Information
Processing Systems 12, pages 209–215. MIT Press,
2000.

[2] H. Attias. Source separation with a sensor array us-
ing graphical models and subband filtering. In Ad-
vances in Neural Information Processing Systems 15.
MIT Press, 2003.

[3] X. Boyen and D. Koller. Tractable inference for com-
plex stochastic processes. In Proceedings of the 14th
Annual Conference on Uncertainty in Artificial In-
telligence, pages 33–42. Morgan Kaufmann, 1998.

[4] A. Doucet, N. de Freitas, and N. Gordon. Sequential
Monte Carlo Methods in Practice. Springer, 2001.

[5] Z. Ghahramani and M. J. Beal. Propagation algo-
rithms for variational Bayesian learning. In Advances
in Neural Information Processing Systems 13, pages
507–513. MIT Press, 2001.

[6] M. I. Jordan, Z. Ghahramani, and T. S. Jaakkola.
An introduction to variational methods for graphical
models. In M.I. Jordan, editor, Learning in Graphical
Models. MIT Press, 1998.

[7] T. Kristjansson, H. Attias, and J. R. Hershey. Stereo
based 3d tracking and learning using EM and par-
ticle filtering. In Proceedings of the 18th European
Conference on Computer Vision, page in press, 2004.

[8] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger.
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47:498–519,
2001.

[9] L. J. Lee, H. Attias, and L. Deng. A multimodal vari-
ational approach to learning and inference in switch-
ing state space models. In Proceedings of the 2004
International Conference on Acoustics, Speech, and
Signal Processing, page in press, 2004.

[10] U. Lerner and R. Parr. Inference in hybrid networks:
theoretical limits and practical algorithms. In Pro-
ceedings of the 17th Annual Conference on Uncer-
tainty in Artificial Intelligence, pages 310–318. Mor-
gan Kaufmann, 2001.

[11] M. Meila and M. I. Jordan. Learning with mixtures
of trees. Journal of Machine Learning Research, 1:1–
48, 2000.

[12] T. Minka and J. Lafferty. Expectation-propagation
for the generative aspect model. In Proceedings of
the 18th Annual Conference on Uncertainty in Artifi-
cial Intelligence, pages 352–359. Morgan Kaufmann,
2002.

[13] A. Moore. Very fast EM-based mixture model clus-
tering using multiresolution kd-trees. In Advances
in Neural Information Processing Systems 11, pages
543–549. MIT Press, 1999.

[14] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Gen-
eralized belief propagation. In Advances in Neural
Information Processing Systems 13, pages 689–695.
MIT Press, 2001.

7

